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‘We prove propagation properties (maximal and minimal velocity bounds) for pscudo-resol-
vents associated with N-body Hamiltonians with shori-range potentials that are infinite on a
star-shaped domain centered at the origin. Motivated by the fact that the invariance principle holds
for usual N-body systems, we define the cluster wave operators in terms of pseudo-resolvents and
prove that they exist and are asymptotically complete. For any cluster decomposition g these
operators intertwine the hard-core pseudo-seifadjoint Hamiltonians, corresponding to the pair of
pseudo-resoivents R, R , , and equal the Abel operators constructed in ierms of Hamillonians.
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1. Introduction

One of the most important goals in scattering theory is the study of the asymptotic
behavior (when t-» + «) of e—"”w , where y is an arbitrary state on the orthogonal
complement of the space of cigenvectors of the Hamiltonian H. More precisely, we are
interested in finding a family { // |} of selfadjoint operators with simpler (and known)
spectral and evolution properties, such that for any statey a family of vectors { w;‘ } should

exist, for which the convergences

t»+

”e_””‘#—ze-"”“wf ” - 0 (1.
a

are satisfied. If this takes place, then we say that the system is asymptotically complete.
The pecaliarity of the N-body Hamiltonians is that they are a sum of a differential

operator (with excellent dispersion properties) and a perturbation that does not vanish

(when | x | = o) along certain directions of the configuration space X. This makes us
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—itH +
think that, if asymptotic completeness holds for such systems, then e ity v, should be

asymptotically localized within some cones centered at the classical trajectories.

These geometrical ideas allowed V. Enss to show that (1.1) is true for three-body
quantum systems with potentials that decay slightly faster than the Coulomb interaction.
After that, asymptotic completeness for N-body short-range quantum systems was proved
in 1987 by I. Sigal and A. Soffer [33], and in the succeeding years many people tried to
simplify or extend their proof for more complicated many-body problems. Indeed, there
was first'an effort of making the theory more "readable”, done by J. Derezinski in [13].
Then, G. M. Graf, using jointly ideas not only from the earlier works of V. Enss [15-18 ]
and from [33 ] but also from more recent papers of Sigal and Soffer ({35} and especially .
[34 1), succeeded in giving in [22 ] a remarkable time-dependent-like proof of the quoied
result, which differed from the previous proofs by several (important) aspects. We will
emphasize only the fact thatin [22 ] some of the main propagation properties were obtained
without the use of the Mourre estimate, i.c. independently of intimate knowledge of the
spectral properties of the Hamiltonian. These properties were sufficient for showing the
existence of the cluster wave operators but not for their completeness. Indeed, for the latter
result, a propagation property involving jointly a time-dependent localization in position
and a localization in the total energy was needed, and for proving it a good knowledge of
the spectrum of the N-body Hamiltonian was crucial. Actually, this is the only place where
Graf invokes the Mourre estimate (in order to obtain (local) positivity for the commutator
of the Hamiltonian with the generator of the dilations group) and by this means he
eliminates the decay hypothesis imposed in [33 ] on the second derivative of the potential.
Further, using refined results on the Mourre theory due to W. Amrein, Anne Boutet de
Monvel, and V. Georgescu (see [1]and also [10 ] for optimality), we have shown in [26],
on the lines of [22 ], that no condition on the derivatives of the potential was needed to
prove/cofnpleteness of the Agmon-type systems. Moreover, since locally the potentials
were allowed to be as singular as the kinetic energy permits it, the question of validity of
the statement on asymptotic completeness for much singularly perturbed systems (as the
hard-core N-body quantum systems) arises naturally. Indeed, interest in such problems
is rather old, going back, e.g., to the works of W. Hunziker [25] and especially of
D. W. Robinson, P. Ferrero, and O. de Pazzis (see [31, 20]), where, under rather
restrictive assumptions on the geometry of the potentials (spheric symmetry, the supports
of the singularities where cylinders centered on the subspaces of the relative movement of
the clusters) and on the forces (repulsivity), the absence of the singular continuous
spectrum and the existence and completeness of the wave operators, corresponding to the
elastic channel, were established. But this is, of course, a very simplified case, because
even if the problem was posed in an N-body context, the above hypothesis
transformed it into a one-channel scattering problem. Very recenily, Anne Boutet de
Monvel, V. Georgescu, and A. Soffer, using both the locally conjugate operator method
and an algebraic approach (which appears naturally in the N-body context), have suc-
ceeded in giving in [11] a complete spectral analysis for this type of highly singular
Hamiltonians. More precisely, it was proven that under quite rcasonable smoothness
conditions, imposed on the border of the supports of the singularities, the generator of the
dilations group is (in some weak sense) conjugated to the hard-core N-body Hamiltonian,
which proves to be sufficient to obtain a limiting absorbtion principle (even in an optimal
form). Then, absence of the singular-continuous part of the spectrum and local decay

A
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follow in a standard way. Our task is 10 continue this work by studving the scatiering
properties of these systems.

We will begin by describing the geometrical particularitics of the configuration space
X (an Euclidean space) related to the N-body problem. Letus denote by L finite partially
ordered index sct and demand it to be alattice. Take then afamily { XY} JEL of subspaces

of X such that X*P0 = x9 4 xb  4nd {0) and X correspond to min L. = A and

(1Y
max L = a_ .. » respectively. In the usual N-body situation, where X is the space of the
configurations of the sct of N particles relative to the center of mass coordinale system,
L is the lattice of partitions of the set { 1,...,A }, X¥ is the subspace of X consisting of the
configurations which describe the internal motion of the clusters (fragments) of the
partition a and, finally, X (the orthogonal of XY in X with respect to a well chosen scalar

product) can be identified with the space of configurations of the relative motions of the
clusters. Let us deriote for any « € L by 7 the orthogonal projection on X* . Further,
according to S. Agmon (see [3)), an N-body type Hamiltonian is defined as the sum of
the (positive) Laplace ~Beltrami operator A and a family { V(@) } , o of operiators which
are factorized as V(a) = V% x?. Here we considered the simplest case where Vs the
operator (in H (X“)) of multiplication by a function having a good decay at infinity in all
directions of X?. Although this assumption is currently used in many of the papers
dedicated to this subject, in the more recent oncs it is shown that the same results can be
obtained if ¥ is a rcasonable differential operator. As for the hard-core systems, the
physical picture of clusters formed by particles that cannot get arbitrarily close to cach
other is modeled by (positive) singularitics of the potentials, having as supports compicts
of X?; of course, a short and long range parts can be added 10 these singular potentials.
A precise definition is obtained by using a limiting process, in which the hard-core
Hamiltonian A is seen as a limit, in the strong resolvent sense, of the family of self-adjoint
operators in H (X)

H, =A +a>é:L( V(a) + ax(a)) = "+ a‘g Lx"on“ . a2
We have denoted by Ha standard N-body Hamiltonian which, under natural assumptions
onthe symmetncoperators Ve, becomesa sclmd]oml boundcd from below operator whose
form-domain is the order oné Sobolcv spaccH ' (X). Notice that, when tending toinfinity,
the parameter a = 0 will'increase the value of the cylindrically supported perturbation
x(a), where x“ denotes the opcrator of multiplication with the characteristic function of a
compact K¢ from X“.
It has been proven (in [I1], Lemma 3.7 and Proposmon 3.8) that for cach z in
C\ [mfa(H) w) the limit R(z) =lim(z- H, ) exists in  the strong  scnse in

o> %
B(H “IH l) and in the -norm of each of thc Banach spaces B(H® H') for
~ 1l ss<t<landt- s<2 Actually, R(2) is a self-adjoint pseudo-resolvent family, i.c.
it satisfies the first resolvent identity and R(2%) = R(2)° . It is known (sce |23 D) that the
closure in H of Ran R(z) is a proper subspace of H (letus denote it by H ) which does

not depend on z and coincides with the closure of the domain of a sclf-adjoint operator b7l
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forwhichR(z) |, = (z - H)™' andR(2) | 4 on = 0. Wewillcall H apseudo-selfadjoint

operator on H and this will be the Hamiltonian modeling a hard-core Agmon-type
problem. Nevertheless, we shall refer to its spectral properties as those of the selfadjoint
operator H which acts in the proper subspace H

We emphasize that one of the difficulties in studying the spectral and scattering
‘properties of such operators is the fact that they are not densely defined. Moreover, we
cannot say a priori that Hamiltonians constructed as above are factorized in the same
tensor product form as those from the family {»Ha }. Actually this holds. Indeed, as in the

usual N-body problem, using the limiting process described before, it is possible to
construct for each a € L a pseudo-selfadjoint Hamiltonian H?, which corresponds to the
hard-core problem relative to the sublattice L = {b € LI b < a}. On the other hand, it

is shown that for any a € L the family of resolvents {R aa = o Of the (genuine)
selfadjomt operators ' ' : . »

=H'® 1+ l®a(ch)2

tends in norm in B(H "(X), H? (X)), forany6<1,toa pseudo4reselt/ent R, tto which
the pseudo-selfadjoint sub-Hamiltonian /, corresponds), whenever the convergence

H. - H” takes place in the norm-resolvent sense in B(H ~Yx%, H (X")) This tmphes
H=H®1+10 A, L 13)

where A, | denotes the Laplace-Beltrami operator in H(X“) and the above tensor product

sum is an operator defined in the proper subspace D(H*)®H (X,) of H(X), thh the
operator domain D(H ) = D(H “Y®H (X >
Then, the set of thresholds of H is defined as . S
wWHy=UoH, - (1.4)
a€ L\(am ax } :

whereas the set of critical values of H, denoted by 5 (I-I), will be the union of T(H) with
o (H) being the point spectrum of H.

The main ingredient for the study of the spectral and scattering properties of the
Hamiltonian is the Mourre estimate, which states (see (1.5) below} local positivity for the
commutator of H with the generator of the dilations group A, defined as

dim X

A=3(PQ+Q P)—12<PQ +QP),

where Qj is the operator of multiplication by the coordinate X; (w.r.t. some orthonormal

basis of X) and Pje - l'a—x- F* QJF with F being the Fourier transform. Actually, this
J

estimate stresses strict positivity of the lower semicontinuous function p e
R - (— », + » ]Jon an open subset of R, where for allA € R
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def .
phA) = sup{u ER |3/ € C3(RiR), /(&) = Os.t. [(H) [iH,AV(H) = uf(H)*}. (1.5)

In {2,8, 27 ] an extensive study of this function is made. [t is also important to point
out that under the assumption of strong—Cl regularity of the Hamiltonian w.r.t. A, even
if A is a pseudo-selfadjoint operator, the identity

. [A,R(z)] = R(2)|A,H |R(2) (1.6

is valid for any z € C\o(#) . We refer to §5 of |11 ] for the precisc definitions of the above
commutators and for the proof of the Mourre estimate in the context of the hard-core
N-body systems. In fact, the result we needed and that we will intensely use is the strict

positivity ofpﬁ(}x) onthesetR\ & (R).

Another difficulty arising from the fact that the limit of { #_} is only pscudo-

selfadjoint in H comes from how we have to interpret the limit of { ., and, correspon-

dingly, how we have to define the cluster wave operators. It is not a trivial fact (see {12 ]
that, for any a € L, the family of evolution groups generated by { H, u} has a limit, but

this limit exists only on H the closure of Ran R in H. Moreover, taking into account

a,°?
the inclusion H, . c H, true forany a,b € L. witha < b, and Theorem 3.23 (ii) {12},
we see that the domain of the limit lim ¢
R a > +oo
lim ¢"a,¢ even when this one is applied to the vectorsof H_ .
a-—> +o
As for the cluster wave operators, in the usual N-body context (i.e. for any a finite)
they are defined as '

is a priori included in the range of

* 0 . — o« i HitH —itH )
Qa,a =Q (Ha’Hu,a’ E a,a) = ,_}”P: «l ac B aax’ (.7
Notice thatsinceE, = Epp(HZ) ® 1 commutes with #/  (which has a purely abso-

lutely continuous spectrum) and also with bounded functions of H ,  asaconsequence of

the Hilbert space isomorphisms

& .
H(X) EL2<(Xa,d§a); H (xY) —”—-fH(Xa)dga

X

(see [11 and 21}, then the limits (1.7) can be considered as w;ﬁ;c__opcrators with an
identifier E _~ (sec [5]. Moreover, for any z€& (—,info(ff)), the equality
A\

Epp(Hg) = Epp Rfi(z) is true, so the identification operator is the same for the wave
operators constructed in terms of Hamiltonians and for those constructed in terms of
resolvents. For the hard-core case, these identifiers are no more equal, and we will use the
symbol E_ for Epp(H“) ®,, which projects H into H_. Then
E = E”a(R)Ea = ERu(R\{ 0}E,, where E (A) denotes the spectral measure of the
operator Aon A C R.

