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Complete classification of totally umbilical submanifolds of dimension > 2 insymmeiric spaces
is presented.

1. Introduction

It is well known that totally geodesic submanifolds of symmetric spaces admit simple
algebraic description. E. Cartan’s theorem [8, Ch. IV, Th. 7.2] states that these sub-
manifolds are the exponents of the Lie triple systems in a space tangent to the symmetric
space. Thus, the differential-geometric problem reduces to a linear-algebraic one.

But for a somewhat wider class of submanifolds, namely, for the totally umbilical
submanifolds, such simple way of classification does not exist. [t is due to the fact maybe
that these submanifolds have been classified only for space forms [1, Ch. 11, §3], for
compact rank one symmetric spaces [2—4 ], for the Grassman manifolds G (2, n) [11,12],
and for conformally flat symmetric spaces (this class of spaces consists of space forms,
products of the line and space form and products of the sphere of curvature ¢ > 0 and the
hyperbolic space of curvature (—c) [6, Ch. VII]. Classification of the umbilical
submanifolds in conformally flat spaces is based on the invariance of these submanifolds
under the conformal change of metric. Some results on the umbilical submanifolds of
symmetric spaces may be found in the B.-Y. Chen monograph [6, Ch. VIT].

The Riemannian.manifold M " is called locally-symmetric, if its curvature tensor is

parallel: VR = 0, where ¥V is a Riemannian connection an M, R —its curvature tensor.
Although most of our staiements hold for locally-symmetric spaces, as well we will
consider M to be complete and simply-connected, i.e. to be a globally symmetric space.

The second fundamental form of a submanifold N Le M™ is defined by the Gauss
formula

hX,Y)=V,Y-V,Y, (1.D

where X and Y are the vector fields tangent to N and V is the induced connection on N.
For the vector field £ normal to N its covariant derivative according to the Weingarten
formula is

V = — (1.2)
Vx.f = A§X + ng,
where X is the vector field tangent to N, AI;’X and DX.E are the conponents tangent and

normal to N, respectively; Ag is the bilinear symmetric operator (Weingarten operator)
in the space tangent to N
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gAX,Y) = g(h(X, ), £)
for the vector fields X and Y tangent to N; g is the metric tensor on M; D X is the normal
connection derivative. The mean curvature vector is H = (Trh)/l, where Tr denotes the

trace according to the metric g induced on N; a = ||H ||= (g(H,H))'/2 is the mean
curvature of a submanifold N C M.

The submanifold N/ in the Riemannian space M " is called totally umbilical if for
arbitrary vector fields X and Y tangent to N

h(X,Y) = g(X, ) H

("the first and second fundamental forms are proportional”).

in the case of & = 0 the submanifold is called totally geodesic. If the mean curvature
vector of the umbilical submanifold is parallel in the normal bundle (DH = 0) and does
not vanish ( H # 0 at least at one point), then it is called an extrinsic sphere.

The equanons of Gauss, Codazzi, and Ricci for the totally umbilical submanifold
N M™ are given respectively by

R(X,Y,Z.T) = R(X,Y,Z,T) — a*(g(X,T)g(¥,Z) - g(X,Z)g(Y,T)), (1.3)
R(X,Y,2.8) = g(Y.Z)g(DyH £) — g(X,Z)g(D H £), (1.4)
RX,v.E) = RP(X, V&), (1.5)

where the vectors X,Y,Z,and T tangent to N, £ and 5 are normal to N. Here R is the

curvature tensor on N, R? is the normal connection D curvature tensor.

The submanifold N C M is full if it does not lie in any proper geodesic submanifold in
M. We will denote by M d(k) the d-dimensional space form of the curvature k; we will also
use the notation S¢ (k), k>0, E? and L? , k <9, for the spheres, I:uchdean and hyperbolic
spaces, respectively. We will denote the Rlem'mman product as r1 M or M, xM (in

the case of two factors). The warped product E 's/M of the lme (E di? ) and the
Riemannian manifold (M, ds ) wuh the function f(#) >0 is their Cartesian product
endowed with the metric df® + fdv

Every umbilical submanifcld of the space form is an extrinsic sphere or a totally
geodesic one [1, Ch. I1, §3 |. They are spheres and subspaces in Euclidean spaces, small
and great spheres in a sphere, spheres, subspaces, equidistants, and horospheres in a
hyperbolic space. Extrinsic spheres in symmetric spaces have been completely classified.
Namely, they are extrinsic hyperspheres in the totally gcodesic space form (|5 }; a more
exaci proof was given by the authorin {13 }]).

Our wain result is as follows.

Theorem 1. Let NI, ! =2 3, be a totaliy umbilical connected submanifold in a globally
symmelric space M " . Then it is either a totally geodesic or totally umbilical and complete

in the totally geodesic submanifold M C M " isometric to the space forms producl.

Let M = HN M V (k ) be the decomposition of M with no more than one Euclidean
Sfactor. Then the pair ( M , N ) is of one of the following types:
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)
Type . : M N a
N o
N=z1, k" #0,
Sk |
A dy=..=dy=1+1,d =l0r M(c)
di=1+1
comst
AO' gl st
A Nz2or
1 N=landd1=l+l,kl=0
= N ~1 1, fa -1
B N22,d/=0,3 1 , & #0, CE'x M[ (©),
N#=MYc)
N=z3,dy=1-1, -
By dy=..=dy=I+1. E'xm !9, e =0 const
B l=sdy,..dy=<l+1 f=const,c 0 const
2 f # const . # const
N22, k=0
t<dy,dy=si+].
C No more than two factors My conformally flat
have dimension dy <l Forrany
ISy.JsN,dr+dézl. i
N=z3,d,+d,=1|, d d
(o) ’ L § HxL"X(~¢), const
d3=...=dN=l+l. c#0
c d2-=...=dN=l+l.d’=l.or I const
2 d =!+1. M (o) on
Cs dy +d, > lforarbitrary y , & N#M I(C)

Remark 1. Itiseasy tosee that umbilicity is "inherited” in the following sense: if N
is umbilical in M and M is geodesic in M , then N umbilical in M. The constancy of the
mean curvature and the extrinsic sphericity are inherited too.

Remark 2. Type A, admits some factor to be Euclidean, i.e. N o !

can equal
y=2% cancd

infinity.
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Totally umbilical submanifolds of symmetric spaces

Remark 3 In the following we mean cverywhere that N is locally isometric
- (nonisometric, conformally flat).

R emark 4. Conformal flatness of the induced metric of the umbilical non- geodcalc
submanifold in symmetric space has been proved in [10] for { = 4. It is true also for
{ = 3 (Proposition 2). We give there the explicit form of such a metric. The constancy of
the mean curvature under the symmetricity condition of N has been also proved in [10].

Remark 5.Itisimportant to note that there is no one-to-one correspondence between
the types of spaces M and types of submanifolds N. The table (see Theorem 1) gives the
classification of pairs (M, N). In particular, N of the type C, can be isometric to N of the

types Bor C| ; Nof the type B, to N of the type B, . The extremal types B, and Cl are

the only ones in which M determines completely the intrinsic geometry of N. The type

Cl is defined only with the purpose to use it in Theorem 2; it is similar to 4, type.

Note that if the curvature of M is of a (not strictly) constant sign, then it has no type
C totally geodesic submanifold. In particular we have the following corollary.

Corollary. LaN'CM" 123, be aconnected totally umbilical submanifold in
the compact type irreducible symmetric space. Then it is totally geodesic or totally umbilical
in the fotally geodesic product M of flat torus and spheres. One of the following cases can
take place: _

A, . Every factor of M is of the dimension | + 1 (except possibly one of dimension l) -

and N is isomelric to a sphere;
B, . One of the factors is a circle and the other factors are I- or (I + 1)-dimensional

spheres. N is isometric to the warped (not direct!) product of a line and a sphere.

This corollary follows immediately from Theorem 1 and Gauss equation (1.3): the
curvature of an umbilical nongeodesic submanifold will be strictly positive.

It follows from Theorem 1 that for classification -of umbilical submanifolds of a di-
mension = 3 in symmetric spaces it is enough to carry out such a classification for the space
forms preducts of the types mentioned above. To do this we need certain additional
constructions. First of all we replace M by its universal covering space.

Cur aim is to construct a suitable embedding of M into a (pseudo)-Euclidean space E
and then fo intersect M C E by the osculating space in the (almosi arbitrary) point of
NC 1’\4

We define the standard embeddmg of Ihe sphere Sd(k) k>0,d = 1, as theembedding
of a hypersphere into E9*! centered at the origin and of radius &~ % (ifd=1, we get
the circle in a Euclidean plane). The standard embedding of a hyperbolic space 4 k),
k<0, d=1, is the embeddmg of the upper hemisphere

(xl)2 + (xz)2 + ..+ (@2 = _R? x>0, centered at the origin and of an
1magmary radxus R k 12 mto a Mmkowsky space E 4+l yith the metric
ds* = (dx ) + (dx: ) + ...+ (dx ) (in particular, for d = 1 we get the branch of
as hyperbola). The standard embeddmg of the Euclidean space E? , d>1, is its em-
bedding as the subspace into E d+1 _

Let us define the standard embcddmg of type A and C manifolds M as the product of
standard embeddings of its factors. The ambient space E in general is the pseudo--
Euclidean space of the corresponding dimension and index. _

For the type B of the manifold M we define the "curvature” kl of the one-dimensional

factor to be equal to — ( )},V: 5 k;l) .Thenk = Oandz N = 0. Now embed this
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factor M 1(k ) in a standard way as above: we will get the circle in £ 2 or the branch of

hyperbola in E*! The product of this embedding and the standard embeddings of other
factors is called the standard embedding of type B manifold M. Note that in the case of
k>0 we will reject the simple connectedness of M.

The osculating space at the point Q € N C E {0 submanifold in a pseudo-Euclidean
space is the direct sum of the tangent space TQN and the span of the second fundamental

form 4 at Q (the latter space is called the first normal space).

It is well known that one can get the totally umbilical submanifold N C 8" (resp.
N C L™ as the intersection of $" (resp. L") with the osculating space to N C E at its
arbitrary point.

A similar situation takes place also in the general case.