It appears that we should try to redefine the hard-core wave operators in terms of the
known objects. This is also suggested by the invariance principle, whkich is true in the usual
N-body case at Icast for the admissible function (sce [S | for definitions) (z — .)_| , with
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z chosen as above. Indeed, suppose first that both strong limits Q* (H_
+ .

Q Rd’Ra,a’

they are equal to the strong ones (see Corollary 6.14 in [5 D. Thus, we can use the weak

form of the invariance principle (see Theorem 11.25 in [5]) for this pair of operators in

order to get their equality, and thus equality of the strong limits. ‘

Thus it scems quite natural to define the wave operators corresponding to the hard-core
case in terms of resolvents, and to prove the existence and asymptotic completeness for

* . - ot
Q*(R.R;E) =Q}.

As we will see in the next sections, the way we do this uses an algebraic framework
which is proper also for the usual N-body resolvents, so, in what follows, we will auto-
matically prove- not only the existence of Qai, but also the existence of
Q* Ra,R o E aul? which was previously taken as a hypothesis for the weak invariance
principle in the case of usual N-body systems.

Obviously, the intertwining property Qf = ER(R\{ 0 })Q: is valid, and since for all

,Ha :E and

,a a,x
E | exist. Then, the corresponding absolute Abelian limit also exists, and

a€L,(z-H)R, = EHa(R), Qat are partial isometries with th¢ final domain H_ , which

intertwine the pair H, H on the closure of the range of Ra. The connection between
Qf and the wave operators defined in terms of Hamiltonians as limits of

itH itH
W () ="E (R)e <E_,

is made with the strong form of the invariance principle. Indeed, let Wf be the absolute
Abelian limit of W (1), i.e.

> -
lim sf e ¢t
e-»+0
0

Then, in Appendix 6.2 we will show that the existence of Qf implies the existence of

+ 112
W (x0w =W =y ||%dr=0. (1.8)

-

w ai and their equality. This shows that the strong limits of W _(7), if they exist, are partial
isometries with the final domain H _ . Actually, this can be shown also directly, using an

argument similar to that described in the proof of Lemma 4.1.

Finally, we would like to remark that despite their boundedness, the resolvents are not
always comfortable objects to work with, mainly because of their non-local character. This
feature becomes critical when one wants to prove, on the lines of [22, 14, 391, the following
propagation theorem, that we consider to be the main result of the paper.

Theorem 1.1. Let a€L be arbitrarily chosen. If 6 € C(°)° (R\ 3 (Ra)> and if
JE C8° (X) has its support localized sufficiently close to the origin and outside any of the
subspaces of the family { X b }b EL\L ’ then the estimate

a

0

fgt_t “J(%) B(R)e 1R ”2S Clv |12 (1.9

1
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is true for some positive constant C and for ally € H (X).

In Section §, a more precise form of this theorem is stated and proved, and it is also
shown that as a consequence of a particular case of it, the asymptotic completeness
statement

> Q)" =E(H) (1.10)

a € L\{ amax}

is valid.

Let us review the contents of the following sections. In the next section we expose
(following [6, 8, 9, 11] the algebraic framework related to an N-body type problem,
putting emphasis on the results we need in our paper. We also briefly remind the
construction of the partition of unity in the configuration space due to G. M. Graf and list
some of the properties of the vector field attached to this family of functions. Section 3 is
devoted to the proofs of those propagation estimates that can be deduced without the use
of the Mourre estimate. It is shown in Section 4 that the existence of the limits Q‘f isa

consequence of these estimates. Finally, Section § is mainly devoted to the proof of
Theorem 1.1.

2. Algebraic and geometric frameworks

As we have already mentioned in the first section, for any a € L the direct sum
X‘eXx o determines the canonical isomorphisms of the Hilbert spaces

H(X) = HX") ® H(X)) = Lz(Xa; H (X%). Let us denote by K(X“) the C*-algebra of
compact operators on H(X? and let T *(Xa) be the C*-algebra nzturally associated with
the translation group in B (H(Xa)> ,i.e., the norm-closure (in B ( H (Xa)) = B(X,)) of the
*-subalgebra of operators of the form f(z P)=F ;(af(naQ) F X, withf € Cw(Xa). Then,

the norm-closure in B(X) of the linear space generated by the operators S ® aT which
correspond (through the first of the above isomorphisms) to S® T € K(X) ® T *(Xa)

will be a C *-subalgebra of B(X), named the algebra of a-semicompact operators and
denoted by

T(a) = K(X% ], T*(Xa) . 2.hH
Further, with the aid of the family { T(d) } p e . the vector space sum
T, = E T(b) ’ 2.2)
be L,

(with La ={b= L| b < a}) is constructed for each a € L. It was shown (see {6, 8 ] that

the above sum is direct in the topological sense and that the canonical projections P(b):
T - T(b) (which assign toany TET=T, a unique T(b) € T(b)) are norm-conti-

max
nuous and satisfy P() [T"] = T(b)" . We will refer to T(b) as the b-connected component

- . dt’f
of T. Moreover, for any# € L the projection Pa = z P(b) is a *~-homomorphism between
~ beL
a
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Tand its C*-subalgebra T . Foranya € L \ {a_,,} aconcrete expression for P was given

by W. N. Polyzou (see (6) in [29], and also [30, 6, 8]. Notice that using the Mobius

inversion formula (see Theorem 4.18 in [4]) we can retrieve any of the operators

T(a) € T(a) as a weighted sum of elements of the family { Tb} beEL "’ the weight being the
a

Mobius function u (b,a).

The second important property of the family of algebras of semicompact operators is
its graduation with respect to the semi-lattice L, which means that for any a,b € L, the
inclusion

T(a) T(b) € T(sup{ a,b}) 2.3
is valid. We summarize all these properties by saying that T is an L -graded C*-algebra.

Let us go back now to the pseudo-selfadjoint operators H defined in Section 1.

According to (8 ], we will say that H is affiliated to the C*-algebra T iff all the realizations
of the *~-homomorphism ¢ : C_(R) - B(X) belong to T. But since the Stone-Weierstrass

Theorem ensures the existence of a bijection between the *-homomorphisms ¢ :
C,(R) > B(X) and pseudo-resolvents (such that for any f&€C_(R) we get

¢(f)|H = f(H) and ¢(f)|H$H =0), and since H does not depend on z from the

pseudo-resolvent w.r.t. which it has been defined, then an equivalent definition for the
affiliation of H to T is: R(z) € T for some z € C \ o(H). Remark that if H is affiliated to

T, then any of the members of the family {#} aelL 18 affiliated to a corresponding

element of {Ta} L Indeed, given two C*-subalgebras T and T of B(X) and a

pseudo-selfadjoint operator H affiliated to T, there exists a unique pseudo-selfadjoint
operator P [H ], which is affiliated to T and for which the relation P [¢ ] = & Nis true on
all C_(R). The operator P }is related to A via the *-homomorphism P : T - T . In [11]

several affiliation criteria are given and it is also proved that the hard-core N-body
Hamiltonian is affiliated to the N-body algebra T. As a consequence of this, an HVZ
theorem is obtained for this context.

We are particularly interested in establishing the extension of the first resolvent
identity to the context of L-graded C*-algebras. For the case of the usual N-body systems,
. this is called the Weinberg-Van Winter equation (see [29, 6]. Actually, as we will see
below, borrowing the algebraical-combinatorial technique of deducing such kind of iden-
tity, it is possible to give (primarily for N-body Hamiltonians H with bounded pertur-
bations), for any a,b € L, a precise meaning to the difference R - R and to the

a-connected component of RE T, in terms of a sum of regulanzmg operators. These
results will be important in obtaining useful commutation relations between hard-core
pseudo-resolvents and multiplication operators.

Let us begin by introducing some special subsets of the lattice L. We will call a
totally ordered subset £ a maximal chain in L, iff for any a,b € £ , b < a, for which there
isnoc€&\ {a,b} such that b<c<a, there is also no other d €L\ { a,b} such that
b<d<a. We define then the rank of the finite lattice L as
max {card & | EC L, Emaximal }= | L |. In the N-body case, L is the lattice of parti-
tions of a set of N elements, for which | L | = N

Since L is a union of maximal chains £, any a € L will belong to at least one of those
which satisfy max £ = max L. Then, by convention, the rank of ain L is taken to be the
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number | a |, =max {card§ | max & = max L, min § = a, £ maximal }. This notion
allows us to define for any 1<n<|{L|=N, the n-th level of L as
L(ny={beL | | 6] =n}. Thus, we have L = (| ﬁl=| L (n), where || stands for
’disjoint union of sets’. Finally, we introduce, for some arbitrarily fixed « € L and any
beL o WO special subsets of the lattice L o

Lzs(La)b.:{ceLalczb}, 2.4)

Lba={cEL\Lb|sup{b,c}=a}. 2.5

Itis clear that Lz is alatticein L a and thatL ba is a bilateral ideal in L P Notice also
thatif L“ denotes L , thenforalla € (L \L b) U{&} wehave L, = 0and for all

max
aeLby {b} we have {a} C Lba' Let us put the sign # between two elements of the

lattice L whenever they are incomparable. The proof of the following identity wili give us
more intuition on the seis introduced at (2.5):

La\Lb=}_[;| Lbc' 2.6)
cELa\{b}

Indeed, for any ¢ € Lg\ {b},sinceforalld € Lz \ {c¢}wehavesup{d,b} =d +# c,'
we get Lz N Lbc = { ¢}. Besides, to each of these ¢ the remainder of the set L,
correspondsin {d € L a I d # b}, which s disjoint of any of the sets L = corresponding
to another ¢ of LZ \ { b}. For, supposing the existence of some € L be N Lz {b,d}

will form a pair having (in the case of ¢ 4 ¢) no least upper bound in L . But this would
mean that L is not a lattice. Finally, in order to prove the inclusion € in (2.6) notice that
we have already shown that the r.h.s. of (2.6) includes LZ\ {5}, and that for any

d€L ,d+b, wehavesup{bd} € Lz andd €L, The inverse inclusion is

,sup{ b,d }'
trivial.
Further, corresponding to the set L be WEcOnstruct the following bilateral ideal of L et
T,, = > T(c), Q@1
ceEL ba

and denote by P ba the canonical projection of T onto it. Then, the resolvent identity
R, —R, = Rb<Ha - Hb> R,
can be written using (2.6) as

Ra—szz Rblbc a’
cELa

where I, . is the sum over L of the symmetric operators 17((1) which all, except
A= 170 = fl(amm) (which is affiliated to T , ), belong to T(d). Then, iterating the

min min
above formula and taking it into account that, as a conscquence of the definition of L b

I, =0ifc<borc4 b, weget R, — R, = T R(), with
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| R = R, Ibbl Rb1 Iblb2 sz e Ibn—lbn Rbn , 2.8)
where the sum is taken over all the (not necessarily maximal) chains § of L o having the
g.1.b. band as Lu.b. any of the elements of L,. Moreover, using inductive argument, it was
shown (see Lemma 3.11 in [11] that for any chain&, R§) €T

with

min & max &° This together

deL\La dELb

P > P+ D P(d)] =0

shows that Pba [72 ] can be computed as
R, =P, [R —R,= Y RE), 2.9

where this time the sum is performed over all the chains £ C L with min £ = b and

max & = a. Notice that in the case of &= a.., we have T~ =T(a) and thus
min )
R(a) =R_ _,which tells us that the a-connected component of the hard-core resolvent
min .

is a regularizing operator on all H (X), given by the sum (without repetitions) ﬁ( 13 )
performed over all the chains of the sublattice L .

We are now prepared to state two important consequences of the properties described
above, that we will use throughout the paper. They were proved in {11 ] for hard cores, by
extension from the particular vsual N-body context, by the limiting procedure. The first
one, is the following commutation relatior. (see Proposition 3.13 in [11))

[e.R(@)]= D R®)gAIR,, +R@I&AIR,, (2.10)
be La

true for any multiplication operator with functions g € C2(X ) having firstand second order
bounded derivatives (we are particularly interested in th~ case where g is the icentity
function). Notice that (2.10), (2.9), and (2.8) show :hat the multiple commuta.ors
adf(R) = [...[R,Q1,Q},...Qlare in B(H (X)) for any finite order £.

The second result ( Theorem 6.5 in [11]) states, for any « € L, decay of the
. a-connected component of the hard-core resolvent along all the directions of X¢, with the
same rate as taat imposed by the hypothesis on the n.on-hard-core part of the potentials.
Since in this paper we are interested only in sho: *-range N-body potentials, the only decay
condition we impose on the functions V¢ (see (1.2) and the comments following it) is: for
any a€L\{a, }, there is some u>1 such that (Q")*V“ belongs to

B(H l(X 9, H ~1(X")). Weused (x) asan abbreviationof VI + x*. Then, the precise
result we need states that

(Q%Y¥ R(a) = B(H ~1(x), H ' (X)). (2.11)

In the rest of this section we shal! briefly review (following {22, 14 ], those geometric

particularities of the configuration space X which are specific to the //-body problem.

Indeed, the need to put in evidence some pi.vileged directions for the non-propagation,

which are closely related to the rrticular structure of the potentials, suggests the division

of X into disjoint sets, all except one being neighborhoods (cone or semi-cylinder -shaped)
of these directions. Moreover, a smooth vector field is constructed on X (by convolution
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or averaging) from the first distributional derivative of the convex, locally Lipschitz
application 0 : X -» R

1 2 (2.12)
p=smax{|x ()| +v }.
2a€L a a

In the above definition each of the parameters v, belongs to some interval
(vlﬂl’{;la() with positive bounds convenicntly chosen, such that for any

I = n<m =< N the inequalities v, <% <v <¥ are satisficd. In this sense, & can be

treated also as a function of the argument v € H (v la |’ Fl a I) having each of its
a€L

cocrdinates double-indexed, firstly by the number of the level of L to which cach element
a belongs and secondly by the number assigned to this element within the level. Thus, the
total number of coordinates wiil bc acard L.

The identity (2.12) tells us that p is an almosi everywhere differentiable function on
X, having aclassical derivative a.e. defined on X which coincides with,g' , the distributional
derivative of 0. Actually, o' € L]:C(X). Moreover, it can be shown (see Theorem 4.1.7 in

{24 1) that the second distributional derivative of ¢ is a measure on X, taking as values
positive mat: ices from B(X).

In ord.r to see in which way the vector field ¢’ is a distortion of the identical mapping
on X, we make the connection between (2.12) and the ’privileged directions’ X, by means

of a finite, disjoin*, a.e.-covering { = of X, defined as
J a’a€Ll

Ea=bDa{xEX| lna(x)|2+va>lytb(x) ] 2+rb}=

={rex| | x| 2+va>znf);{l 1y | E v 3. (2.13)

This allows us to calculate explicitly ¢ (and its derivatives) using the partition of the unity
{Ja } . subordinated to the above open a.e.-covering of X. Indeed,

o' (x) = J (X (x) (2.14)
a€EL
holds as X-valued distributions and a.e. as functions. Moreover, since 9" is a positive
measure, then
o' ()= DI (o, (2.15)
aEL
is satisfied forallx € X.
To obtain smooth partition of urity and vector field, we construct them from J ,» Tesp.
o, either as in [22, 14], by convolution with a Cg-function ¢ (supported in a
ncighborhood of the origin in X, and satisfying } e(x)dx =1, } xp(x)dx = 0), or, as
in {381, by an averaging process, performed on the Cartesian product of intervals
card L (n) '

N
H1 H (v,»¥,,) previously defined, as in
n= = .
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gx) = f Pp(v)G(x,v)dv .

Rcard L

Here § is a positive C(°)° function supported in the above product set, with |§ ||, 1 =1,
and in our case G(.,v) will be replaced by Ja, and @ (whose dependence onv is given in
(2.13) and (2.12), respectively). We will denote the new, smooth objects by J, and r,

respectively, and it is not difficult to show that all the properties previously enumerated
(especially (2.14) and (2.15)) hold for them also. It is also shown that if /d denotes the
identity function, then the mappings r' — Id, r''-1d — r' and r'’’ are bounded in the L®
norm.

In Appendix 6.1, properties of some subsets of X which play an important role in the
spectral and scattering analysis, as the open cones (defined forany 0 < d<1)

T (d)={xeX| min|xbx)]| = dist (x,U X)>d| x|}, (.16
D) ={ |beL\La ( bEL\L, » |

o . . . -
or the "cells Xa = Xa\ U bEL\L aX” are given, and the relation between them is studied.

To get an intuitive image of the link between )? and the characteristic function J, of the
set = E, let us mention only the fact that if the argument of J_ is muhiplied by a positive
parametery then the support of J (y ) will tend to coincide wuh X wheny -» o,

3. Propagation properties
We begin with the so-called maximal velocity bound theorem (see [33-35, 22, 36 ].

Proposition 3.1. Let g be a C(")" (X\{0}) scalar function. Then there is a constant A >0

(which cannot be made arbitrarily small) and a positive constant C such that

-]

f%”g(%) My |IP=scly)?. 3.1
I

Proof. Let us choose the propagation observable of the form

o=l

and leth bea C:(R) radial function, constant in a neighborhood of the origin and equal

to zero at infinity. Then the computation of the Heisenberg derivative of ¢ with respect
to the approximating hard-core resolvent R, gives

l r ! ___Q ’ (3-2)
Dy ® = 5 R(P-h + KPR, = 4 35 H

where the dot means the scalar product of two vector operators. We have also used the
convention according to which, whenever no confusion is possible, we will omit the
arguments of the multiplication operators with (eventually time-dependent) functions. In
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order to simplify the aspect of some rather complicated formulas, we will keep to this
convention throughout this paper. Denote now by A the scalar function /d-A' and

h(r)= 4 h(r) < 0. Straightforward calculation shows that forall x € X
dr

{h'(x) =wh'(|x]) 3.3
h(x) = | x |A (]| x]),

where w denotes the unit vector x| x | 7', Finally, take g(r) = ( - h'(r)) "2 and notice
that g is a radial C:; (X\{0}) function. Then, (3.2) becomes

1 R (Pw+w-P)R,
7|Az|gz" 21 &~

1
~ 31 ([RaP,g] ‘w gRa + h.c.) -

- ﬁlt-(gRaP_-w &R ]+ h.c.)_ G4

The latter two terms above are of the order O(t™ 2) uniformly with respest toa because of

ihe obvious equality
2
P
IR,.8]= Ra|:7’ ]Ra )

and the fact that foralla = 0,R_€ B(H "', H").
. — i —itR . .
Denoting ( e "Raw , e . «y) by(.),,, we eslimate the expectation value of the
first two terms from the r.h.s. of (3.4) as follows:

21 2hazt inf Lx] [lee™ ey |2

XE supp g

1 1 Il R (Pw+w PR, Il —nR
—A—t(gRa(P'w +w-P)Rag)t'as7 T “ ay “

Replacing the above inequalities in (3.4), we get

o0

(dnt Lt =down 1 [210) [ 4 (@) [P =Cr v P
1

This shows that if A is chosen (with respect to the support of g) such that
A>sup ||R |2 sup | x|, - (3.9
azl || @ |l—l’0 XEsupp g
then applying the usual Fatou lemma (for the integral over 1) yields

% Hg(%)e—itRw ”2= f%{lianligf ”g(%)e’iﬂiaw HZ <
. .
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==

. dey (Q) ~ir 12 2
<timint [ 4 |1¢( @) |7 < v P

Thus, the Proposition is proved. )

Let us make some comments on this first a priori result. From the point of view of the
physical iriterpretation, it is rather clear why the greatest lower bound of the support of
g is important: the quantum system cannot delocalize arbitrarily fast in time since its
energy R is a bounded, decreasing function. There is alsc the special case of the so-called
"tails" (scattering states describing the system already localized at infinity at finite times)
which have non null asymptotic probability and thus have to belong to the orthogonal
complement of the range of the projector g. Then, a brutal cutoff introducing at least upper
bound for supp g (as in the hypothesis of the above Proposition) would avoid the problem
caused by these "tails" but will make us lose the information about the states describing a
system with really large asymptotic velociiies and low energy. This shows that the above
result is far from optimal. Nevertheless, Sigal and Soffer established in 135 ] a finer one,
which holds for states belonging to a dense set of vectors, in which the upper limiting cutoff
is eliminated and where the norm in the r.h.s. of (3.1) is taken in a weighted Lebesgue
space. But this result is no more an abstract nonsense, since a localization in the comple-
ment of the set of the critical values of the Hamiltonian is needed and the Mourre estimate
has been used to prove it.

Let us notice also that the lower bound established in (3.5) for the value of 4 is not
optimal. One could have proved the Proposition directly, without using the approximating
family { R , }a > and obtaining the best A possible, but this requires the result (2.10)

concerning commutators with hard-core resolvents (see how it is used in the proof of ihe
following Proposition). Moreover, we shall see that not ali the results we need for proving
asympiotic completeness can be deduced by working with a sequence of approximating
Hamiltonians, the algebraic properties of the N-body (hard-core) resolvents being crucial
in the proof of the below theorems.

.

Proposition3.2. ) Letf € C5° (X) be constant around the origin on aregion with interior

diameter not too small (i.e. proportional to the maximal velocity bound ). Then there exists
0 >0 (depending on the short-range part of the hard-core potential) such that for all
a € L and ally € H(X) one has

dt sz %
f . “Ja'd[[lR,Qal ,
1

where Jus =1, (g ta) denotes the multiplication operator with the smoothed characteristic

(5] = e, @6

function of the setE | (see (2.13)).
iy Moreover, if I“n(O) =X\U bk X, , then the following estimate is true for all
a

J€E Cg’ (T (0)) having the support not greater than that of f:
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f%”l“R’Qal"“lf( ) Ry P =clv I 3.7
1

P r oo f: i) Let us first introduce a symbol concerning only the (vector or scalar)
operators of multiplication with C"{X) functions g: ‘8 will stand for g(. A1 }if 8 > 0. Notice

that this is consistent with thc mearing of J,¢ @nd if (g')ﬂ is denoted by ¢’ 8> then by
iteration we get

@) = (8N = (=Bl el, (@)
&) =)=t (g)

for any multiindex a with |a | s p < ».
Further, denote by A s the operator

4=2 > (iR, 1-Q,j, 5 + hc) =
ac€lL
=%;% (LR,.Q, 17y +ry' iR,Q, ), 38
where r; 2 %, 3 is the smooth vector field introduced in Section 2. Using this
operator, weashall construct the propagation observable
D;=f -ﬂté - %2-)/ | 3.9

(the central part of @, will occasionally be called S;). Then, we calculate as usual the
Heisenberg denvanve of <I) and get

Dp®; = 2Re (D /)S;/ + f(DS,)f. (310

The term we need in the conclusion of the Proposition (part i)) will be furnished by
the second term in the r.h.s. of the above equality, while the other terms will be proved as
being integrable in fon [1, «). Let us begin with the simplest one, viz.

fdt(DR(I)é)ISZtsu;:'(def)'l, G.1D)
=
1

where (.), stands for (" MRy, R

time on the support of f, it yields the integrability of D RCD 5

¥ ) . Since S; is obviously uniformly bounded in

Let us now pass to the second term in the r.h.s. of (3.10) and calculate

DS, = [iR,fté] - [ir, Q—] +2 (At ] L1 (3.12)

R at 92"

We will estimate each of these terms separately:

2 [ [RAs] =7 > ([iR-1iR.Q,1] -—%—”jb‘é%h.c.) +

beL
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1 . N 3.13)
+ -275 ([zR,Q]- liR,r st h.c.) .

Thelast line in the above equality can be computed by the repeated use of the commutation
relation (2.10) (notice also that according to it, the flrst double sum in (3.14) below is
precisely [iR,Q)) as follows

LR 1= D liR(b).r's] =
beL
2

=3 (R(c)[ 1’2— r's] Ry + R(D) [i%,

becel

r'd]Rb) =

= 7z‘5 r - > (REPR,+ RG)PR,) -
beceL

32 dz (R PR, + R PR)
i S R( ("'-;—GRP)
b,cEL
; (3.14)
_Eititzabg:z(b)( +GaRbP)Rb, |

where G, stands for P- r"' + r‘;" - P. Then, because of the boundedness of '’ (in the

L* -norm) and the fact that also P is bounded by the resolvents, the last three terms of

the above relation will give rise to an O(t—2(] _d)) contribution; as for the first one, it can
be minorated with using

r‘;l(x) > Z ja,d(x)ﬂa ‘ (3.15)
a€L

(which is true for all x € X as B(X)-valued measures on X, and for all 8 ). Finally, we get

% [iR A ] >1 > [[iR,[iR,Qu 1] -—Q—t‘lja‘(5 + h.c.) +

a€L

[
N

244 (3.16)

+ ).