Theorem 2. Let N ' C M , 1 = 3, be complete, connected, totally umbilical non-geodesic
submanifold in the space M of types A, B, C. Then:
D ifM is of type Ao , then N is the hypersphere;

2) if}T/I is not of type A, then N is the intersection of M and the osculating space L to

N C E at its general point.
a) if N is of constant curvature (types 4, C,), thendimL =1+ 1. Osculating

space L is spanned onto the tangent space and mean curvature vecior to N C E. The
submanifold N is u{nbilical in E;
b) if (M, N) are of the types Bl , B,, C] , C2 , then dim L = [ + 2. Osculating

spaceL is spanned ontothe tangent space, the mean curvature vector and the position vector
toNCE.

R emark 6. We define the general point to be the point of N with maximal number
of different principal Ricci curvatures. In the case 2a) (i.e. types A,,C,) every pointisa

general one. As to 2b) (types B, B,,C,, C,), we shall show that this concept is well
justified because of analyticity of N (Proposition 2).

2. Plan of the proof of Theorem 1

The first step of the proof of Theorem 1 is the following.

. Proposition 1. Let M ", n < 3, be the Riemannian space, Q € M™, L be the I-dimen-
sional subspace in TQM 2<1<n, H* be the vector in T, M " orthogonal to L. Then:

D Ihere exzsts not more than unique totally umbilical submanifold N C M" such that
Qe N TQN = L and the mean curvature vector ole at Q equals H®

2) if this submanifold exists, then it lies as the complete totally umbtllcal submanifold
in the totally geodesic submamfold McC M, which passes through the point Q and is tangent
toLOH"” TQM DLOH"

Naturally we mean N at 1) to be maximal by inclusion.

Note that Proposttion 1 is the generalization of “the well known fact that a totally
geodesic submanifold is determined by a point and a tangent space in it.

318 M Martemartunueckas puanka, aHanns, reomerpud, 1994, 1. 1, Ne 2



Totally umbilical submanifolds of symmetric spaces

Now 1o prove Theorem 1 one has to solve two problems. The extrinsic problem is to
prove that the minimal (by inclusion) totally geodesic submanifold M C M tangent to the
osculating spacc to N at the point Q € N is isometric to the product of type 4, B, and C
space forms . The intrinsic problem is to describe the geometry of N for M of the above
meniioned types.

Let {Xi} ;=1 be the orthonormal frame of the principal Ricci directions of N and
{’i} 1{:1 the corresponding principal Ricci curvatures. Define the following functions
(=1,..0

vi=-r/(=12),
2
M= X[a)/2,
_ 2 2,
T,= (XiXi(a Y=V X,-X"(a )) /2.
Let us consider the intrinsic problem at first.

Proposition 2. Let N lem " 1=3, be a totally umbilical non-totally geodesic sub-
manifold in symmetric space. Then:

1) the induced metric is conformally flat and analytic. Namely, for any point Q € N
there exists a neighbourhood U D Q, U C N and the local coordinate system { x' } f.=l inlU

such that the metric of U is

2_ i 2
ds® =y '( L @xh?),
where

p= A1) S (S +

+21 D.xix’+zl TxX +C,

ir=17ir r=1

A, Br, Dir = Dn. s Tr, and C are constants, Y > 0; the mean curvature is of the form
2 _ { N2 1 i ~1 ! (2 -
at=—aay i (-2 Yl BT S (wlax) +Cp,
C1 = const;

2) if all the principal Ricci curvatures except one are equal (v, #v .. =v), then N

27
is isometric either to the
a) the warped (not direct) product of the line and the space form in the case of

v, #0,o0rto

b) the direct product of the line and the non-Euclidean space form in the case of
0.

]

Yi
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It follows from the first statement of the Proposition that the functions « and
{v; } i=1 are analytic (and the general points in Theorem 2 are "general indeed"); the

fields (x } i=1 and the functions {,u T } ! -, are piecewise analytic.

Let us consider now the extrinsic proLlem By virtue of the Cartan theorem (8, Ch.1V,
Th. 7.2}, a totally geodesic submanifoid of a symmetric space is the exponent of the Lie
triple system in the tangent spac: Thus, the problem reduces to a purely algebraic one.
Namely, letQ € M " TQN H C TQM be the tangent space and the mean curvature

vector of a certain umbilical Submamfold N C M. We are to determme the minimal
subspace sCTQM that contains TQN GBHQ and is the Lie triple system, i.e.

[[s,s],s]C s (here [, ]is the commutator in the Lie algebra tangent to the Lie group of
isometries of M at the point Q).

To find s we need Proposition 3 stated below.

Remind that the curvature tensor R of symmetric space M is
R(X NZ=—[{X,Y],Z]for X, Y, Z tangent to M (8, Ch.1V, Th. 4.2].

Proposition 3. Let N lem " 1= 3, be a totally umbilical non-totally geodesic sub-
manifold in symmetric space. Then the following equations hold .
Extrinsic:

[[xl., X.), Xk] =0, i=j=k, Q.0

[[Xi,Xj],Xj]=(v+v > vk/(l—l)+a2>X’.—DX[H, i#j, (2.2

[[Xi, X, xj] - [[xi, X,), xk] = ()X irimk 2.3)
[[H, X1, xj.] =w X, i#} 2.4)
[[H, X, Xj] - [[H, X1, Xj] =pu X, —uX, + (vi —vj)H, Q%] 2.5

[1x, #1, 4] —a?{(xz., X0 X)) = - X~ [1X, Dy H1, X, i#i 2©

Intrinsic:
g(VX.Xi’ Xj) v, =v)= M i#j*k, : 2.7
; .
Xw)=—40~1)/(-2u,, 2.8)
X@)=--2p, i1%] 2.9
L
",-(zk=1"/(’“1)"",-) ~1,=¢, (2.10)

where{ is a function on N.

Intrinsic equations are "intrinsic indeed" if we suppose a to be some a priori defined
function on N.

Proofs of the Propositions are given in Chapter 3 (except equation (2.10) which is
proved in Lemma 4.6 and has not been used earlier).
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rurther in Chapter 4 we solve the extrinsic problem by constructing the subspace s.
Roughly speaking its construction is inductive (Lemmas 4.1, 4.2): first we take the
vectors {X‘.}i and then we add successively the vectors { [[Xl., X}.], X/‘” i

{HHX, X1 X1, X, 1, X, 1}, and soon.

The span cf all these vectors is the minimal Lie triple system s’ containing the tangent
space TQN. By (2.1, 2.3) we will find that s’ has quite a simple structure: namely, the

submanifold M’ = exp s’ C M is isometric to the product of the space forms (Lemma 4.3).
Now one has to "add" the vector A’ to s’. To do this we first replace it by the vector H’
which is the orthogonal component of A with respect to s’. Then equations (2.4-2.6) will
look like (2.1, 2.3) (Lemmas 4.4, 4.6). We get the system s by inductively constructing
various recurrent Lie triple brackets containing H' 2iid the vectors of s’ (Lemmas 4.5, 4.7).

Lemma 4.8 cstablishes that M = exp S is isometric to the product of the space forms.
Further it will be shown that M belongs to one of the mentioned types: A (Lemma 4.11),
B (Lemmas 4.12-4.14) or C (Lemmas 4.15-4.17). At the end of Chapter 4 we gather all
the results received in Lemma 4.18 which is the algebraic base for Theorem 2.

The iatrinsic problem for type A and C submanifolds is solved in Chapter 4 in
Lemmas 4.11 and 4.16, respectively; the intrinsic problem for type B is solved by
Proposition 2.

Thus, Theorem 1 will be completely proved.

In viriue of case 1) of Proposition 1 to prove Theorem 2 it is enough to verify whether
the intersection of M C £ and the osculating space to N C E is totally umbilical in M. For
this purpose we shall use the equations of Lemma 4.18. Theorem 2 is proved in Chapter
5; the explicit description of the submanifolds N ¢C M is given.

Case 1) is trivial. Cases 2a) (Lemmas S.1, 5.2) and 2b) (Lemmas 5.3, 5.4) are
invesiigated by similar methods. It turns out that the equations of Proposition 3 are not
only necessary but alse sufficient conditions of existence of the totally umbilical submani-
fold of dimension 2 3 in symmetric space. ‘

3. Proofs of the Propositions

Proof of Proposition l. 1) Suppose that ¥'C M" is a totally umbilical
submanifold passing through the point Q with the tangent space TQN = L and the mean

curvature vector HO = H". Fix the unit vector X( € TQN ! and choose the orthonormal

frame XQ , Y, 'Q’ Yo, 0 in L. Lety be the geodesic of N passing through Q in the
direction of XQ and X, its unit tangent vector. Translate the vectors )Q’ g Yl—2|Q

parallel to y {according to connection V on N) and denote the corrcspondmg vector fields
by Y, Y. ., ¥,_,. They arc tangent to N, and { X, Y, Y. Y, } is the orthonormal

frame. We have VXX 0, V Y=40, VY-O i=1,..,0—2. Then VX H,
V Y = V Y, =0, (1)) yieldsV H=—-AX+D, H=a? X + D,H. By the Codazzi

equation (1.4) we obtain R(X,Y)Y = D,H + > {2 2R(X,Y,Y,Y)Y, + R(X,Y,Y,X)X.

Thus we get an ordinary differential equation system
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VX=H,

V,y=0, .

X | G.D
v,7,=0, i=1,.,0-2,

—~ —~ ~ 1_2~. - ‘
LVXH = — g(H,H)X + R(X,V)Y = R(X,Y,Y, X)X — Y (I R(X,Y,Y,Y)Y,

with the initial values

X(Q)=XQ, Y(Q) = YQ, Y(Q) ”Q, i=1,..,0-2,
H(Q) = Y,X(Q) =
This Cauchy problem can be uniquely solved [14), i.e. there exists a unique curve y in
M passing through Q in the direction XQ and satisfying (3.1). It is important to note that

the system (3.1) and the initial values "do not contain” N. On the other hand, every
umbilical submanifold N C M satisfying the condition has to pass through v (and what is
more, y is geodesic in N).

If we choose a vector X 0 to be an arbitrary unit vector in L, we will get the set of all
geodesics of N passing through Q. Thus N is unique (if it exists of course).

2) To prove this we shall establish that any geodesicy of N passing through Q lies in
M. Let V' be the induced connection on M; R’ its curvature tensor. Construct the curve
y' C M with unit tangent vector field X' and vector fields Y’, YI’,..., Y;—z , H' along it

suchthat{ X', Y’, Yl.’ } ; form an orthogonal frame, A’ isorthogonal toit and the following

system holds:

VX' =H",
VY =0, : -
V¥ =0, i=l..,1-2, 3.2)

ViH' = —g(H H)X - R (XYY X)X+
+R'(X, Y)Y = f; fR'(X',Y',Y',Yl‘.)YIi.