7 ;L LR.Q, 1 j, 5 iR,Q, 1+ O~
a

We pass now to the second term of the r.h.s of (3.12): using the fact that the family
{ja 5} a e L forms a partition of unity for any d =0, we get

- Ly (% _
[zR, 212]— 2ta§L[I /a,a[lR’Qa]+h‘C‘

1 a o 317
e (%z" - J, s liR,Q" 1 + h,c.) :
a€L
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1-8

a
The last term here is O(¢~ "~ °) because all the components Of_{t_ t* are bounded on the

support of j_, ; in other words, if /d denotes the identity function, the last term above is
a6
1 . ,
- E;m([lR,Q] ‘(r' —1d); + h.c.)

and from the definition of the vector field we know that (r' — Id) is in L*(X).
In a similar manner, computing the third term of the r.h.s. of (3.12) we obtain

N ') DU NS
5 |7 ——-2tl+6([1 Q1 rs+ .c.)+

d—-1

.1
2tl+6 ([lRaQ] '(I‘” Id — r')a + h.C.) . (3 8)

+

Since ('’ -1d — r') is also in L”(X), the last term above gives also an O(t_’_é

bution. Finally, using the same trick, we compute

) contri-

108 19 % 0 %, -a+2, (3.19)
J (t )
t2t2 taEL t a8 t

and summing up (3.16) and (3.19) we obtain the estimate

0 Q
DRSdz% > (uR,Qal——;‘i] '.ia,a(liR,Qal—-t—“] +

a€EL

1
+ '2- 2
a€L
+ O(t—2+a) + O(t—l—é) + O(t—n—za). . (3200

It remains to show that the second term of the r.h.s. of this inequality in integrable
w.r.t. ¢, when taken in the mean value (f.f), . Let us remark first that the product of the

N Q.
[zR,[zR,Qa]] =i the| +

double commutator | iR, [iR,Q 2 ]] with some multiplication operators with functions of the
argument % will appear quite frequently in this paper. We will prove below that if these

functions are supported outside the subspaces X, forallbe L\ L . then the desired

decay in ¢ of the terms containing such products will be ensured. Roughly speaking, this
is due to good decay along certain directions (depending on the given 6 € L) of the
b-connected component of our Hamiltonian (i.e. the resolvent operator). Let us notice also
that since the b-connected component of the N-body algebra T is (a semicompact operator
algebra) of the form T(b) = K(Xb) ®,T "(Xb) , its elements will commute with

P, = 1® £x - Hence, taking it into account that T is the direct sum over L of T(b), we
a

get
[iR,[iR,Qa 1] Jps= D, RUR(®).P,IR), 4=
belL :
= Z R (R(b)Pa - PaR(b)) (ija’ak = liR,j, 1). (3.21)
be L\La
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Using the commutation formula (2.10) we will be able to compute [iR,Ja slas

[iRj,s1= D, liR(c)i, 4=

ceEL

= éié,a > (R(d)PRdc + R(C)PR;) + OBy =

¢ dEL
(3.22)
=§ [y RQT+ O,
and therefore (3.14) becomes o
[RURQT] iy = 2 RR®) (P, + L7 (IR + €717, 4P, LIR.QI) -
eL\L
- > RPR(®) (z] sR+ETY SR, Q]) + 0@y, (3.23)
bEL\L

The r.h.s of the above equality has the advantage that it contains only the products of
R(b) with the functions j, 5 andj, ;. Notice also thatforallb € L\ L  there are strictly

positive constants C ab such that

(x>>[x|..| lxglzc

lﬂll’l |
1\ TH _ )

on the support ofja . This shows that ( ( £ ) t° 1) J,s =€, “; Jos> which together with

(2.11) gives the desired decay in ¢ of the r.h.s. of (3.23), as e.g. in

e
. _~u(1=3) by | (Q7) ,
RR(b)j, ;P R = * 'R R(6) (Q )( - z") Jps PR (3.24)
O(l) N O(l) S ~

provided that 0 < ¢ < 1 satisfies the supplementary conditiond <1 — ;14 .

Thus, it remains only to show that D.HS is integrable in 1. To do so, we
®) t

choodse an orthonormal basis in X and index by & = 1,...,dimX the components of the
vector operators as Q, Af in this basis; actually, we shall denote by f k’ the components of

Af and notice that because of the choice we made on f all of them are negative scalar
functions. Denote also by fk the C; ~(X\{ 0 })-function \/T'k and by x, a smoothed
characteristic function of supp f satisfying kak fk Then, commuting fk through
[iR,Q]and Sa towards nghl, we get

(DR /) Saf—‘ Z kak ( ~ [iR, QA]J 2 S5 ffk + ()(t 3, (3.25)

-

o)
where the O(t—z) contribution is brought by the remainders of order two by the (:lready)
O(t'l) terms containing double commutators of the form [[iR,Q ]f] This shows that
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there are positive constants Ck and C depending on the support of f (and thus on the
maximal velocity bound) such that

St sy, =S f4 (8 |+ T
1 |

which proves the statement i) of the Proposition via the maximal velocity bound theorem
(Proposition 3.1).

We pass now to the proof of ii): let us fix arbitrarily an « in L and assume first (and
prove later) that for some J with supportasin the hypothesis (i.e. depending on thechosen
a) thereis a T > 0 such that for all > T the equality

2= (D)2~ i{Z (3.26)
/(7) = ()°(6), 2 4l )
beEL
a
is valid. We stress that this is sufficient for showing that (3.7) is a consequence of (3.6).
Indeed, notice first that (replacing the letter a by b) an equivalent inequality for (3.6) is

dimX, o
dt : %2 % 2
,;1 fT ( (UR.Q =) iy (LiR.Q 1= ) ), =cCllv?.
|
Then, since 6 € L , means X = Xb , summation of the positive terms in the r.h.s. of

inequality (3.27) below will be performed over a bigger index set than that of the Lh.s.
Hence, using our assumption, we have the following:

J 4 (ur,1- )1 (1m0,1-52)) -
T

dim X o
d ) Q
E f dig [zRQk]-—-)Jf EELJb‘d([zR,Qk]——’—/i>>IS
dimXb » 0 0
d . N 2 .
= |V "°°bELa ,; ,[7< (UR.Q, ]““{L')fsz,(s (“R*Qk""z‘k) ), .32

It remains to prove assumption (3.26). Notice that since the family {jb 5} beL forms

a partition of unity, it is enough to show that if supp J C supp f, then for all 1> T,

x € supp J implies x & Ub L, supp jb - But this becomes obvious if one thinks of

]b 5 as a smoothed characteristic funcuons of semi-cylinders cemered on the sets X

which shrink around these sets when ¢ -> « (with the "velocity" t ), and if one takes it
also into account that the cgmplennentary set for T’ (0) is precisely || , o L, X,

Remark: Inorder to avoid some of the cumbersome calculations we made when
estimating the terms related to the commutator [iR,Aé | in the previous proof, we could
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work with the approximating resolvent R =~ (instead of the hard-core resolvent R) and

obtain estimates which are uniform with respect to the parameter « . Nevertheless, there
will be a difficulty related to the terms containing the commutator {iRa,Pa ] for which the

deeper result furnished by Theorem 6.5 in {11 | has to be used. But this result concerns
the hard-core resolvents, so we will have to pass first to the limit @ = « under the integral

T
f dt for some T > 1, getting (foranya € L)
1

T

, Q .
L 441 (2,1 S @y
1

bel

<3 fdz| ( (RnR,P,,l(z‘z‘s”‘f,,jJRP~jb_6)Rg,’3f), | +om lv I,
1

and finally we will let T go to « and apply the above quoted theorem as in the previous
proof (relation (3.24)).

Proposition 3.3. If a is an arbitrary element of L and if J] € C:(I‘u(())), then there is a

positive constant C such that

0

L4001 g1 =20 0@ g2 < @28
1

and ally € H(X).

Before starting the proof et us introduce some notations that we shall use along all the

rest of the paper: Tu will stand for [iR,Qal - -—r‘i andif A isan unbou’nded (eventually

. e L —48\ |
time-dependent) operator, then its time-dependent regularization (| Al L 45) /2

will be denoted by (A >ﬁ .

P roof: First of all we shall reduce a little the context in which the proposition has to
be proved by assuming that J belongs also to a particular class of functions that Derezinski
denoted by F and defined as being formed by C(T(X)-funmionsfhaving the property that
for any a € L there is a neighborhood v a of the subspacce X, suchthat f=/ . T, in
v, Obviously, this tells us that on some neighborhood of cach Xu, the border of the
support of each function in F will be perpendicular to X, - Itis also casy to check that Fis
a *-algebra which separates the points of X and is densc in C;’ (X) in the L*-norm. Thus,
it will be enough to prove the Proposition for J € C;°(I‘a(0))ﬂF )

O

Since I' (0) = U be LaX/) , any compact set of Fa(()) (and in particular the support of

o
J) can be partitioned in e-neighborhoods of a finite number of points of X, for some

be La . The arbitrary (but fixed) choice we make for J will determine the choice of the
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diameter of these neighborhoods and of the number n, of those which are centered at
points of )?b. Correspondingly, we will have a partition of unity on the support of J
constructed with using a family Uk,,l ky=1,...,n, bEL, } and satisfying on X

ny (3.29)
2 _

DEEENDY Je, =7
bEL, K=

Notice that as a consequence of this choice we will also have VJ = (x bV)J on the support

of each j"b .
Secondly, it is clear that the estimate
N o0
dt 1/2 ;,Q\ —itR, 112 2 (3.30)
(T2 Ry 2= v i
1
implies (3.28), so it will be enough to prove the above inequality. To Jdo so, let us choose
the propagation observable .
®=7(T,)z7 ' (3.3D)

and compute its Heisenberg derivative

Dy @ = 2Re (Dp/) (T,) 4/ + J(De(T,) ) . ’. (3.32)
We will show first that the second term in the r.h.s. of the above equality will furnish the
term from the conclusion of the Proposition plus some integrable terms. For this, we shall

use a particular form of the definition of the fractional power of a positive operator A (see
(37D ‘

A =C f o N + 4) " Adw (3.33)
0

which holds strongly on its domain for some positive constant C and fory € (O,% |. Then,

easy computation gives

DA = cf'w?“{ (Da@ + 74+ @+ A)“DRA}dw =
0
- | (3.34)
= way—l(w + A)“(DRA)(l - (w+ A)"A) dw .
0

In our case, we shall replace Aby (T 2 ); and compute its Heisenberg derivative as

De (Tyf= =7 (7,5 + @8- 1r %) +
+ (LR, [iR,Q 11T, + h.c.). 333
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Then, takingy = -%and replacing (3.35) by (3.34) we get

D (T, )=~2E (€705 + @8~ ) x

xfw‘%(wﬂ'ra);)-'{l —‘(Ta);(w+(Ta)§)—l}dw+
0 .
- / (3.36)
+cfwi(w+(Ta)§)"{Ta. [zR,[fR,Qa11+h.c.}(w+(Ta>;)"dw.

0
_The integral in the first term of the above equality is % (T, )I;l (see [341, p. 132), so
(3.36) becomes _ '
1 —4B—1 -1
D (T == 7T+ (=287 (T, ) +
* E 3.3
1 2, -1 o 1ip 2, -1 ’
+2CRe | dww3(w +(T,) D) ™' T, LR, liR,Q, 1w +(T,) D) ™"
0 -
Notice that the second term in the r.h.s above is O(1 ™! _2‘3) because of the obvious estimate
|| (T, )E' ” < 1%, while the first one is exactly the term we need for the estimate (3.30).

Thus, it will be enough to show integrability (w.r.t. 1) of the expectation value (J.J ),

of the third term of (3.37). This will be performed as in the proof of the previous
Proposition, i.e. by taking into account the decay in ¢ of the double commutator

[iR,(iR,Qa]] on the support of J. Indeed, the hypothesis J € C;(Fu(O)) suggests the
existence, for all b € L\L 0 of some strictly positive constants C, for which

(Qb),2|Q”l = Cyf

onsupp J (7) forall 1 = 1. This shows that

. —H
6 J[<th>‘) < C[-)—;:J’

thus once J being brought nearby the double commutator we can apply the same argument

as in (3.21) fo (3.24) (take & = O for the present case) in order to obtain the O(1™)
contribution. Nevertheless, besides the supplementary difficulties caused by the commu-

tator of / with theresolvent (w + (T, );) ~! thereisalso the problem of the boundedness
of the components of T, (which cannot be pulled out from the integral over w because
they do not commute with { Ta)ﬁ of the resolvents). As we shall see, commuting J with
(0 +(T, )E) ~! givesrise to O(1~ 1Y factors (which are obviously not enough for integra-
bility in #) containing derivatives of J but also operators T,. The strategy will be tocontinuc

tocommuteJ, J' through these resolvents until either the ()(F?) terms or the products of
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these functions with [iR, [iR,Qa] ] appear. Then, only the problems of the boundedness
of the resulting Ta’s and those of the integrability w.r.t. w on both [1,%) and |0,1) will

have to be solved. Actually, we shall see that the first two of them are related whilein order
1o solve the third one we will need to "pick” a little part from the good decay we have
obtained in the variable and convert it in decay into w . Let us first compute:

[(w+(Ta);)—l, J] -

Re (@ +(T,)3) 7' T, (' LR.QIPR + hc. + iRI'R+ O ")) (w +(T) D ™"
(3.38)

This allows us to give a precise formula for the operator which stands in (3.37) in the r.h.s.
of (and in the product with) the R(d)’s (where b € L\La) yielding from [iR,[iR,Q 1],

namely:

2
t

R(w +(Ta)§)'11= (R +J'[RQ(w +( Ta)g) 1y

+ %J'R(w + (Ta);) T, o) + he)(w + (Tu);) Ty

+O(z‘2){ 1+ (w "‘(Ta);)—l ( T,-0(1) + h.c.) }(w +(Ta);) e
(3.39)
+R(w+(Ta)f2,)_'(Ta-O(t_z)-i-h.c.)(w+(Ta);})_' -
-1

_%R{Ta-(w+(Ta);) o(‘z“)(w+(ra);) lO(l)[:w+('ru)§)—l+ h.c.}.

Note that the last three lines of the r.h.s. above are O(t_z), while the first two terms
apparently have not the desired decay in ¢; but since J and J' will be next to some R(b),

they also will finally bring an O(f ™) + O(1~' ™) contribution. Concerning boundedness
of the components of those T, from above which are taken in scalar product with the

O(1) terms, it will be safe to ensure it (uniformly in  and w ) with using the square root
of the resolvent (w + (T, );) =1 Nevertheless, this will not be the case for T, which is
taken in (3.37) in scalar product with [iR, [iR,Q 1], because to ensure integrability in w

over [1,»), we need a norm of the resolvent (w + (T, );) ~1 of a power strictly superior

to g— Thus, we prefer to bound it by a ('I‘a)ﬂ_,l and commute the remaining (Ta)/i

towards left, next to the J. Finally, using the Schwartz inequality with (3.39) replaced by
(3.37), we obtain the estimate

fdtfdww”z !(J(w-!-(Ta-);)_l T, [iR,lz'R,Qall(w+(Tu>§)"'1>,{ =
1 0 '
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dim X

<cuwufdto<t"">||<r>,, T N EArEA

fdww”z (o, ) - sl (3.40)
> P

/=0,1,

+C"J " "'P uzfdtO(t_’u)fda)wllz 2 ”(w +<Ta>§) -1 “3—-%, .

/=0,2,3

where C, C are positive constants dependmg only onJ,J' and @& stands for min {2,u }.
Then, the second term in the r.h.s of (3.40) will be estimated by minorizing

”(w +(Ta)‘§)-l H by ., while for the first one we will take advantage of
”(w +(T, );) - ” <w™! inorder to dominate the r.h.s. of (3.40) by

-]

lIwIIfdtO(t”“) [(T,) g 7e Ry ||f 24w + ||y ||2fdt0(t‘2f*‘”)f 12 4y,
l ° acan

Since the choice of § > 0 is at our disposal, we will take it strictly inferior to Lli—’ which

ensures integrability w.r.t. w in the second term of the above sum. As for the first one,
according to the Schwartz inequality, it will be dominated by

" 1/2 4 o 1/2
v f dio(' =) LK) e ™ e 2] (3.42)
1 1

whose finiteness is a consequence of Proposition 3.2 (i) and of the hypothesis of 4 > 1.
It remains to estimate integrability of the expectation value ( - >t of the first term of
ther.h.s. of (3.32). For this, we will act exactly as in the proof of Proposition 3.2 (relation

(3.25)) but use the partition of unity introduced at the begmnmg of this proof (see (3.29)).
We have -

Ilb
=1 : Q, 2 '
Dpf=7 2 2 [UR:Q,,I = 7| @) Jij + Remainder, (3.43)

where the "Remainder” will be shown to be an O(t_z) term. Let us for the moment look at
the first term above, and estimate

n, ny
<lt 2 z Tb", <T )ﬂ"> 2 2 <T J}k [Jk ’\CT )/3”) +
bEL Kk, =1
a’b a b
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n
b
LS (T 1 TAT T+
bEL , ky=1 (4 b

n
1 5 o
' —t-bEZLa kng I T"J"be "y I ”(Ta)ﬂ"’kb" Ry Ik | (3.44)
Notice that as a consequence of
] dimXb |
I i l1= Z o ol T3 1< Tadpi™ |

and of the Schwartz inequality (applied to the integral f dt) we can dominate the last line
of (3.44) by

© /2 /o 1/2

< fdt Ty i iRy |12 Ui\ g omitRy, (|2
fezLaka:l 1T||< o280,V | 'IT||< R/

each of the above integrals being < C |y || 2 by Proposition 3.2. Then, the commutator
AN Ta)ﬁ ] will be computed with using (3.33) as
b

{jkb,<Ta)ﬁ1=2CRefdww"2(w+(Ta>§)“‘ T, HiR,Qa],jkb](w+(Ta)§)“.
’ ' (3.45)

The above double commutator gives an O(t™ l) contribution, so we will continue to estimate
the first two terms of the r.h.s. of (3.44) as before (relations (3.40) to (3.42)), the only
difference being that &' will be replaced by 2. This shows that the L.h.s. of (3.44) is
integrable in time; the Remainder of (3.43) can be computed by the Fourier spectral
formula as

1 T
A ik iko iko
—li f dkJ''(k)e” ¢ @ f dr f doe t 2 iR,Q1,Q0le* T 2, (3.46)
t .
X 0 0

”~
where J'' is a rapidly decreasing function (as Fourier transform of the smooth, compactly
supported J'' ).

Finally, the integral over ¢ of the L.h.s. of (3.32) is obviously dominated by

Z,S;g | (J'<Ta)ﬁ-’)t| 5252;} Wi, H(Ta)ﬂje‘itRw |=

( _ 1/2

=2suD||me1(-’T(2,1>,+’4/3”-’“3,,“‘#"2 ,

tz1 - N’
o) ’

which completes the proof of the Proposition.
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Remarks: 1) The estimate (3.7) remains valid if one replaces Q, by ahy of its

components relative to some basis from X. Moreover, this is also true for the sharper
estimate (3.28), as a consequence of the implication (see e.g. Proposition 6.2 in [19])

1/2
n
2 2 2
Aks2 Aj=>Ak,s( Aj] ,
j=

valid for the set { Aj} P of (unbounded) positive self-adjoint operators.

=

2) Since Propositions 3.2 and 3.3 have been proved for an arbitrary lattice L , they are
also true for any sublattices of L. More precisely, let a be an arbitrarily fixed element of L ,

Q
and denote by Tb 2 the operator [iRa,Qb] - -—t—q. Then, due to (2.2), the estimates ¢ (3.7)

and (3.28) will also be true if R is replaced by R, i.e. for any b€L_ and any
Je C°°(I‘ (0)) there is a positive constant C such that

T (N7 2605w 7 ) 7 | 20D e ) < b
1 3.47

Moreover, taking it into account that b€ L implies I',(0) € T (0) and using the

argument described in the proof of Proposition 3 2 (re'allon (3.24)), we see that the
difference between T, , and T is of the order of O(¢ Rk ) on the support of J. Then, the

obvious inequality (A + B) < 2(A2 + Bz) which holds for any pair of self-adjoint (not
necessarily positive) operators A, B, shows that Tba can be replaced by T, in the first

norm of the above inequality. In what follows we will see that the same is true for the second
norm above, i.e. the estimate

o0

dt . Q112 ,,Q, itk 2_ 3

7| Ry = | FICe Tew ||F=C iyl (3.48)
1 .

holdsforallb €L, allJ € C;’(Fb(O)) and all y € H(X). Indeed, using formula (3.33),
an easy calculation gives

(Ty)g— (T p=C fdwwz(w+(T )ﬂ)“ [1(R R)Qb] (w+<rb)§)“
0

bt (3.49)
1 .
= 2. —1 . 2, —1
+ CRefdw w2(w+(T, Yo ' Ty, [1(R - Ru),Qb] (@+(Ty)p)
0
This shows that we only have to commute the J’s from the left or from the right through
the resolvent (w + ( Tb);) =1 inorder 1o get cither the products of J, J' with R — R, or

0(1—2) terms. The boundedness of the components of 7, | will be ensured exactly lik- in
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the proof of the previous proposition (see the comments we made after equation (3.39)).
In this way we show that the above difference is of integrable order, and thus (3.47) implies
(3.48).

4. Wave operators

An important feature of the strategy that Sigal and Soffer devised to prove the existence
of the cluster wave operators and asymptotic completeness of usual N-body short-range
systems is that both these problems are treated as if they were of the same difficulty.
Indeed, the existence of the strong limits of exp (itH)J »EXP (—itH b)’ where {J b} isa

family of pseudodifferential operators verifying a partition of unity in the phase space has
been proved for the first time. In our case, we will take, as in [22,14], a nme-depcndent
family of identifiers and state:

Proposition 4.1. If a is an arbitrary element of L and J is a C; (T ,(0)) function, then
the operator domain of the following limits: '

WE(R,R ;) = s - lim e"RJ(Q) | @.1)
1= + o .

WER,R:T) = s = fim e "Fa s (@)e @.2)
{—> + @

is the whole H (X). Moreover, the statement is true even when J is a bounded continuous
Sfunction with supportin T (O)

P roof: Asin the proof of Proposition 3.3, for showing the first part of the Proposition
it will be enough to take J € C: (X)M F . We will also use the same partition of unity on

the support of J constructed with using the family {j, l ky=1..,n,b€L }.
b

To prove the existence of the limits (4.1) and (4.2) the Cook criterion will be used.
More precisely, the computation

i(w,e‘male'imw)= (w,e”Ra{D J—iR-R )}e-mew)

itR —{tR

shows that a sufficient condition for the convergence of e a2 Je in the expectation
valueony € H (X) is
itR —itR
[ |{pe"®ap, re7%y) > f IR@W e <Clly 12, @3
i bEL\L

Then this weaker type of convergence yields (in our specnal case) the strong convergence
in a standard manner. Reasoning in the same way as in the proof of Proposition 3.2 (see
relation (4.3)), we prove that the integrand in the second term of the r.h.s. of (3.21) is of

the order of O( ™) for all b€ L\ L . Further, using formula (3.43), we show that the

first term in (4.3) is dominated (modulo some O(z"z) contributions) by
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© n, dlmX
J43 3 3 nmzt |«
* 1 bELakb=l =
x “(Tl);,"’;k e Ry I ||<T )1/ka @ e”" Ry =
nbdimx % 1/2
<3 3 T HImm |
bEL k=1 I=1 | “
© 172
f ||<T>"2k(af) v I’

1
where in the above estimate the Schwartz inequality has been used. Finally let us notice

~ that each of the integrals in the above brackets is < C ||y || 2 as a consequence of the
Remark following Proposition 3.3.
Suppose now that J € BC(T' (0)). Letx be the smoothed characteristic function of a

nslghborhood of the origin in X, and denote by X, the operator of multiplication by
x l-—t) , where y > 0 is a parameter. Then the product ny plays the role of the J’s of the
Y

first part of the proposition, so it will be enough to prove that for any positive ¢ we can
choose y in such a way that

itR ~itR
a - <
sup [[e7es (L =xpe Ty |[<e vy
for all y belonging to the weighted Lebesgue space of order one H 1(X ). Moreover, using
the obvious inequality 1 — X, < Id, true for y sufficiently large, we see that a stronger

condition is given by .
1 —itR
sup - 2 <X 4.4)
'ZF;IHIQI V’” 7. ”’P”H

But (4.4) is a particular case of the result due to Radin and Simon (see Theorem 2.1 in
{32]). Indeed, all we have to do is to mimic the proof of the quoted theorem (the
approximating resolvent R, taken as the Hamiltonian ) and finally obtain

~ 1
Jrete™ ey = ||ieiw |+ [ (7)1,

0
where {;a }a > o denotes the uniformly bounded family of operators R, PR . Applying
the Fatou lemma to the above inequality, we prove (4.4) provided thaty is chosen superior

-1
toe |71,

Lemma 4.1. If a is an arbitrary element of L and Ea denotes the projection
Epp(H") ® 1, then the limits
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QF = s~ lim " T 4.5)

u
>+ >

exist on all H(X). Moreover, if a# b are two elements of L, then the ranges of the
corresponding cluster wave operators are orthogonal.

P r o o f: Since the existence of the operators W *(R,R /) has been proved on H (X)
for all J € BC(X) with support in T (0) the /3 argument shows that in order to prove
the existence cf (4.5) the following convergence

(- J(%)e"“au HIT(T (4.6)

has to be true for all « belonging to a dense subset of E o H (X). The choice we will make

for J in (4.6) depends on the vector u.
For this, let us construct the dense set of u’s by taking simple tensors of the form
W' ® ,v,, where w’ belongsto E, (Ha) H (X% (and thus w” is an eigenvector of H¢ for

the engenvalue/l“) andv =g, (P)v withg € C§ (X ) and

-1 -1
z—ﬂt“—P—g P z—-A“—P—g] | 4.7
5 P, 2] .