We assign to y' the same initial values as toy: Q€ vy', X'(Q) = XQ , Y (Q) =Y,
YJ(Q) Q’l"‘l I“ZH(Q)

In virtue of the ordinary differential equation theory [14] there exists a curve y’
which is the solution of this Cauchy problem. Notice that M is totally geodesic in M.

Consequently V. X' =V}, X', V. V' =V Y, V, ¥/ =V, ¥,V H =V H
by (1.1, 1.2) and E(X’,Y')Y’ = R'(X',Y')Y' by the Gauss and Codazzi equations [1,
Ch.IL, § 2]. It implies that the fields X', ¥, ¥, , i = 1,...,/ — 2, H' and the curvey' satisfy

(3.1) and the initial values of y. Thus, these curves coincide, i.e. any geodesic y of N lies
in M. Umbilicity of N in M is obvious by the Gauss formulae. So N is a totally umbilical
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submanifold in any geodesic submanifold M tangent 10 LOH® at Q. By mutual
intersection of all these submanifolds we will guarantee the fulliness of N,
Q.E.D.

Proof of Proposition 2.1) Symmeiricity of M yiclds that for any ficlds U,
© X, Y.z, and T tangent to N the following holds:

(VU R)(X,Y,Z,T) =0,
Using the Gauss—-Codazzi equations (1.3, 1.4), we get:

(V RYX.¥,Z,T) = Ua®)(g(X, T)g(Y.Z) ~ (X, Z)g(Y.T)) +
eyl g

+ X(eH)(QU, Te(Y,Z) - gU,Z) Y. T)/2 +
+ YD (X, DU, Z) - g(U.T)si X212 +
 Z( WU IUTX) = (B, X)e(T.V))/2 +

+ T EU X2 Y) - gV 7.X)); 2
In particular,

(V, RUXY.ZT) =0 | | - | 3.9
(V, RUX,Y.X. Ty =0 | XY

(VxR)(X,Y,X,T) =0 Cee S )

L (VR)(X,,Z,7) = = 2@ X [ ]| ¥ 12, oG
| (VyRXY.X = = 2@ v - 3D

where the fields X, Y, T, Z, and U are mutuglly orthogonal.

Now we shall prove the conforma! flatness of M. As it has been mentioned above, the
proof is needed only for the case of / = 3. Onc'is to verify |1, Ch. 1, § 5| that for arbitrary
vector ficlds X, Y and Z are tangent to N

(V,Ric)(X,Y) — Z(scal)g(X,Y)/4 = (V, Ric)(Z,1) - X(scal)g(Z,Y)/4,
where Ric and scal denote thc Ricci tensor and the scalar curvaturce of N o respectively.
Consider the point Qe N3 and the normal geadesic coordinates { X } -, centred at
'Q. It is enough to verify the above equation for the ficlds { 0, ox' } =1 Wllhoul loss of
generality put Z = d/ox' , X =0/0x* and ¥ = 9/ax’,i=2or 3.
We have 1o verify that at the point Q,
(ViR 5+ (VR g5 =05 2 30y (V,R)

(VyR)y 9+ (V| R)y 5,9

’(l’(l

L (V\R)

r q—- rqrq’

where
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(VzR);u.m=( wax! B3/ 0l 0xk atax alax™ |,
and -

,m--R(a/ax a/ax9, o/ ox, a/ax")

Now in the case of i = 3 both sides of the abovc equahty vamsh (by (3.5)). In thé case

of i = 2 we have by (3.6, 3.7
(- 1/2)a(a )/ ox' = (—’1/2)a(a Yy ox'.

Thus N is conformally flat. Now for any pointQ € N the nexghborhood Us Q canbe
chosen in which the conformal coordinate system {x' } i=1 exists. Let
ds? = tp"(xl,...,xl) 2 £=1 (dx)? be the arc length of the metric on N. The conditions
(3.3-3.7) are cquivalent to the system of the partial differential equations

Vi = 0, ijk are distinct, '

(Fate =¥ L @)4) =0, imk

('/’a 13+ -y '3 (w )2/4)

where the subscripts denote the partial derivatives.

It can be easily proved by direct integration that the functions y and « are of the form
stated in the Proposition.

Let be y and a are analytic. In view of this the functions {v } ! -y are analytic too

(because of the analyticity of the Ricci tensor [9, Ch. 7). In particular, the set of the
general points on N is an open dense set.

2) First we make some simplification. Obviously the conformal changes of the coor-
- dinates { < } (.e. the inversions and the similarity transformatlons) preserve the form of

* the metric. In particular, under the inversion x' / = x 2 =1 (x") we get the form
-ds'? withA’ = C, B',=T;,,D', =D, ,T' =B;,C'=A4, ir=1,., ‘Moreover, under

the translation »* -» x’ + ¢ one can regard the coeffncnent C to be nonzero. Therefore, we
may assume A # 0 without loss of generality. Now the translation x*/ = x' = B/(24)

annihilates the cubic terms of y and the rotation x'" = U; fxd (U= (U 5) f =1 € 0(1))

diagonalizes the quadranc terms. Preserving the original nolanon we get

y= A(Z {=] <h ) + Z fel D.(x')‘ + 2 (=1 Txi +C
Under the condition the Ricci tensor mamx must be the sum of the scalar matrix and
the rank one matrix. Hence,

v = A( - (x")z) gy S hr+ p(x'), (3.8)

where p(x') = D'(x")2 + Tx' + C and _,
(4AC — DHD’' = AT?. 3.9
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In the case of D' = 0 we get T = 0. To exclude the spaces of the constant curvature
(v, =vy, =... =v) werequire 4AC = D?. Then, by (3.9,

a=3 @ (a(S L) +oz,.l<x'>2;c).’

Introducing the spherical coordinate 'systgm {r,¢%...9'}, we obtain
ds® = (dP + Adst_ )/ (Ar* + Dr® + C), where dst_| is the unit (I — 1)-dimensional

sphere arc length. Reparametrizing dt= dr(Ar‘ +D* + C)'” 2. we get
ds? =df + ,f(t)d.srlz_l . Thus N is isometric to the warped product E ! x/s=1 . It can be
seen thatv, = 0.
Now assume D' # 0. Introduce the local coordinate system {x,r,:p » .«pl} such that

<t =x,

x? = rcos ¢°,

J x> =rsin 4p3 cos ¢4,

! = rsin ga3 ...sin «pl'l cos ¢l,

Lxl = rsin > ... sin o' sin ',

Then ds” = (dx® + dr® + 2ds]_,)/ (A(x* + A% + D(x? + ) + p(x)), where ds?_, is

the unit (! — 2)-dimensional sphere arc length. The principal Ricci direction corres-
ponding to the "exclusive” principal curvature r=-(1- 2)"1 is collinear to the vector

(x~ QA+ ) + D)D'/(zAp')) 3/ ox + ro/ or,

where p’ = dp/dt = 2D'x + T. Introduce the coordinates { «, t,p oo } such that 8/dt

is collinear to the (x — (2A(* + %) + D)D'/ (2Ap’ )) 8/dx + rd/or,and 8/ 0u L a/ a1. We
can choose

t=(x*+r* + DIQA)/p',

u=(x*+ = D/Q2A) + xT/D")/r.
By direct calculation, we get

ds® = F\(0)/ (4F,(0)d1* + F () F,(1)/ D'*(Fy(u)"du® + F (u) 'ds, )
where
F,() = (A% +1/@4D)",
F)(t) = #D'? + (T - D/ (24),
Fy(u) = u? + T*/ D + 2D/ A,

The metric dslz__l= 3(u)_za'uz+)“:;(u)_lds‘z_2 is of the constant curvature
T2/D'* + 2D/A. Under the reparametrization d1=(F|/4F2)”2dt, we get
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ds* = de* + F(!‘)dslz_ ;- The constancy of Fis equivalentto T =0, 0 = - 2D and there-
forcv, = 0. '

Q.E.D.

Proof 6f Pro pbs ition 3. Itisknown [10]that the submanifold N ! of dimension

1 2 4 is conformally flot. Thus the Weyl conformal tensor vanishes identically 11, Ch. 1,
~ §51. By the Gauss and Codazzi equations (1.3, 1.4) we obtain

R, X)X, =0, i=j=k BREERT)
s oty - l 1) — 2 :
Rix, x)x, = ( =+ Dk vld-1)-a )x,.+DX'_H. RECATE
Equation (3.11) yiclds ,
R(X, X)X, = R(Xpy X)X, = (v, =v)X, i#j=k (3.1

Formulae (3.10-3.12) ar¢ cquivalent to (2.1, 2.3), respectively. Differentiating 3.1
by Xi acqording {o v we get, using (3.10-3.12, 1.1,

RUHXDX o= eV X X0 = v X, + 9V y XX )00 = v,

Muttiplying this by X, we obtain that the sccond term of the right hand side vanishes
(by (3.3)) and multiptying by X; we get (2.7) and the equation
) R(H,Xj)Xk = —ka/., J#k, ' ‘ (3.13

. greiadaae
which is cquivaicnt to (2.4).

Differentiating (3.12) by X, and taking into account 3.10-3.12, 1.1, 2.7, we get
R(H,Xj)Xj ~ RH, X)X, = (X (v, = ",-))X,- + (v, - Vj)H - /u!Xj tu X,

Multiplying by X, we get (2.5). - T

Differcatiating (3.13) by X, and with account for (1.1, 1.2, 2.5, 2.7, 3.13) we obtaia

2.6).
All the ex}rinsic equations have beer: proved. It remains to verify (2,8, 2.9).
Equation (3.14) yields

R = — - ! 1y a2 S
RX,X, X, X) = —vi=v,+ D v/U-1)=a®, i=j
Differentiating this by X, we get '
X —vi-—vj+zi=|vk/(l—— 1) - 2a%) =0.

Now (2.5) implies (2.8). D'iffcvrcnli:uing the same equation by X, . k= ij, weobtain

Q9.
Equation (2.10) will be proved in Lemma.4.6 (and it wilt not be used before).
Q.E.D.
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4. Solution of the Extrinsic Problem. Proof of Theorem 1

The argument of this Chapter is mainly of pure algebraic character (at least the first
ten Lemmas). By Proposition 3 one has [ + 1 vectors {X ) =1 »H at a point QEM

satisfying (2.1-2.6). Our purpose is to determine the minimal subspace s C TQM that

contains these vectors and is closed under the Lie triple brackets (i.e. curvature—invariant).
Roughly speaking, such a subspace is spanned by all "recurrent” brackets of an odd
number of the arguments { X, } ;and H. We will construct it in two steps. Firstly we shall

get a subspace s’ containing { X i} ; and being Lie triple system and then extend itto s

“adding” vector H.
Here the following lemma takes place.
Lemma 4.1. Suppose that in the tangent space m= TQM ,n>3, of lhe Riemannian

symmetric space orthonormal vectors {X } =1 1= 3, and | numbers {v } j=) Satisfying

(2.1, 2.3) are given.
Then there exist | mutually orthogonal subspaces {, }l such that X, € L,,

i=12,..,] and _
[[L‘.,le,Lk]=0
(L, le, L!.]C L,
[Ly L), L,1=0
(L, L1, L;1=0, 4.1

for i, j, k distinct. The direct sum @ f= lL‘, is the minimal Lie triple system containing the

l
vectors { X’.} i=1

To prove this Lemma we shall use Lemma 4.2. To state it we consider / operators R i
m - m defined as follows: R‘X = [IX, X, 1, Xi] -vX, i=12,...,1.L

By equation (2.3) R/X‘. = RkX'. with £, j, k distinct. Thus we obtain the well-defined
operator R acting on the véctors { X; } ; (and on their span). By definition put RX‘. = R/Xi for
an arbitrary j # i and extend R on the Span (X) by linearity.

The idea of Lemma 4.2 is the following. It turns out that not only RX =RX;, G, Js
k -are distinct), but also R (RX ) = R, (RX)) (for arbitrary distinct i, j, k) Hence one can
define the operator R on the vectors {RX;}; ! =, by R2X = R(RX)) = R (RX;) for
arbitrary j# i. Moreover, the two- dxmensnonal spaces Span (X,RX) ar_e mutually

orthogonal, therefore one can extend the action of R on the subspace
Span(XI,XZ,...,XI,RXl,’..,RXl) by linearity. Further, we obtain that

Rj(RZXi) = Rk(RZXi) with i, j, k distrinct, i.e. one can define R3X‘. yi= 10,0
The three-dimensional subspaces Span (XI.,RXI.,RZXI.), {=1,...,/, are again mutually

orthogonal and the operator R can be extended on their direct sum. We will proceed in
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this way uniil every of / spaces Span (Xi,RXi,szi), i=1,...,/ is invariant under the
action of R. These spaces are just the spaces { L, } ﬁ--x .

The principal role in Lemma 4.2 below is played by statement 1) which is (at the same
time) the inductive definition and the verification of its correctness. Let R® be equal to the
identical operator I on the domain of detinition.

Lemma 4.2. In the conditions of Lemma 4.1 the following statements are true for every
qgz0: )

1) Suppose the vectors RSX‘. to be already defined (fori = 1,...,l and every() < s < ¢).

Then for everyl < i < [ and for each j # i and arbitrary integers 0 < s, t, r, satisfying
s+ t+r=gq, all vectors

[[RSX., RtX.],RrX‘:I - v RIX.
i J i J i
are equal (in particular, taking s =g, t=r =10, we gef Rj(R‘JXi) ). We shall denote by
R‘J'HX’. their common value; it is well defined.
2) Let us denote L:-? = Span (X[,RXi,...,Rq X[.) Sfor eve}y i=1,...,l. The l spaces
9
!

{L:.’} f___l are mutually orthogonal, therefore one can extend the action of R to @ f.gl

by linearity.
3 [[RSX,., Rth],R’Xk] =0 for i, j, k distinct and arbitrary s,t,r =0 with
st+t+r=gq.

4) [[RSXL., RtXl.],Rer] =0 fori+# jand arbitrarys, 1,r 20 with s+ t+r=gq.

5) [[RSXI., R'Xl.],R’XJ =0 for arbitrarys, t,r 20with s+ t+r=q.

Proof iscarried out by induction on ¢. The induction base (¢ = 0) is trivial. In fact,
(2.3) yields 1), , (2.1) yields 3}, , 2), is true by the condition and 4), , 5), are obtained

by virtue of the Lie brackets skew symmetry.
Now we shall carry out the induction step. Suppose 1)-5) to be true for
O0<sg=m-1l.Letg=m=1.

Before proving statements 1), —35) , we shall obtain a useful equation. Let X be an

mn
arbitrary vector in m, s> 0, 7 2 0 be integers with s + 1 < m. Then, for i # j by l)s—l s

1),,3),,,, and Jacobi identity

s t — s=—1 . s—1 H _
[[R Xi,RXj],X] = [[[[R Xi, Xk],)(k]—ka Xi’Rle’ X] =

=-—vk[[RS-lXi., R‘Xj],x] + [[RS_IX[, (X, 1X,, Rth_]]],X] = [[RS‘lX[., R’“Xj],x].
Thus, for arbitrary integers Sy aSyal 2 0 with s;H =5, +,<m the following

is true:
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I t 1 _ t _ s, +t 4.2
[1Rx, Rix 1x] = [R2x, R2x 1 X] = [1RS * 0k, x1x], 4D

i#], Xem.
Now return to the proof of 1), — 5) .

The rest of the proof is in fact routine verification of these equauons with the help of
an inductive hypothesis and the Jacobi identity.
1),,. Fix1=i=1l From (4.2) it follows immed.ately that it is sufficient to consider

various brackets of the form
m-—r r m—1
[[R Xi’ Xi]’ R Xj] VI.R XJ.
and to prove their equality foralij= iand 0 s r < m.

Let j# i. Suppose r>0. Choose k= i,jand 0 ss<r. By 1),_,, 1), _;» 3),_,ss>

Npm—r> Dp—g—1> Dy, andJjacobiidentity we obtain:

[[R'"_’Xi, X;}, R’Xj] - v/R'"X‘. = - vJR'"X’. +
+ [[R'"_'Xi, X, [1R’““‘Xj, X, 1, Rsti - ka"'xj] = —vR"X, -
-, (R'"Xl. + ij""‘xi) - [Rst, [IR"7'X, X1, [R"“‘xj, xk]]] =
- @+ vR"X, = vy R+ [[R”’“‘Xi +vR"TIX, X, Rst] =

_ m—s § m
- [[R Xi,Xk],RXk] — v R"X,.

Thus, every expression of the form [[R"l—’Xl,, Xj], R,’X,.] - RmX, with j # i and
0<r < m equals every expression [[R'"_SX[., X1 RSX/J -V, R'"Xl. with k # i,j and
0 < s<r, therefore the same is true for 0 < s<m. Moreover, all expressions
[[Rm_'Xl., X1, R'Xj] - ij"‘Xl. are equal to one another for 0 < r = m. Replacing j by k
we shall get that the same is true for 7 = 0. Since m 2 1, the statement 1), is proved.

2),,, - By the inductive hypothesis we must show that R™X is orthogonal to R’Xj for
i#jand s < m. '

By 1)m—l
m s — L1 m—1 _ m—1 $
g(R"X, R°X)) = g(11X, X, RXLR"X) —vg(R"'X, R'X).

If s <m, then by inductive hypothesis this expression vanishes. Let us consider the case

of s = m. For the second term we have by 1), _:

m—1 m — _ m—1 m-1 _ m—1 m—1 -
g(R™'x, R Xj)— g(1X X1 IR" !X, R™'X,1) ~vg(R" ™' X, R""'x) = 0

The first term vanishes by 3), . Thus, 2), follows from 3)
3),, - Choose 1 =, j, k = 1 to be distinct. Notice that (4.2) yields
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m _ m 4.3
[m Xy X;1, xk] = [[R X, X1, xk]. )
Further, by the inductive hypothesis and the Jacobi identity ‘
m _ m-1 —
[1R"X, X, X, = [101X, X, L R"7IX, L X1, X, ] =
= [[[x X, 1, X1, [R"'x,, x ]] + [[x R™ X, X 11 X X, 1 =
P Aph Kb K% e kXl i’k]
- m-1 m
= [Rx,., [R xk,le] + [R X, 1X, X, 1] .

Thus, by (4.2) and the Jacobi identity

m m _ m

[(R X, X1, xk] + [[R X, X, 1, Xj] = [R X, X, X, 1} +
m - m m
+ [R X,, X, Xj]] = [[R X, X, 1, xk] + [[R X, X, ), Xj].
By virtue of (4.2),
m _ _ m
[[R X, X, xk] = [[R X, X1, xj].
This equation and (4.3) yield that the expression ‘
- my-
a = [IR"X;, X;1, X, ]

is skew-symmetric by every pair of subscripts.
By the Jacobi identity, [[X‘[., X, R"’Xk:l = —2a;, .Now 1) ,3), withg<mand the

Jacobi identity imply

— m=—1 —
= 24y = [1X, X1, 11X, X1 R"7IX 1] =

— m-~1 _ \ m _
= [R"7X, 1 1 16,101 = [1%, X3 R7X) =

_ m-—1 _
=2a,, + [[ij, X, R x‘.] =
- m-2 _
=2a,, + [{RX/., X, 11X, X1, R xj]] =
_ m—2 m _
=2a, + [R X, X, X, IRX,, ka] - [[xi, X1 R xk] =

_ 2 m-2 . —
_4aijk+ [[R Xk,X[.],R Xj:] =,.=

_ m ,
= 2maijk + [[R X, )(J],Xk].

Here (1,7,K) is the even permutation of the subscripts (i,/,k) which is the m-th power
of the permutation (i,j,k) = (j,k,i). .
Because of evenness we get — 2aijk = 2ma/k +ay . Thus, Qg = 0. Hence by 4.2)

i

3),, is proved.
Remind that this implies 2)

m’
4)m is the trivial consequence of 1), ~and the Jacobi identity.

5),,, . First suppose r > 0. Fix | <i < ard choosej # i. Then,

m

[[RSXI., R'X,1, R'Xl.] = [[Rin, R'X .1, 11X, X1, R'X, 1] =
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= r—1 s t
=[x, 1x,, 1R'x, RX,1 X 11]

by the Jacobi identity and by the inductive hypothesis. Now, if among the integers s, f, »
at least two do not equal zero, then the proof is finished by the Jacobi identity and the

calculation above. Thus, it is sufficient to prove that [lR"'X,., X;, X‘_. = 0.
By virtue of l)q , 4)q with ¢ < m and 5)q with g<m we getfori#j

m _ m-—1 _
[1r7x, x, %) = [(UR"'x, x ), %1, X1, x| =
- m—1 m—1 _
= [1Xp 1X, X,11 [R™7X, X1 + [1Rm=1x, 0, X, 1%, x,1]
- [[R”‘X.+vfe'""x.,x.1,x.] =
] l o ¢
=— [RX.+v.X., [R’”“X.,X]] - [R'"X.+V.R"'—1X., (X, XJ].
i T [ J [ J J !
This expression vanishes by l)q (g=m~1,m).