P =
a

As we explained before, we stall choose J € BC(l"a(O))ﬂ F depending on each u by
requiring:

supp J X Dsurp g,
a

4.8)
J | x =1 on thesupport of g,

a

Then, the Lh.s. of (4.6) is
(1= 1) et @ g B, || [| (14 B) 5 g, B |

4.9

because of relation (1.3), which in turn is a consequence of Theorem 3.10 of {11].
Let us take now one more cutoff function 1 € C(°)° (X% with A = 1 in a neighborhood of

the subspace X,. The precise choice we will make for the support of 4 will depend on the
choice we make on J and hence on g, S0 for the moment the shape of the support of A is
entirely at our disposal. In what follows we will denote by A < B the inequality (between

numbers) A < B + o(1), where o(1) is defined w.r.t.  » % o . Then the r.h.s. of (4.9) will
be majorized by:

(1= 2 CE =2y @ure g B, ||+ | (1 - 4 D) @ v, ||<
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< ” (1 _ J(_?)) h(_?)ga(;a)e—it(z —9_ pzlz)—lwa @0 “ <
S| (P - s D) I e g, I
+ )11 - 1) Qs o e |

where C is a positive constant depending on J and A and wkere, in the asymptotic
inequality, it is supposed that 2 has the supplementary property A= h°on?, so it
commutes with the unitary group exp { — itf(z — A% — Pﬁ/ 2)"1 }.

The first term in the above inequality tends to zero when ¢t » * = as a consequence
of Theorem 7.1.29 of Hormander (see [24 ]), and thus

(-7 @) e e |2 [| (1 - 1 D) g, S A kg |

4.10

SinceJ € F, one can make our final hypothesis on 4 , namely: the supportof 4 ischosen
(as a function of J ) to be included in the neighborhood of X o for whichJ = J° T, Then,

in the r.h.s. of (4.10) we will have

Q Q Q
(1= 1) DD = (1 - 1) 8 =0

because of the second hypothesis in (4.8), and thus the first statement of the lemma is
proved.

It remains to show that for arbitrary a # b in L and for any vectors ¢, ¢ € H (X) we
have ( QZ:% Qz:vp ) = 0. Actually, it will be enough to prove the convergence

—i — [t] o .
(e ”RaEa¢,e ltRbEﬂ’) - 0

for ¢ and y belonging io the dense sets previously introduced. This time we do not need
any function g, hence we will take it equal to one. But for these vectors, the L.h.s. of the

‘above relation is
itz =29 — pEn) —lb—PZZ_I
<Ea‘P’e it(z /2 e i1z /) E(,VJ)

which converges to zero when ¢ goes to « as a consequence of the Riemann-Lebesgue
lemma.

5. Proof of the minimal veiocity theorem

Our main result, Theorem 1.1, can be stated in a more precise form as follows:

Theorem S.1. Leta €L and >0 be arbztrarzly chosen. Let (J, 6) and (J 9) be two
couples of functions, withJ, J €C, (I‘ (0)) and 9, = Co “(R), such fhatJ and 8 are equal
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to one on the supports of J and 8 , respectively. Suppose moreover that for arbitraryA € R
one of the following two conditions:

2
X PN
inf { (p‘; W~ e)uZ - 70 l x € supp J and u € supp 9} >
a

dlm x? é.D

TS e [

X € suppJ
2inf 2 dlm X
=5 | € supp 8} [pf ) e ||P 8 (R) || sup | x1 (5.2
sup r‘ a l xEsupp T

is satisfied. Then, the estiinate ‘
dt —itR, 112 2
& “J(%@(R)e "y ||*=cliv | (5.3)

1
is true for some positive constant C and for all p € H(X).

Notice that depending on the choice of the pair (/,6), the above result may be treated
either as a maximal or as a minimal velocity bound theorem. This result gives more
information than we need to prove asymptotic completeness. Indeed, we will se¢ later that

the following corollary, which corresponds to the particular case a = apax of the above

theorem, is sufficient (via a standard induction argument) for the proof of (1.10). Let us
denote by & (R) the set of critical values of the operator R. Then:

Corollary 5.2. Let8 € Cg’ (R\E(R)) and take J € C(°)° (X) with the support sufficiently
close to the origin in X. Then,

s = lim &R 1(£)e ™R o(R) = (5.4)

1> * o

Proof: Itis sufficient to choose the support of J/ (depending on how close supp 8 is
to the points from & (R)) such that one of the two conditions (5.1) and (§.2) holds. Then
(5.3> will be valid, which will imply

lim inf ”c"RJ(-Q) e R g(RYy H =
1> o

for ally € H (X). But according to Proposition 4.1, the full strong limits W™ (R, R;J) exist

on the entire H (X), so that they equal zero on all scts 8(R) H (X) (whose union over all

0, as in the hypothesis, is dense in H ).

P roofof Theorem 5.1: Since the theorem should be true for any a € L., during the
whole proof we will fix an arbitrarily chosen ¢ and consider (unless otherwise specified)
that all the operators of multiplication by functions are rclative to the « (as it were be
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indexed by a). Then the proof will be performed by induction over the levels La("‘)
(n=1,.., rankL =N ) of the sublattice L . Nevertheless, there is a particular case,

namelya=a for which the proof is simpler and it works exactly in the same manner

min ’
as for the first step of the inductive process corresponding to the casesa € L \ { Ain }.
The induction hypothesis will be called (A, _ |) and announced as follows:

(A, ,,): If for any b E La(n + 1) and any € >0 there are two couples of functions

n+1l
(7,6) and (.’I\ B) withJ,J € Cq (T,(0)) and 6,6 € Cg (R), such that J 8 are equal to one on
the support of J and 9 , respectively, and if for allA € R ,one of the following two conditions:

x2 A dim X l x[l
inf { (Pgb(l) - e),ul - 7“ ! x € supp J and u € supp 9] Zesiﬂp? lgl ” [iR,Q,] ”_.2._ ,
¢

2infpu? | A ) dmX 6

{ sup uZ I M € supp 9} (P Rba) e) >[Zl ”PIG(R) ”x Esslﬁp?l x| (5.6)

is fulfilled, then estimate (5.3) is true.

The first step of the (weak) inductive process, namely the validity of (A ~ )» Will be
a
given by the following lemma. As we said before, this lemma tells us also that Theorem
S.1is true in the particular case @ = a_,  (see condition (5.7) below).

Lemma5.l. Letb=a_. in the hypothesis of (A,Z +1 ) or suppose that for the same couples

of functions the following strict inequality

inf { [pz A - e],uz - 52— I x € supp Jand u € supp 61 >0 @D
%min

holds. Then (5.3) holds also.

Proof: Let us remind first that for a given vector operator S in H (X), we will denote
byS,, S% the operators 1 ® arS), resp. (7, S) ® 1 in H (X), but we will not change the

notation when the operators (x S) acting in H (X ) and therefore (x“ §) in H (X) will be

implicit. As stated before, whenever no confusion is possible, we will not mention the usual
time-dependent argument x/ of the operators of multiplication by functions. Keeping in
mind these conventions, let us choose the propagation observable

2 .
@ = 6(R)J [iR, 1%4 JO(R), (5.8)

and compute as usual its Heisenberg derivative as
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i\ 2
D@ =+ Re 6(R)(D ) (iR, (@] 6(R) + 6(R)S (D . [iR, ﬁ%—,’—} ) J6(R).  (5.9)

Then the obvious estimate

fdt(DRd))ts2su;;|(<D)t| <
t=

1 5.10)
dipx* 2 2 2
= > ]][lR,Q,l” sup x| UL O N el

I=1 x€suppJ

shows that we only have to look at the terms from the r.h.s. of (5.9): we will begin by proving
that the first one is integrable w.r.t. . For this, let us take an orthonormal basis in X and

denote by T, the components of the vector operator T, = T in this basis. Since the
min

support of J is compact, there exists a finite family { j,.} of C; -functions with supports
contained in supp J and such thatJ =J 2,. j? . Then, proceeding as in the proof of the
Proposition 3.3 (see relations (3.43) and (3.44)), we get

2 dim X
. 1 _ B, - -
(D)) [:R,LQ—:)—]h?g > Jl.(Tk);;/z(Tk)ﬂlTkBk(Tk);g/zji-i-O(t 3,
= i Ny e’
' o(1) G.1D

o
Since J;€ C;’(Xa ) forany i, we can use (3.30) in order to integrate the first term in the
min

r.h.s. above, provided that

not a2
Bk=<Tk)£;/2(3kf)[iR,£%‘L]J(Tk)gl/z | (5.12)

is shown to be the sum of a uniformly bounded (in #) operator and some integrable terms.
We have thus to commute <Tk);13/2 towards left. Since J and 9,/ bound the above

commutator, we will only have to show the integrability of sums of the form
1 12 74 ~ 1 12 ~
[T g " 8] UR.QE+ 8 [(Ty) 5 " LiRQI]E, (5.13)

where g, g denote the operators of multiplication by the functions E)k.l or (ak.l)nl and
Jr, orJ, respectively (their argument being as usual x/1). Using formula (3.33) with

y = 1/4 and the argument exactly as in the proof of Proposition 3.3 (see (3.45)) we can
show thatif 8 is appropriately chosenw.r.t. u , the first term of (5.13) brings an integrable

contribution. Then, in the same manner, the second term of the above sum is computed
-as

Y 1 -1
ZTCRengfdwa (cu+(Tk);) X
0
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. . . Qk'- 2\ ~
X 1 [HR,Q, LUR.Q 11+ [UR.Q)L = | (@ + (T, ) g)
It is clear that the second term in the curly brackets gives an O(t_z) contribution and, for
B >0 sufficiently small, it will still be integrable w.r.t. ¢ after integration in w is
performed. As for the first one, the formula .

1. N P Qq Ly —
7 [[IR)QI‘ ]l [leQll] = 5 [[le [IR)QI]],T] + i [[lR,Qk ], IR ], T] (5.14)

shows that we only have to prove

fdtfdwaM ” gT, @ +(T,) ) —-—[1R liR,Q, 11 x

(o T BT e

The above double commutator can be computed as in the proof of Proposition 3.2, with
taking it into account that for any ¢ €L we have lPk,R(c) 1 =0 for all £ for which

X, [ ¢ c Notice that we refer to € as a vector space inclusion because X , cannot belong
to the lattice { X b} beL" Thus, we have ‘

[R.QLRI= D, R(PR() = R(P)R
cEL
Xk gxc
Notice thatforallk = 1,..., dim X theinclusion X, C X,  shows that the above sum will
min
be performed over a subset of L\{ apin }, and since the supports of g , g are compacts from

T, (0)(foralll=1,...,dim X?), theyaredisjointwithany X ., c € L\{a_ },soitwill
min

min
be cnough to commute g, g towards right or left, respectively, in order to obtain either
ot~ ) terms, or products gR(c) ~ O(f ™). As in the proof of Proposition 3.3 (see the
comments made before (3.40)), there will be a tribute to pay in order to ensure integra-
bility w.r.t. w , but for a suitable (small, positive) 8 there will still remain enough decay
in t for convergence of the above double integral.

We pass now to the second term in the r.h.s. of (5.9). Since yet, any of the hypothesis
(5.5), (5.6) or (5.7) has been used; in what follows, this term will be estimated in three
(somewhat) different ways, with each of these variants involving the Mourre estimate and
only one of the mentioned hypothesis. Let us start by recalling that for any b € L the
differences R — Rb , B(R) — G(Rb) and the double commutator | [iR,Qb I,R ] are of order
Ot )onsuppJ CT, (0). Then the obvious equality

min

Q2 Q
[iR, [inz“?]] = Re [iR, [iR,Q,11- = + T iR,Q, I (5.15)

shows that

2 a2
O(R)J (DR [iR,ﬁ%ftL])Je(R) = -~ Lomry [uz,i%—}] JO(R) +
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a

1 .
+JR, 6(R, )R, ,AI6(R, )R, J-

min min min min min
- lte(R)J[iR,Qa PIO(R) + O( ™) + O™ ). $.16)
We start with proving that (5.5) (taken with b =a_, ) implies (5.3). Since
2
, Q, Q
[iR,Qa]z= T2+ 2Re T, _E£+_2‘i, G117

{
then of the mean value ( - ), of the last term of the r.h.s. of (5.16) dominates the sum

dim Xa

1 s .
=21 1| 7o | 76®e iRy, “2+121 xesi‘,’,,,/lx"l ||<T,>;,’219(R)e iRy, ||2 +

7

_ I - (5.18)
O v I? = sup o |l6(R)e Ry |2,

xE€suppJ
in which the first line is integrable in zas a conséquence of the propagation theorems 3.2
and 3.3. Further, the first term in the r.h.s. of (5.16) is minorized by

1 g X’ iR, |12 (5.19)
— = sup [iR,O,1 1] x, | JB(R)e_' (1] , .
AN XAV [RAT n
whereas for the second term of the r.h.s. of (5.16) we apply the Mourre estimate (see def.
(1.5) and also (1.6)) so that it be dominated by

% P - e] inf p? ||19(R)e""R¢ “2 + O™y + o3 (5.20)
ain 1 E supp 0

Then, summing up (5.18) to (5.20), we obtain the lower bound of the mean value of the
Lh.s. of (5.16):

a2
(oRr)s (DR [LR%%—D JOR) ), 2
>_2_ A i) — .'f 2 _ fiflfﬂzxa ‘R |ﬁ\ JO(R —itR 2
[ CHCRR -2 - B e RN LT T}

where 2 means = modulo addition of some terms of an integrable order (whenever this

type of equality arises, the sign = will be used). But since the support of J is a dilation
of suppJ , the hypothesis (5.5) ensures strict positivity of the quantity in the above curly
brackets, which proves (5.3).

We pass now to the proof of the implication (5.7) = (5.3) and compute

a2 a a\2
O(R)J (D . [iR,L%)—]J J6(R) = = Lo(R)I (ReT® L+ %L) JO(R) —

- %G(R)J (Re T, g + Tz) JO(R) +
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1 .
+-JR B(R iR, ,Al16(R, )R J-
t amin( amin)[ %min ] ( amin) %min
1 o
= JO(RI—JO(R) + O(1™) + o). (521
t

Estimating the terms of the r.h.s. above like in. (5.18) — (5.20), we se¢ that the Lh's. of
(5.21) dominates (modulo some integrable terms)

. 1 -
2 pg A) — e} inf ”2 -5 sup x° ”JG(R)e ”Rrp ”2
in B Esupp 0 X € suppJ

in which the curly brackets contain a strictly positive number as a consequence of (5.7).
Finally,

‘ Q o)
j 22 a4 [iR=4
liR,Q I"=T,+ReT —=+ [lR,zt] (5.22)

allows us to calculate

6(R)J (DR [m,i%:ﬁ])mm) =- —B(R).. [ 2 ] JO(R) + O(t"‘) +0(7% -

- %G(R)J (ReT,- Q; + T2) J6(R) +

1 . - (5.23)
+<JR, O(R, )R, ,A18(R, )R

min min min ‘min min

which together with the estimate

1 <JRO(R)P QJRG(R)),,. z ”P 8 (R) ” sup |xl HRG(R)Je"itRw Hzé

dim X ~ | —itR
3 NP | sup o1 || sum i oo i

shows that the Lh.s. of (5.23) is

>1{2[pR (/1)-—2) inf pu? -
min

HE supp 8
dim X ~ 2 —itR 2
I || sl ], o e |

Using the hypothesis (5.6) (written for b =a ), we sce again that the expression in
curly brackets is positive, and this completes the proof of the Lemma.

We begin now the second step of the inductive argument, namely, we are to prove the
implication (A, )= (A,) forany n=1,...,N_ — 1. Notice that in (5.5) and (5.6) one
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could substitute pg (A4) instead of pﬁ (), but since bEL (n+1) implies
a b
pﬁ *) = pﬁ (), (A, ) would weaken (anyway, this would not create any disadvantage
a b

from the point of view of the final result). For proving the above implication it will b,e
enough to fix arbitrarily b€ L  (n) and show that (A ) holds for this 5. Thus, let J, J

and@, 5 be chosen with respect to this & so that (5.5) or (5.6) be verified. Then Proposition
6.1 (iv) shows that for any such J we can construct (as in the proof of Proposition 3.3) a
family {J, } of Cy (T',(0})-functions satisfying

(4

c
> 2 (5.24)
cEL k=1 ¢

hn
4

suppJ 2 U U supp Jy - (5.25)
cELbkC=l i ¢

Noticg that (5.25) is always possible to satisfy because of the strict inclusion of supp J in
supp J and that it will be no loss in supposing that n, =1 (renote J B by /). Then,
b

since(A, ) is assumed true, (5.24) allows us toreduce slightly the problem by estimating

o0 €

| e S T
1

e % (5.26)
FILS 3 f—‘i-nz oR) |2
1

c<b k
c

Then, as a consequence of (§.25) thereis a C (',(0))- function J X, such that .I = 1on
L‘
supp J and supp J C supp J This shows that

sup .= sup.
X € supp J xEsupp.l/'{
c

and since, as a consequence of the definition of the functionp

P W) zph () forall c<bandall 1ER, (5.27)
¢ b

then the assumptions similar to (5.5) and (5.6) in (A,) (written for J) are stronger thau

the same assumptions in any of the (AnH)’s written for Iy - This shows that the second
C

line of (5-27) is < C |}y ||%, so it remains oaly to estimate the first term in the r.h.s. of
(5.2 . Todoso, letus consider two smooth functions, Jy and f, having the property that

for some positive constant

J,sCT,f ' (5.28)
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they are true on all X. Observe that such functions always exist: it is enough 10 choose
them so that their product be a C(°)° -function and that

supp J, C supp Jbﬂsupp f. (5.29)

We will, moreover, imipose some supplemsntary conditions on 7 , namely, we suppose
-~ ) .o o

that there is a set coresupp J, (which is centered at the same point of X, as supp/ b)

satisfying

coresupp 7 » C supp 7 b (5.30)
coresupp ‘71: N )?b =0, (5.3D)

7, , is constant on coresiupp 7 b (5.32)
J, € C”(Fb(O)), (5.33)

supp J C supp J . (5.34)

Notice that (5.34) is true because of the definition of J and (5.25). As for f, we suppose
that

fece, (5.35)
supp /M )?b C coresupp ‘717 N x b . (5.56)
f=fomy onsuppJ. (5.3

In cenclusion, it will be enough to prove that

dt .9~ - -
- ”f(—t—)f,,(%e(zz)e Ty lPsclvi® - (5.38)
1
which will be always true since

%—' |I7(lir.Q, ])7[,(%)3(R)e_im¢ “2 <Cllyl? (5.39)
1
and
-] _ Q _
f L7& AR, - FEHITLS) ) < c v 112 (5.40)
1

In Appendix 6.4 we prove that estimates of similar to type (5.40) are consequences of the
propagation theorems 3.2 and 3.3, so it remains to prove (5.39). To do so, we choose as
propagation observable the bounded operator

= 6R)(iR.Q, T ,2) [ix, KQ—L] 7,) K(1iR.Q, DE(R). G.41)
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Asin the proof of Lemma 5.1, an inequality of the same type as (5.10) shows that it will
be enough to estimate each of the terms yiclded by the derivation of D ,®. Starting with

the one containing DRf( {iR,Qb 1), we wiil use the spectral Feurier formula to calculate

1
[iR,f([iR,Qb ])} = f ds f(s) f dr eS¢ OlR.Cp) [m. [iR.Q, 1] HSTURCL (5.42)
; X 0

Then, we commute '7b through exp (isr{iR,Qb 1) to obtain products of ;b , fb’ , with the

above double commutator (which gives O(¢™*) contributions). After all these computations
have been performed, we obtain (modulo some O(t’z) terms)

1 1
[iR,f([iR,Qb])] ~ f dsf7'(s) f frdr f dae'S(1 ~DUR.Qpl [iR,[iR,Qb]]x
' X 0

x (‘fb + _i_}'bveism[iR,Qb] [“R’Qb ]Q] e—isra[iR.Qb})eisr[iR.th , (5.43)

which shows that

® _ a2
f%t(e(R) (PR1RQ, D)7, [ ) T, r1im. 0, 0GR ) = v 1.
1

We pass now to the proof of integrability w.r.1. ¢ of the second term resulting from @’s
Heisenberg derivation, i.e. the one containing -

T T, -2
DeJ,=T,-T, +0(™?.
min

Let {j, | c€L, andk = 1,...,n_} bea family of Cj'(I",(0))-functions having supports
[+

centered at some points of X o satisfying

(5.44)

n Mn"
~ N

cEL
and .
Sup[)}; NX,=0 forall c<b. (5.45)

Notice also that according to assumptions (5.36) and (5.32), one can choose the
subfamily {}k l k,=1,...,1, } such that

n
b
U supp jk ﬂX Nsuppf=0. - (5.46)
k=1
K

Hence, denoting by 2, a C(°)°(I’b(0))—function equal to one on the support off,: and
4 [+

making use of (5.44), we get
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a2
(e(R)f( [iR,Q, 1) (DR 7,,) [iR,%L] T, [(1iR,Q, DO(R) ), <

2

(0(R)Jk AR, Q,,])J T, [ik,%)f] b, KLR.Q, D] O(R) ) &
ELbk =1 min 2 -

<

H"-‘

o(1)

'r'
C . = ~itR 2
£ Ez 2= |[CR.Q, i, 8(RY™ Ty |7 %
c n 0 (5.47
bz —itR 112
<533 i Bewe ||
ceL kc=
where at the last step Appendix 6.4 has been used. Let us prove that the r.h.s. of (5.47) is
< C ||y ||%. For this, observe first that as a consequence of assumption (5.34), we can

choose the family { f/:c} such that
supp ]l;c C supp 7 forallc€ L b (5.48)
Secondly, (5.46) joint with (5.45) tells us thatforallc € L b
supp (f/'~kc) Nx,=0, " (5.49)

which, together with the inclusion (see (5.48)),
supp (fj, ) C Ty (0) = U x .
¢ cEL b

gives

supp U};)C U)?C for all c€L . (5.50)
: CceL,\{b} N,
On the other hand, since b €L (n) is fixed, any c<b will belong to UL (i),
i=n+l
or,equivalently, for any c< b thereisa beL Gn + 1)such that e =< b . This shows that

(5.50) can be written as:

supp(fjk)C U L X

= I;(0), S.5D
CheL (n+l)"ELb b

EL (n+1)
We would like to apply (A, |) to any of the functions [f; . Observe first that another
[
way of writing the hypothesis (A +1) (which makes reference to the whole lattice level

L (n + 1) and not to the elements b from it) is to demand the support of J to be included

UEeLa(nH) I;(0) and to rephce in (5.5) or in (5.6) pR;(l) by

. - 23 H Q L -
min Fer (ut1) pR;(A). Then, (5.48) tells us that for all ¢ € L, there exists a C
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function j; (which equals one on supp ]; and has support included in supp J ), which
C (o

together with (5.26) and (5.51) allows us to conclude that the hypothesisof (A ) written

for the product function f}'; is true, and thus the r.h.s. of (5.47) is integrable.

It remams to estimate the term resulting from D@ which contains the Heisenberg
derivative of 2% [ZR (@Y ] It will be computed as follows.

a

B(R(iR,Q, DT (Dg [iR: KQL]) T J(LiR,Q, NO(R) =
—~ 2 —
= 6(R)f(1iR,Q, ), (g’; [iR,%L]) J, f([iR,Q, DB(R) -
Q2

= BR)/(iR,Q, DT [iR, [iR, 5] ] T, A(1iR,Q, DO(R) +

+ f(1iR,Q, DT H(R)R [zR 7] RO, (1iR,Q, ) -
~ 2__ .
- [UR.Q, DR T, [iR, [iR S]] T, /(1iR., DOCR) +
- 2~
+ F(UR,Q, DORYT, [iR, [iR57]] 7, UCIiR,Q, D.6(R) | +

- 2.
+ JUR,Q, D 6(R).T,] [iR, [iR,%]] TORiR,Q, ) —

. o~ e Qf : ~ _ 5.52)
— f(1iR,Q, )J B(R) [zR, [ue, 2(]] [6(R).J, ] /([iR,Q, ). |
Since the commutator [f( liR,Q, 1), H(R)] is of order O(¢™) on the support of '7b (which
is a compact subset of T',(0)), the fourth and the fifth terms of the r.h.s. of (5.52) are
integrable. The same is true for the last two terms in the above equality. Indeed, notice
first that up to addition of some O(t_z) contributions, they are of the form

THUR.Q, VT, - 10(R).QI[R, iR, Q1] - LT 8(RY(1iR,Q, D,

Remark that there are some components of the above double commutator (namely, those

relative to some basis in X°) which are not small (in the sense that they do not confer
integrable decay in ©) on supp Iy Nevertheless, the above term is of the same type as the

Lh.s. of (5.47), so we can use the same argument to show its integrability.
It remains to estimate the first three lines of the r.h.s. of (5.52). We will proceed, as in
the proof of Lemma §.1, and minorize the first of these terms by

dmea _ ) '
3 [lurein sw Ll |[7/iR.0 bRy |2+ 067D Iy 1.

xEsupplb

5.53)
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Using the Mourre estimate, the mean value { - ), of the third one is

22/ LpR @ - e) inf u* ||A1iR.Q, DT SRRy || (5,50
neE supp

Finally, the second term of the r.h.s. of (5.52) is
- Q ‘
~ - Re ( B(R)/(LiR,Qy W liR, liR,Q, ] ]-7‘1be( liR,Q, DO(R) )t -

~ L (0R)T, 7(1iR.Q, DR, A(1IR,Q, VT (R } (5.55)
and since T, (0) S T’ (0) forany b € L, the above double commutator will be of the order
of O(t™*) on supp J,, - The second term of the above sum can be estimated by means of

0?
[iR,Q,I’= — T2+ Re T, [iR,Q, 1+ —Zﬁ (5.56)
as being (for 8 > 0 sufficiently small)

2-1 sup 2 /(1R DT (R Ry ||

xEsuppr
dlmX
- —ERe(G(R)J (T, ) 2f([iR,Qb])(Tl) T, [zR Ql]f([,R Qb])(T )1/21 O(R)>t+
o) o()
+ % 102 7,1 T H(Rye™ ™Ry H2 R 1))

Notice that in order to obtain the second term above one has shown (in the same manner
asin Appendnx 6.4) that [f([lR Q,DAT,) 1/2] brings an integrable céntribution on the
support of J Then, the last two lines above are integrable as a consequence of

propagation theorems 3.2 and 3.3, so summing up (5.53), (5.54) and (5.57) we conclude
that the Lh.s. of (5.52) dominates (in the sense of 2)

LhalbAay—e) inf u?—
y Z(pr(A) e) inf u

1 E supp

: dim X
—sp a2 =Y | 1R.Q, V|| sup || |[/C1iR.Q, DT B(RYE Ry ||2.