So 5)m is proved.
Q.E.D.

Proof of Lemma 4.1. We define L, = Span (X, RX,, R°X,, ...) for i = 1,2,.. L.
Itis clear that for certain ¢ L= L:? ,i=1,2,...,L. Obviously X,€L;. By 2) of Lemma 4.2,
{Li} ; are mutually orthogonal. Hence the operator R can be extended linearly to the
subspaces’ = @ f=1 L. The expressions (4.1) follow immediately from statements 1), 3),

4), and S) of Lemma 4.2. Thus, s’ is the Lic triple system. From its construction one can
easily see that s’ is the minimal Lie triple system containing the vectors { X, } !

i=1"
Q.E.D.
Since s’ C misa Lie triple system, its exponent has to be a totally geodesic submanifold
in M.

Lemma 4.3. Exp s’ isisometric to the product of space forms.

Proof is of a pure "pointwise” character. The operator R: s’ - s’ is symmetric
according to the scalar product on s’ induced from that on m. Let us denote by

{s'y } f= ; the (mutually orthogonal) eigenspaces and by {§y } f: , the corresponding

(distinct) eigenvalues of R. Let

B
X; = Z y=1%51
be the decomposition of the vector Xi, i=1,2,...,1, by the eigenvectors of R, Here qu is
the projection of X, onto s’y .Letus denotely” = | Xy“. | = 0. Since L, is invariant under
the action of R we get L= Span f= 1 (Xy“.). This, in particular, implies orthogonality of
any two vectors Xy“. and Xﬂ-,j fori # jand arbitrary 3,y. Consider the Lie triple brackets
of the vectors { Xy“. }. By Lemma 4.1. for arbitrary 8, 7,6
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[l Bl Ii]’ Xdliﬂ =0,
. [[ g1 Xy h (,UJ =0, %), , (4.5)
[[ g1 yu‘]’xfslk— =0, 4.6

.where i, j, k are distinct. ‘
Consider the brackets [[ 510 X, b Xélj] ,i % j. We have, by (4.2, 4.5),

Eﬂ[[ B ylil’xdlj] [[R g1 X1 au]=
= [[xﬂ“, RX, .1, xa,,.] = [(xﬂ,,., X,;h X«su]-

Moreover,

'Eﬁ [[ g1 Xy Xau] == [[R g1 Xdl/]’ yl/] =
[l ,Blt )’U] & [[ Bii ]’ au]

[[ Bl ylj]’Xau'] =0, | “@.n

Thus, fori = j

if at least two of subscripts 8, v, 6 are distinct.
Finally, in the case of § = y = J, we obtain

[[Xy”’ Xylj]’ Xrli] = [[Xyn’ Xj]’ XI'] -

= RX it Xy“ ({:‘y +vj)Xy“..

Hence, by (4.5-4.8) the following is true for the subspaces s (= Span i=1 ( 7“)):

4.8)

[ls'ﬁ, S'),l, S’d] =0, B,y,0 are distinct,
[[5’5, s, bS] =0 B=v,

_ [[s’y, s 1, s’y] Cs',.
The Cartan decamposition theorem [8 ] implies that the submanifold exp s’ is the
" Riemannian product of the submanifolds M)', = exp s’r Cexps €M.

Let* us consider now each M}', and verify that it is isometric to the space form. The
one-dimensional case is trivial. The two-dimensional case is also trivial because M}" is

totally geodesic in M and thus symmetric (in the intrinsic sense).
Let dim s’y 2 3. Fix three nonzero vectors Xy“. R X)'l/" Xyl/c E€s’ v In virtue of (4.8),

Y Tyl Tyl ki
This and (4.6) imply

R(X X, 0 XX )=-g([[Xy”.,XyU],Xy|j],Xy”)- - &+,

R(x D)X, =0,

yiv y!/

2 .2
(xy“ X0 X Xi) = ( G +v)1y“) 32,22 =
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-2 2 2
- (_ €, + vi)ly”) 32,42

R —{_ -2\ ,2 .2 _
R(qu’ Xyllc’ Xylk’ qu') - ( (§y + vk))”ylk) Ayli)‘ylk -
={— -2\ 42 ;2
- ( (53’ + vi)Ayli) Ayliaylk :
Thus, the sectional curvatures of M along all 2-planes Xy“. A Xylj (i # j) are equal to
one another, Let us denote their common value by kr . From the above argument,

2
krﬂ‘ylk + 5;' +v, =0 ' (4.9)

Moreover, .

R (Xyli’ Xp Xy Xylt) =k, (g(xyli’ X, 10 8,0 X, ) — 8(X, 10 X, ) 8(X, Xylt))

for arbitrary v, i, J, , . Since M; is totally geodesic in M, one can replace the curvature

tensor of M by that of M; in the left-hand side of the latter equation. Thus, M}" is the space
form of the curvature ky .
Q.E.D.
Wehave alsoobtained important equation (4.9). One can easily see thatitis truc always
(even inylk = 0) when ky is defined, i.e. dim S'Y > 1. In the case of dim s'y = 1, we have
§y+"1=0 ’ 4.10)
foi every i with L i S, i.e. for every i except one.

Our purpose now is to "extend" s’ to s "adding" the vector H.

The idea of this extension is as follows. At first we replace the vector H by the vector
H' which is orthogonal to the s' component of A. It is clear that the minimal Lie triple
systems containing s’ @ # and s’ @ H' coincide. [t will be seen that equations (2.4-2.6)
become especially simple like (2.1,2.3). Therefore it will be possible to extend the operator
R to H' , thento RH' , etc. By the method similar to that of Lemmas 4.1 and 4.2, we will
obtain the space Ly, which will satisfy together with {Li) ,l'=| all relations (4.1) of

Lemma 4.1. The space s=s'@® L, is the minimal Lie triple system containing
eaf=lx,. @ H. Its exponent will be the product of the ‘space forms.

Lemma 4.4. Let H' be the orthogonal to s' component of vector H, then fori # j
[[H’, X1, Xj] =0, ’ 4.1

[[H’,Xl.],Xi] - [[H', X1, Xj] =@, ~v)H'. (4.12)

P roof. In fact the vector H' will be obtained in quite a different way and only then
we will show it to be the component of A orthogonal tos’. Let H = H' + Z le PR)X;.

Here P (R) are the polynomials of the operator R, i = 1,...,/ , i.e. P(R)X, is some vector
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of Li {notice that any vector of L; can be obtained in this way). Our purpose now is to
select the polynomials P; to satisfy (4.11, 4.12) with H’ as above. By Lemma 4.2 and
(2.4), we have
[, X0, X)) =X, - >, [[Pk(R)Xk, X1, xj] =
=puX, - [[Pj(R)Xj, X,), xj] =
=puX; - P(R) ([ X, X;1, X, 1) =
= (P/(R)(R +v ) +u 1) X,
with 7 is an identical operator.
By Lemma 4.2 and (2.5),
(W, x1x] - [1#. X1 X)] =
=X, = p X+ = vH + = v) X P(RX ~ 3, ([[Pk(R) X, X, Xi] -
- [[Pk(R) X X,), xj]) =@~ v)H + P y ((y‘. = V)P(R) +
+ PUR)R +v, 1) + PR)(R +, 1)) X, + (,4 d+ - v)P(R) +
+P(R)(R +v, 1)) X, - (,ujl + = V)P, (R) + P (R)(R +, 1)) X;=
=@ - v)H' + (Pi (RY(R +v, 1) + ,u'.I) X; - (Pj(R)(R +v, D +u 1> X,

Thus, to satisfy (4.11,4.12), it is necessary and sufficient to find / polynomials Pi ,
i=1,...,1, such that aii operators P(R)(R + v 1) + u I vanish on the vectors {xj,} /I'=l
(this implics that the operators P(R)(R + v/) + p I vanish identically on s’). We shall
proceed us follows. Lei y(&) = ﬂf =l ¢ - é‘y) be the minimal polynomial of the operator
R:s' = s'. Lety; (§) and a; denote the quotient and the remainder of the division of x(£)
by (¢ + v,.), respectively.

First suppose thata, # 0. Put P, = p.a’ ‘xi . Then,

‘ PARYR +v,0) + = p a7 'y(R) =0
according to the Hafnilton-Cayley theorem [9, Ch. IV, §§3,4].

Now let us consider the case of a; = 0. This means that there exists I <y < Bsuchthat
- §y = v; (for a given /). We shall show that in this casc u; = 0, i.e. one can take P; = 0.

If dim s’y = 1, then by (4.10) there exist/ — 1 = 2 of {vj} jwith &y +v, = 0, i.c. there
exist j# i such that V=, Then (2.7) implies p; = 0. If dim s'y> 1, then by (4.9)
krly“. = 0. Now if ly“. # 0, then kr =0 and (4.9) implies Ey tv, = 0 for arbitrary
Jj = i...,l. Therefore, u; = 0 by 2.7). If Ar'/ = 0, then find j with '1';"/' # 0 and multiply
both sides of (2.4) by XyU . The equations of Lemma 4.3 yield

2 _ = =
#A% = r g X ) =g (LHXL X1, X, ) =
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=g(l1X,,» X;1, X;}, H) =0.

Hence, u; = 0.

Thus, (4.11, 4.12) are satisfield. Now let wus prove the vector
H =H - 2 le P(R)X; to be orthogonal tos’ .

At first we notice that forX}' €L, orthogonality of H' and X; implies orthogonality of
H'and RX[’T .Really, multiplying (4.12) be; and taking intoaccount 1) and 5) of Lemma
4.2 we obtain

0=g((v; ~v)H', X}) =g(lLIH", X;}, X;1 = [[H', X;], X1, X[} =

= - g([[x;‘, X,), X,), H’) = - g(RX; +vX;, H') = - g(RX;, H').

Hence, itis sufficient to verify that #’ is orthogonal to X, foreveryi = 1,2,...,l. Notice
that g(H', X)) = g(H = 3, |_, P{R)X, X)) = = s(P(R)X,, X), since L, and L, are
orthogonal (i #j). If M= 0, then P,=0 and .therefore gH',X)=0. Let u,=0.
Multiplying (4.12) by X, , we obtain

- g(IH', X1, X1, X;) = g((v; = v)H', X)) .

Thus, g(RX,. +v.X, H’) = 0. By the above remarkg(Rq(R +vhHX, I-l’) = 0 for any
g > 0. Hence g(Pl.(R)(R'+ vX;, H') =0, and therefore ( — u X)) is orthogonal to H'.
This yields g(Xl., H)=0.

Q.E.D.

In the case of H' = 0 the system s has been already constructed: it coincides with s’.

Suppose that H' = 0. It should be interesting, of course, to get the equality like
(X, H LH - [X; Xj], Xj] = (vH - vj)X‘. , where Yy is a certain number similar to

the implication (2.4, 2.5) - (2.8, 2.9). If it were so, we should find ourselves in fact in the
conditions of Lemmas 4.1 and 4.2. Unfortunately it is impossible. Therefore we will have
to prove the Lemmas "repeating” Lemmas 4.1 and 4.2 but with participation of /' .

By (4.12), for arbitrary i # j, RH' = R!J-l’ . Thus, the action of the operator R is well

defined on the vector H' , namely, RH' = RH' for arbitrary i.
The following Lemma is similar to Lemma 4.2.

Lemma 4.5. 1) Suppose that for some q = 0 the vectors R°H' , 0 < s < g, have been
already defined. Then for any 1 i<l and for arbitrary integers s, t, r =0 with
s+ t+ r = g all the vectors

[[RSH’, R'X,), R'X‘.] - vRH’
are equal to one another (in particular, in the case of s=g¢q, t =r=0 we will get
Rl.(RqH "Y). We denote their common value by R"* ' H' : such a definition is correct.

2) The space L, 9= Span'(H',RH',..., RIH'") is orthogonal to s'.

3 [[RSH’, R’X‘. 1, R’X,] =0 for i#j and arbitrary integers s,1,r20 with
s+t+r=gq '
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-
4) [[RSXI., RtXi 1, R°H' J = 0 under the same conditions.

Proof iscarried out by induction on ¢g. The base follows immediately from the previous
Lemma.

We have to verify the inductive step. Suppose 1)—4) to be proved | for 0 <gsm-1.
Similarly to (4.2) we get the equation

[wrer, r'x,1,x] = (1R, R*%,1, X] 4.13)

forarbitrary X €Em ands+t=r+ u < m.
1),, - Equation (4.13) yields that it is enough to prove this proposition only for the

brackets ‘ v
[[Rm';’H', X1 R’Xi] - VlRmH' .
Repeatirig in our case the calculations of 1), (Lemma 4.2), we obtain that for i # jand
mzr>sz0 »
[[R'"—'H’, X;l, R’Xl.] ~ v’R’”H’ = [[R’"_SH‘, X‘.],Rin] - v‘R”’H'.
This implies, similarly to 1, of Lemma 4.2, that the above equation is true without

restrictions on rand s, i.e. for arbitrary 1 <i# j< [and O <s, rsm.
2)m can be proved in a much simpler way than that of Lemma 4.2. It is enough to show

that R™H' is orthogonal to RX? with arbitrary i = 1,2,...,l and0 s r < m. For j=i,
by 2),,2),,_,> and Lemma 4.2,
gR™H', R'X) = g(I1H', X}, R"™ 'xj], R'X) =
_ r m—1 Yy
= g(LRX, R"X 1, X1, 1Y) =
- m+r m+r—1 A
_g(R X, +vR Xl.,H)-0.

3),, admits simple verification too (notice that the same method is valid for the third

. point of Lemma 4.2 in the case [ = 4).
By virtue of (4.13), it is sufficient to show that

[[H’, R™ X, R’X!.] =0,

- wherei#j,0<r<m. e
If m > r, then by Lemma 4.2 and the inductive hypothesis for k # i,j we obtain

[[H',R'"_'Xl.], R’Xj] = [[H’, X, X, ], Rm"—le]], R'X/.] =
= - [[(X,., X1, (R"77X, 11, R’Xj] =
= [tR™1x,, 11, X, (X, x,1] +
+ [wex, 1, x 00, 7' x, 110] =o.

" It remains to prove [[H’, X;1, R'"Xj] = (. We have
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' - ’ m—1 -
[1H X3 R"X)] = [1H', X} 11X, X, ), R"™ X, 1] =
= - [R™ %, tim, X1 1%, X, 1] =
= [rR™1x,, (X, 118, X0, X)01) +
+ [R™1x, X, (X, 187, X, 101] =0,
Notice that by the Jacobi identity [[R’H ‘L, R'X b R’Xj] =0 fori#jands, f,r20

withs+t+r=m.
4),, follows from 1), and the Jacobi identity.

Q.E.D. "
Denote L” = Span (H', RH’, RZH',...) ands=5s'® L,. Then LH is orthogonal to

s’ and
[[LH, L], Lj] =0, i},
[u.H, L) Ll.] CL,,
[[Li, L), LH] =0, i#},
[[L‘., L), L”] =0.

Let us consider now the brackets of the forms [lLH. L” I, Li] and [[L, Ly }s LH]'
According to this purpose we need equation (2.6) with Hto be replaced by
H' + 3 i PURX,.

Lemma 4.6. [[xl., H'), H’] = (zk B PR+ R+ (Ek v /(- l))R + ;1) X,

Here =v f (zk ”k/ (-1H-v ]) -7 these expressions are equal to one another for

arbitraryj = 1,2,...,], thus (2.10) is fulfilled.
Proof. By (2.6) we get

' 7 o 2
[lx,.,H LH] =a [[x,., X1, xl.] +uH -7, X, + [lejH, X1, xj] -
~ 2 [[X"’ PURYX, L P k(R)Xk] -
= T [1%e PRI, PARIX] = [1X, '), PRX)).
After routine calculations using Lemmas 4.2, 4.5, and (2.2) one can obtain

[[x,., H), H'] - ((PI.(R)(R VLRI H' > b PR + R +

+ 2 /(= DR+ (v/. (zkvk/(l— ) —vj) —4:/.)1))(,..

Sincej # iis arbitrary, the coefficient of the identity operator in the iatter parentheses
does not depend on j. Thus (2.10) is proved. We denote this coefficient by {. The operator
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P(RYR +v)I + pufacting on H' in the right-hand side of the equation vanisheson s’ .
It turns out that it vanishes on s = 5" @ L, too.

We.have the symmetric operator R acting on s. Strictly speaking "the new" operator
R and the "old" one are different because they have different domains of definition (s and
s', respeitively), though they coincide on s’ . But we will mean everywhere R to be an

operator on s.
Consider the eigenspaces of the operator R. We can divide them into 2 classes. The first
is the class of the spaces {s } , Wwith the eigenvalues {5 } . One can easily see

thatforeveryl sy < B,s' is exther the hyperspace ofs or Lomades with it. The second
class consists of the spaces {s } y =B+l whose exgenvalues are different from any of
{ 5 } y=1° . These subspaces are the one-dimensional subspaces of L, , because they are
orthogonal to s’ . Decompose the vector H' by the eigenvectors of R:
c
H =Y .
_ Zy =1 7 .
Here Hy is the projection of H' onto s. Denote Ay! y=1 Hy i = 0. Tt can be easily seen
that

s, = Span, (Xy P

s, = Span (Hy), y>B.

Hv), y < B,

let B>B2y,d and 1 <i <[ By (4.13).

Thus, [[Hg X, Xau} =0 and therefore [IH X1, XI.] =0 for arbitrary

1 < i < land > B. Multiplying now (4.12) by Hﬂ with 8> B, we obtain .

- _ N _ 2
O—g(l-[ ﬂ,X‘.],X‘] [[Hﬁ,Xj],X/],H) “"(Vi Vj)l‘ﬁ'”.
- Wfforanyi=j, v, = Y , then by (2.7) u, = 0 identically and by Lemma 4.4P, = 0Ofor

everyl sisli. ‘ _
If there exists i # j with v, # Vi then AﬂlH = 0. Hence B = C and the speclrum of R

on s coincides with thaton s’ . Thus the minimal polynomials coincide too.
Therefore (P,.(R)(R +v)I + /t/) H' =0.

Q.E.D.

1

Denote for brevity
! 2 I
PRY= D _ i PRY+ RO+ v /(= DR+EL.

Then by the previous Lemma
[[x‘., H'], H’] =P(R)X;, i=12,.,l
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Lemma 4.7. The following equations are true:

[[RSX‘., R'H, R’H'] = P(R) R"‘“"xi , 4.15
[[R’H', RH', R‘xi] =0, (4.16)
[(R’H',RSH' L R’H’] =0 " 4.17)

foranyintegerss, t,r 2 0and forl <i<|

Proof. Atfirst we prove (4.15). By (4.13) and the previous Lemmas, one can obtain
[[RSXI., RIH' 1, RrH'] = P(R)RSH'HXI. + Vi <P(R)Rs+t+r—lxi -
- [[R‘Xi, R'H'), R"‘H']) .
Induction by ¢ = s + ¢ + r implies (4.15).
From (4.15) and the Jacobi identity immediately follows (4.16).
Now verify (4.17). Suppose t > 0. One can see that
[[R'H', RH', R*H'] = - vi[lR"lH’, R°H' |, R’H']

with an arbitrary i. Induction by ¢ = s + ¢ + r yields (4.17).
Q.E.D.
By (4.15-4.17),

[[Li, L], L”] cL,,
[[Lu’ Lyl Lijl =0,

[[LH’ Ly, L//:l =0.

Thus, the space s = @ 1{=1 L,®L, isthe Lie triple system in m. [t remains tu prove

that its exponent M= exp s is isometric to the space forms product of the types A, B or
C. The following construction is similar to that in the proof of Lemma 4.3,

Lemma 4.8. The totally geodesic submanifold M = exp s C M is isometric to the
product of the space forms.

Proof. From Lemma 4.6 one can ecasily see that the eigenspaces of the operator
R:s > sare
5, = Span, (Xy“., Hy ), yvsSB
= I% v > B,
s, Span (HY ), y>8B

In the way similar to Lemma 4.3 cne can establish that all the triple brackets containing
the vectors Xy“. and Hy vanish except maybe the brackets of the form

[[Xy,,w X, Xy,j:l (=7, [[Hy, X, Xy!i] =B

and
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[[wa H), Hy} & < B).