7 =1 .
xEsupp.lb xEsuppr

Since the assumption (5.34) together with the hypothesis of (A,) ensures strict positivity

for the quantity in the above curly brackets, the estimate (5.39) is proven and hence the
first implication of the theorem as well.
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It remains to prove that (5.3) is a consequence of (5.2). This will be done in the same
manner as above, the only difference being that we have to invoke relation (3.22) instead
of (5.56) when wanting to estimate the second term in (5.55). The comments we made
after (5.55) show that, up to some integrable terms, the first two lines in the r.h.s. of (5.52)
‘dominate

I
- ']{ (BRIA1R,Q, DT, [iR,%] T, [iR,Q, DE(R) ) ,

which, in turn, can be computed as in the proof of Lemma 5.1 (see the estimate following
(5.23)) and thus minorized (modulo O(t™¥)) by

dim X

~Z [PE@ || s L] s u? |IURQ, DTSRI v |[*.
xe supp! ,u Esupp @

This shows, as before, that the Lh.s. of (5.52) dominates

ljz P @y —e) *inf 4l -
t'l b JH Esupp b
dme

PR AN BR) || sup |51 ||C1ERQ DT p(RYE y |2
HEsuppb = xEsupplb

where the quantity in the curly brackets is strictly positive as a consequence of relation
(5.6) corresponding to (A,).

The rest of this section will be devoted to the proof of statement (1.10). We will use a
standard induction argument (see[33,2,22,26 ]), performed at the levels of some arbitrary
lattice L. Let us first denote, for any a,bE€L, a < b, by ij the wave operators

Q* (R,R,E,) and notice that they exist owing 1o the cxistence of W*(R ,R,;J) with
suppJCTb(O). Then, since for the rank one lattice statement (1.10), written for
0* (Ra,Rb;Eb), is trivial, we will suppose it to be true for any latt.ce of rank N, and prove

it for all lattices L of the rank N + 1. Actually, it is enough to prove it for any state y
localized via a smooth cutoff 8 in a compact of R\ £ (R), because, due to the fact that the
set of the critical values of R is countable, a covering argument (see Proposition 4.2.6 in
[2D will allow us to extend the result to all R. Let us begin by computing, using a
conveniently chosen partition of unity in X (e.g. the smooth one constructed in Section 2):

N+1 N+1
—itR, , _ »ztR ~itR » ltk
e w—'"a '/’+z EJ Y= Z ZL zgab(gab)w
ma n=2 a€L(n) n=2a€l.(n) bEL ‘—-—f——-’

Ya,b

In the above modulo o(1) equality = , W: stands for the limits in (4.2), and Corollary 5.2
and the induction hypothesis were used. Thus we have: '
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N+1
2 2 'tR ik Ega,bwab

n=2a€L(n) L, ’
— itR n 2
= 2 2 By, T ngw.u
aEL\{amax}bEL EL\{a )bEL .

which proves y Eebel;\{a }Qfﬂ.
max

6. Appendiczs

6.1. Appendix

Deflnltloné 1. Let us define for all a € L the following sets:
L, ={bEL | b<al,
i)L%={beEL ' b=a},

.. ° —
)X ,=x\U,, X,

T, 0 =X\U,, X,

Notice also the particular casesof a = a. , for which X 0. = Fa 0y x\U bia X,
min min min
forwhich X ={0}andI, (0)= X. Denoting by the sign || the
max max
disjoint union of sets, we have:

and a = Aoy’

Proposition 6.1. For an arbitrarya € L,
DX, =x\U,, X
if) XanXb =0 foratl a;b €L witha#b,
i) X, = || yepaX,
)T (0) = |] ver, %o

Remark also that foralle € L, L ML = { a} yields )?a =T (ONx,.

Proof:Remember that we denoted by # the "incomparability” between two elements
of the lattice L. Then, on one hand X \U bla Xb X \U {Xb N Xa}, and on the

other hand, since L is sup-stable, there is a ¢c€EL wnh c¢>a and ¢>b such that
X,NX, = X+ x9t = (x9t = X . This shows the inclusion

Xa\U b#a Xb < Xa\U X

c>a ¢
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and thus (i) is proved. Letnow a € L be arbitrarily fixed, and take firstb € L\ L e Then,
by Definition 6.1 (i}, Xbﬂ)? 2= 0 and )? p & X, 50 () is true for these 4. For those &
belonging to L 2 \ { a}, notice that according to {i) , for all ¢ > b, we have Xcﬂ)?b = (.

But a is one of these ¢, and thus (i) is proved. In order to prove (iii), suppose as usual a
arbitrarily fixed and observe that the rank of an element 5 € L. ¢, denoted by | b | La,is

generally different from | & | | . Denote also for 1 < j < rank L ? the j-th level in L“ as
L) ={b€L?| | b| a=j},and the union of L “(j) with all the levels in L. ¢ which
are below it by L/‘.’ ={b€L”] || a=/} Denoten=rankL?=|a| aandtake

as an induction hypothesis the statement
’ n—j-1

x,=1x,ulJ U x, 6.1

beL‘,’l_j =1 beL?®
The first step of the induction is given by the equation
Xazxau U Xb (6'2)
beLY-{a}

~ in which the set inclusion D is ensured by (i). Further, let us suppose that (6.1) is true
for some j < n. Then, using (ii), one gets

n—j—1
x,=U0 x,u U #,uUx)ulU U x-
bELfl_}. pbeL¥n-j-1) cxb =1 beL%W
n-j—2
=u £ Uxu U Uz,
bELy . cem, " I=1 beL

where the set M, = {ceL|3be L% —j~1), such that ¢> b} obviously satisfies
H

n .
M, € L\U L (). Thus (i) is proved.
l=n—j-1
Finally, (iii) and the definition of T (0) give

ro=z,U ] %,
bEL pervL, cer’

Thus, to prove (v), it will be enough 1o establish the set inclusion
L,CL\{cel’|b€L\L }ie LN {c€L?| € L\L }=0. Assume the ex-
istence of some ¢p € L in this set intersection. Then, there is a bO €L\L a such that
o> by, andon theother hand ¢ < a, i.e. by € L . Contradiction.
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6.2. Appendix. We have to check (see [5]) that the existence of the Abelian operators
Q, , which is equivalent to

T
Jim [ 1(5 - 0 e =0
1 .

implies the convergence
T
lim f “w LY =y H =0

T-» o

But, using twice the intertwining relation for Qa , we get for ally € H (X):
W 0w = @ ||= || Ex®)e E,R)Qyp ||=

= || (Bx® - 2,) e g g ||

Finally, Lemma 1 of [28 ] can be used to get the desired result.

—itH —itH
i aan_e i

6.3. Appendix. The following Lemma puts in evidence some estimates, uniform in
a = 0, concerning the approximating family of the Hamiltonians { H_ }. Notice that for
any a € L, (1.2) can be written as H, = Ha ot la @’ where Ia B denotes the sum from

the first equality in (1.2), performed only on the set L\ L .

Lemma 61 For any z<info H, | -0 and for any a€L, if R denotes
(Ha o« z) , then there is a constant C> 0, independent of a , such that for anya =20

i LA CLA (R LA W EE 6.3
a HRZgLE\{(b)R 1+ [Re i Rae ||=c 6.4)

For the proof, notice that the first inequality is a consequence of the hypothesis made
on z, and of the obvious identity:

_ pl/2 1/2 _ 1/2 1/2 1/2 . 1/2
1=R/?>(H -2)R/*=aR/*y(a)R/*+ R! ( om0 -rzax(b)—z) R/Z,

b#a
Then, using
Ra - Ra,a == Ra Ia,a Ra,a == Ra,a Ia,a Ra ’
we compute
1o T Re | = [1Re = Ra)® (|2 [| R 1Ra 1+ (| R I+ (|2 )< €0

where all the norms are in B( H) and where the uniform boundedness (w.r.t. @) of the
family {”Raa ” _y 1} tells us that C does not depend on « . Finally, we have
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@ ||Rug & KOR[|= |RualoRe ¥ % Raa PV [ (IR, |

eL\ a be L\L

which completes the proof of (6.4).
Note that uniform estimates similar to type (6.4) are useful when it is desirable to
obtain decay of the difference R  — R, , on the support of some time-dependent cultoff

JE C(‘;’ (T',(0)) (as in the proof of Proposition 4.1). As far as it concerns inequality (6.3),
notice that it is of quadratic type, i.e. if y is of the form F% ", then it can be written as
Va ”Rélzf ” < C, which is not enough for showing that the double commutator

[iR,,liR ,Q, 1] = D a R2[x(8),iP IR’ Z ia R2x(5)P R + h.c.
bGL\La bEL L,

is bounded uniformly w.r.t. o . This is one of numerous reasons which makes the algebraic
framework (introduced in Section 2) indispensable.

6.4. Appendix We have to prove that for any ¢ €L and any b€ L“, given two
functions J € C (F (0 and g & C (X) sausfymg g=gem, ona neighborhood of the

intersection of supp J with X , the estima

( Q
f%(v’(% {g([iR,Q,, - g(Tb)]J(%>t < C |y |I? 6.5
l .

is true for all y € H (X).
To show this, we use the Fourier spectral formula to compute the difference

Q, A ‘ N
s(LiR,Qy ) — 8(-) = f ds g'(s) f dre IR Gyl SU-D 57 £ (6.6)
X 0
where é\' € J (X). Thus, we have to look, forany k = 1,...,dim Xb, at:

- . %
(J etsr[zR.Qb] T/( ezs(l—r)—’-j>

—<J(T )1/2 1s1lzRQb]<T> 1T SsU 1) (T) ">t+

o1 0
s _ PN
+<J<Tk)[li/zem{lR,Qb]<Tk>ﬂl TA:[<T/<>é/2’ MU0~ ] j>1+
[ :
o)

o 3 Q, 6.7)
+ (1 [C’”[’R’Qb],< Tkv\/}Z/Z] <Tk>/;l/2 TA- l)u(l—r)-—;——j>’

It is clear that the first line above is integrable w.r.t. ¢ as a consequence of Proposition 3.3

(the integrabilities in s and t are trivial). Further, using formula (3.33), we compute (as
in the proof of Propoesition 3.3): :
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s 1
[( Tk);/?, eml‘R’Qb]] =2stRe T, f do wd (o +{T, );) ~1x
0
1

» fda =R [[iR,0 1,7, 1R (0 +(Tk');) =
0
Hence, we essentially -have to decide if for all k,/=1,...,dim X, , the commutator
[ [iR,Ql],TIC Jconfers on the support of J/ enough decay in order to ensure integrabilit)'l with

respect to both ¢ and w . But this has been already shown in the proof of Lemma 4.1 by
relation (5.14) (see also the discussion following it), the only difference being that the role
of a was played there by a_, , so we could take &, / to run from I to dim X. Notice also

that because of the rapid decay of g’, the polynomials in s resulted from the various
commutations of J with the unitary groups of the type exp (ism[iR,Qb ]) do not influence

integrability in s. Finally, the second term of the r.h.s. of (6.7) will be treated in the same
way as the previous one. Actually it is even simpler, because we will not have to use the
good decay along certain directions of the connected components of R, the basically

O(t™™) decay being replaced by the better O(t™%).
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