These exclusive brackets by Lemmas 2.3, 2.5-2.7 lie in the corresponding S, -
Thus, every of S, is the Lie triple system. Moreover, these spaces are mutually
orthogonal and all of their triple brackets vanish except [[s S, ],s 1Cs (y < B).

By virtue of E. Cartan’s decomposition theorem [81M is 1sometnc to the product of the
totally geodesic submanifolds My = exp sy It remains to show that {My } , are of a

constant curvature.
The one-dimensional and the two-dimensional cases are trivial. Suppose dim sy =3.

If s is orthogonal to H' , then it is sufficient to refer to Lemma 4.3.
Let s, = s'® H with H = 0. For any two nonzero vectors X, ;and X, @i#J), by

2 42
Lemma43 R( yhir y., y|, yn) kyAyI:ArU ~
By Lemma 4.5, R(H " y“ ) = kyly“/lylﬂ Moreover, R(H 7,“)X =0
and R( ) X =0 (k # i,)). Hence the sectional curvature of the ambient space

y\ 7'/
M along the two- d1mensional planes lying in S, is constant. By virtue of geodesicity this

holds for My too.

Q.E.D.

Now let us investigate the structure of s in_detail to show that M = exp s is of type
A, Bor C. Notice that the completeness of N in M has been already established by virtue
of Pro Posxtion 1 and the minimality of the system s (as the Lie triple system containing
{X;};., and D).

One can easily see that equation (4.9) holds for the system s. The orthogonality of
Li and S, implies, in particular,
v+ EY =0. 4.18)

First we shall prove the following simple

Lemma 4.9. The system s contains no more than one Euclidean factor (including
one-dimensional).

Proof. If S, is a Euclidean factor of dimension = 2, then (4.9) implies that every of
v; (i=12,...,)) equals ( - Ey).

If dim sy =1 and s, CLy,, then the same is true by (4.18). After all, if dim sy =1,
syC Lj. (for some 1 < i < ]), then by (4.10) each ofvj withj =i is(- Ey). But {f;‘y} y

are mutual distinct and [ = 3.
Q.E.D. '
This Lemma in fact justifies the notation M M "(k ) of Theorem 1 for the submani-

folds exp s, - In particular, C = N, dim s, = dy .

The system s is of the same form for all points Q € N because of its minimality and by
Proposition 1. However the vector field A’ can be discontinuous and thus the systems
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s’ constructed at different points of N can be non-isomorphic. To avoid this trouble we
will restrict our consideration to the general points:

Lemma 4.10. In a general point there is no subspace S, orthogonalios' .

Proof. Lemma 4.8 implies that any such space is onc-dimensional. From Lemma 4.9
it follows that it is unique if it exists; in particular, B=N — lor B = N.
Suppose s,, to be orthogonal tos’ (dim s, = 1) . Then (4.18) yields immediately that

all {v, } ; at the point Q are equal. By the condition the same holds all over N. Then (2.7)
yields a = const, B=1= 0@=12,...,0), H = H (by Lemma 4.4). Now, by (2.6), for
i#j, ‘
_ 2
[ (X, H1, H] =a [[Xl., X1, xj] + [[ijﬂ. X1 x,.] .
Multiplying this by Xy” (y < B), we obtain:

2 _ 2 3 _ 2 3
ky}”yAr‘H « krly kylr (ky}‘ 1 Z =1 P p)

Dividing this by ky).y #(0 and summing up with y=1,2,...,B, we get
2 .2 _ 2 "
a —lNlH—a .HenceHN—O.

Q. E.D.

Thus, if there exists the one- dnmensxonal subspace S, C s, thenitis unique and it hes

. Notice that this is false without the point Q generalny condition.
Now let us prove that M is of the types A, B or C It is convenient to "return” from

H' toH. Let
H = Z = (2,-: yI1+H)

be the decomposition of H by {sy} ; here X;“. is collinear to Xyll.. Put .

y=10
6,4;= X, 1= 0. Lemma 4.4 yields that i1, = 0, then 6, = 0 too. Moreover,
VS e, +2,) =a?s0, (4.19)
y=1 j=1 vV TyiH
N
Z 6 A .=0 i=12,..1 4.20)
y=1 yliTyli
ZN AZ|'= L, i=12,..L 4.21)
y=1 7

Let us consider now the class of spaces M , which will lead us to the type A of Theorem 1.

~ N -
Lemma 4.11. Suppose M contains no one-dimensional factors and Z K=o,

Then:
D All {v;}; are equal; denote their common value by v and let N'be the space form

of acurvature ¢=—(1—-2)/(I—- 1.
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2) For an arbitrary y = 1,...,N, all {/l } i= are equal. Denote their common value
byly >0.

I a=const,pu;,=1,= Oforanyi=1,2,...,1

4 H=H',ie Gy“. =0foranyi,y.

5) For an arbitraryy = 1,...,N, holds the equation

2 20—k 22 4.22
By =25 (= kA0 (4.22)

6) Foreveryy = 1,....N dy = [ + 1 except maybe that with dy = . This corresponds to
the cases of Ayl H* 0 and lyl H= 0, respectively.

Proof. Toprove 1) and 2) let us consider two cases:
a) one of the factors is Euclidean, i.c. ky =0 for some I <y < N. Then (4.9) yields

that all {v‘. } are equal in value. Denote their common value by v = — &'y . The submanifold

N turns out to be Einsteinian. It is well known that the Einsteinian conformally flat
manifold of dimension / = 3 is a space form {7, Ch. 11, § 28 |. It can be easily seen that
¢=—(I-2)/({ = 1)v. Thus, 1) has becn established.

IfN=1, ie. M is a Euclidean space, then by (4.21) all {4, } ;=1 areequal to I and

therefore 2 ) is proved. ,
Suppose s C s to be & subspace distinct to S, - [f there exists the vector X/. orthogonal

tos , then (4.18) impliesv, = — &5 ; thisis impossible because&r z&; .Thus,,la“.>0for
d#yand 1si<l Now by 49 A, = — ({5 +v)/k; does not depend on i, i.e.
Ag;=Ag forl=islandd =y By 42D, {4} ],

nonzero in virtue of Lemina 4.10. So 2) is proved.
b) M contains no Euclidean factor. If there exist 1 <i</and 1 <y <N with

A/I =0, then§ = — v, and therefore by (4.9) k =0. Hence/l ;> 0.forany y, i (4.9)

implies Ay“ —&‘ k -, k ! . Summing up over y and takmg it into account that
N
Z N ky # 0, we obtam

{'i=(’1_2y—|y>'>( )“]’

ie all {v} f:l are the same. Denote their common value by v . The submanifold N is

are equal in value too. They are

isometric to the space form of the curvature ¢ = — (/ — 2)/(!/ — l)v. Further, (4.9) and
Lemma 4.10 yield 2). Case 3) follows immediatcely from 1) and (2.7). Casc 4) follows from
3) and from the method of construction of H#' . Dividing

2 _ 243, _ ., 43 2_ N 4
kriylr”l @ Ay kr ky)‘)' (krly zp=1kp'1/))
by kA (if k= 0) we obtain
Y'Y y

2, =22 (o +}: C kA -k 22).
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Ifky=0forsomel <d <N, then summing up the above equations over y = J and
taking into account 4) and (4.19), we obtain the same equation:

_32 (.2 N 24 2
le '1 ( +2p'=|kplp—k616)'
N
Now, by virtue of the Gauss equation (2.2) ¢ = a + 2 k A*.S05) is proved.
p=| PP

One can easily get by 2) that dr = dim s, Z [ since Xr” »#0. If Hy # 0, then
dr =l+landif H = 0, then d, =1 Sc 6) is proved. ' o

Suppose that d, = 1 for some 1 <y < N. Thend,,, = Oand krzj = c by (4.22). Now
(4.9) implies Ey = — v - ¢. Since {Er} are distinct, there is no more than unique y with
dy =l ‘

Q.E.D.

Thus, under the conditions of Lemma 4.11 we get the type A of Theorem 1.

Consider now the case when M contains the one-dimensional factor. We assume the
point Q € N' tobe the general one. Lemma 4.10 implies that the factor is orthogonal toH'.

Letd, = 1,8, =T, M CL,.
We have the following decompositionS'
Z =2 yn' Xin =0
X, = 2y=2xy“., i=2,..,l,

' Nl
H=Xm+Z,=2 kz,-..zxyu"'ﬂ)

Lemma 4.12. Let M contain some one-dimensional factor M = exp S| .LetQeN! _
be the general point. Assume without loss of generality that 5, C LI . Then, at Q:

1) All {”; } ; with i > 1 are the same and are not equal fov,

2) For an arbitrary y =2 2 all {2
4,>0). '

3) 2 o= 0.

4),u —0for any z>1

yli } f | are the same (denote their common value by

)] Byu =0 for i> 1 andy arbitrary.
6) The following equations are true:

ky@y”ly“ =u,, v>1 4.23)

2y=2k71y— vy /(-1 -a®, y>1, | 4.24)

ril

(/13,,, + 62 ) =g+2+E, > v/U-1)=
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=-1-k A2 . /(1 - (4.25)
= -1 kyly (Er+"l/(l 1)), y>1,

=T =;¢f/(v =), >, : 4.26)

=ty (v -y =2/~ ). 5 4.27

Proof. 1) By (4.18) v;= — §, for i> 1. We denote their common value by v . The
‘ ineqixality v # v, will be proved below. :
~ 2) From (4.18) it can be easily seen that 4 ;>0 for i>1, y> 1. Now (4.9) yields

l:“ (E + v)k~l , ¥>1,i>1. Note thatk # 0 > 1) in view of Lemma 4.9.
3 Fory >1, Az ,13 v- vl)k"l by “. 9) Summmg upovery = 2 .,Nand taking
1 -1
. into account (4. 21) we obtain ). =) 2 k . Thus, 2 kr # 0 and
vVRvY

1°

4) Case 4) follows trivially from (2.7).

5) Cases 35) and 6) can be obtained from (2.1-2.6) by routine calculations using (4.9)
and (2.10). In particular, to establish (4.27), we have to use the generality of Q. For
i=2,

7,= (X'X'.(az) - vxix,.(az)) /2=- g(inX‘., xl) X,(@d/2.

This and (2.7) imply the first of two equations (4.27). The second equation follows
from (2.10) and 1).

Q.E.D.

Itis important to note that all equations (2.1-2.6) are fulfilled by Lemma 4.12 and (4.9,
4.10, 4.19-4.21).

It follows from the previous Lemma that for any y > 1, d 2!~ 1 On the other hand

dy < !+ 1 trivially.
The following Lemma characterizes the type B,.

Lemma 4.13. Let M contain a one-dimensional Jactor and an (I ~ 1)-dimensional
factor:d, = 1,d, =1— 1. Then:

1) the mean curvature a is a constant,
2)N=3 and d =Il+1 for y>?2;

3) every point of N is the general one. The space form N b is isometric to the direct
product of the line and the space form.

Proof. 1) By2) of Lemma 4.12, 12“ =92” 2”, = 0. Then (4.23) yields
By = 0 on the open dense set of the general points on N. Thus, #, vanishes identically
and a is constant.

2) It follows from Hy = 0 that Ay” i = 0 for y> 1. Thus, By” = (. By (4.20)
N
6,,, =0. Therefore, H=H’=27=3Hy. Now (4.18) yields v, = —§, and, in
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particular, ,17 11 >0 for y >2. By 1)  vanishes identically; therefore by virtue of (4.26)
v/(1-1)+&,=0. Hence v =§,=0. Equation (4.26) for y>2 yields
Afl H= /13 Ey # 0 from which it follows that /lﬂ > 0. Case 2) is proved.

Case 3) follows from Proposition 2.

Q.E.D.

Now suppose that M contains a one-dimensional factor but no (! = 1)-dimensional
ones. We get the type B,

Lemma 4.14. Let M contain the one-dimensional Jactord | = 1 and let dr =lfory>1.

Then:

D for every y > 1 d = 1 or I+ 1 depending on A = Oorly' u ® 0, respectively.

2) Nlis isometric to the warped (possibly direct) prodm.t of the line and the space form
and is not isometric to the space form.

Proof. 1) From Lemma 4.12 and the condition it can be easily seen that d,=1or

I+ lfory>1.

Let d, = 1. There are two possible cases: eitherlzu 2“ =0 or AZ!H =0. _

In the first case we get in a way similar to Lemma 4.13 thatv, = — §2 N 0,7=0.
Then a = const and 7| = 0. By (4.27), v| = 0 and therefore Ez = 0. Applying (4.26), we
obtain ’121}1 =0, i.e.d, = dim s, = [ — 1. Hence this case is impossible.

2) The case follows from Proposition 2.
Q.E.D.

Thus, we have studied completely the types 4 and B. It follows from Lemmas 4.11, 4.12
that it remains to consider the case where M has no one-dimensional factors and

N -
Zy=lkyl=0.

- N -
Lemma 4.15. Suppose M contains no one-dimensional factors and 2 k' =0.

=} Y
Then
SV ekt = (4.28)
y=177 ?
kyﬂy”/ly,,:yi, 1=isl), 1sysN, (4.29)
ST B =3 /-1 -a? (4.30)
y—l Y j=1 i ’ .

i=1

. !
—ky{\xjuﬁzv y“) ;+52+§z lU=1), IsysN. 43D

Proof consists in substituting of the decompositions of the vectors { Xj} ;=| and H
into equations (2.1-2.6). Equations (2.1-2.3) are satisfied. To get (4.28), divide (4.9) by
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ky and sum it by y = 1,...,N. It also follows from (4.9) that for any 1 < i < / there is no

more than one {ﬂy“.} )’," - ¢qual to zero.
Equation (2.4) implies /1 (ky eylk'lylk ) = 0 for arbitrary y and j # k. If there

exist y and k such that k 6 Ik'l x4 ® 0 then A k= 0 for j # k. Therefore for every
1 < k < [ there exists no more than the umque 1 =y <N that k a Ik"ylk # u, . Taking
d # y, weobtain 9«5 |k'16|k ”k Summmg thisbyd # y, we get (4.29). Equation (2.2)
implies 2 k lrljlrlt =-v,-v —a? + 2 v,/(I-1) with i=j Now (4.9) and
(4.28) yleld (4.30).

Equation (2.5) follows from (4.9, 4.29), i.e. it is useless in this case.
Equation (2.6) implies that for 1 <i < /and 1 <y < N the following holds:

13'1( (ylH 2 1y|1)+§+£2+52 vi/(l——l))=0.

If the expression in the parentheses is nonzero, then A - j = ( for every j and thus
dim s, = 1.

Q. E D. .
‘Using the equations recewed we shall investigate the structure of M

Lemma 4.16. Let M contain no one-dimensional factors and zy - k;l = 0. Then:

1) N = 2 and there exist no more than two factors of dimension < ; ‘

2) the sum of the dimensions of any itwo factors is = L. If there exist the factors M and
M; with d + d =1, then N L s of constant mean curvature and isometric to the
Rzemanrucm product de(e) dea( ¢) (or Sda(c) XLdy( - ).

Proof. 1) Suppose dy .dy, dﬁ <lfor some distinct 1 < », 8, f < N. Then there exist
i, j, k such that Ay“ = Aéli = Aﬁlk = 0. The equation (4.9) implies v, = 5 V= 5
V= ‘Eﬁ (in particular, i, j, k are distinct). Applying (4.9) again, we get 1f that for any
. ; -1 -1 -1
I'srsi, (v,- vl.)ky 20, (v,— Vj)ka 20, (v,- V/c)kﬂ =2 0. Assume that the
curvatures ky and ky areof the same sign. Then (vj -V, - vj.) = 0, which is impossible,
2) Ifdy +dy <! for somey # d, then there exist 1 </ </ such that/ly“. =15,;=0,

which is impossible by (4.9). )
Suppose now d| + d, = 1. Then,,, =4,,, = 0. Renumerate the vectors { Xj } j=1 to

getd, =‘0 fori>d, and4,,,=0fori=<d, . Equation (4.29) yields if that #; =0 for

l=i=<l!, ie a=const. Moreover, (4.18) implies v, =v,=...=n, =-§,,
1

vd s ==Y = .f] . Now {6, Ch. VII ] completes the proof.

Q.E.D.
So all the possible cases for M have been already considered. Now we will separate the
type C, from the general type C. It will be similar to A
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Lemma 4.17. Let M be of the type C and N ! has the constant curvature ¢. Then:
1) for every y = 1,2,...,N all {Aw} :=1 are equal 1o some Ay >0;

2) 67“. =0 for i and y arbitrary;

3) equation (4.22) holds;
4) every dy equals | + 1 except maybe one that equal to l.

Proof. 1) Constancy of curvature implies that all {v’.} ; are equal to
v=—(l=1)/(l = 2)c. Now 1) follows from (4.9). If Ay =0, then d_=1.

2) By 2.7 p; = 0, therefore a = const and (4.29) yields kylye ;=0

3) Constancy of aimplies7; = 0 (i = 1,2,...,/). By (2.100 § =+*/({ - 1). Then (4.22)
follows from (4.9) and (4.31).

==

: 2 _ _ 2 _ — — _

4) By virtue of 3) AylH = /ly (‘fr +v/(l 1)2 If AY‘H = 0, then 57 =—v/(l-1).
Since {Ey } ;,V= , are mutual distinct, we get that all {lrm } ;,v___ | are positive except may
be one.

Q.E.D.

The extrinsic problem is solved.

Theorem 1 is proved. .

Now gather the results of this Chapter for the later use in the proof of Theorem 2
(Chapter 5).

Lemma4.18. Let N'c M = m_ ng(ky) be one of the pairs (M, N) of the Table in
the Theorem 1 except the type A, .

One of the two following cases is possible:
1) N° is the space form of the curvature ¢ (types A, Cy) Then 1 =d, <i+1],

dy=...=dy =1+ 1. Atan arbitrary poini Q € N ! we have ihe dec: mpositions

N .
. Xizz =lX7|i’ i=2,..,1

N
H= zy= H,
where Hy, Xy“.E TQ My and the vectors {HY, Xyli}yi are mutually orthogonal;
”Xy” “=2y>0, ”Hy ”=lym (>0 for y>1 and =0 jor y=1). The following
equations hold:
ZN 2=1 : 4.21)
y=17 !
N 2 _ (4.19)
zy:,"rw““ >0,
2 32—k D y= | (4.22
Bip=h(c—kA), y=1..N, )
2 - | 4.9)
ky,ly + Er +’v 0,
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=—(=-2)/(- .

DN Lis not the space form (typesB,C, , C; ). If]\’jl contains the one-dimensional factor
N _\7 1 /
(d1 = 1), then define k| = — (2 k ‘J . At the general point Q € N, we have the

y=27
decompositions -
N
X. = X ., i=2,...,
i y=1 rH
H= Zy—l(zz—lX7|‘+H)

where H , X ., Xylle ToM,; X \; is collinear to X, and X |, = 0 implies X;“.=0;

the vectors {H

» X}, are  muwally  orthogonal; ” y“”=/17“.20

7.l
“X)'m. ” = Gy“. =0, HHY ” = lylH 2 0. The following equations hold:

SY 2 =1, i=12,. ‘ 4.21)
y=1 yli ’ yyenoyly
SY 94,20, i=12,... . (4.20)
y =1 Y ylf
N Log2 122 ) 22 (4.19)
2y=1 (21—187“4-17'” =a”>0, ’
kAL HE 4y, =0, (4.9)
kyeyli}‘yu;'”i’ l=sisl, Isys=sN, - 4.29)
Y kt=o,
y=17
-1 _ (4.28)
Zy_,E k L |
L T 4.30)
Zy=1§)’k)' -Z;=1Vi/(l l) a, ’

k(yw E vlt) §+§2+‘52 V/(l ), lsysn. 43D

Proof. To prove the Lemma we have only to verify that in case 2) equations (4.9,
4.28-4.31) hold for the space M of the type B, i.e.ford, = 1.

Assume that s, C L ,as in Lemma 4.12.
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Equation (4.29) fory> 1, i = 1 follows from (4.23); for i > 1 it follows from 4), 5) of
Lemma 4,12; for y=1, i=1 by virtue of (4.20) we obtain

-1
0= Z A O = A0 —H kT
Dmdmg (4.9) withi>1by ky and summing up by y = 1,...,N, we get (4.28).
Equation (4.9) is true fory > 1. Lety = 1. Thend, |, =0and §, = — v, fory > 1 (look

at the proof of the first case of Lemima 4.12). Thus, by (4.9, 4.21, 4.28) with y> 2,

2 N2 1 -1
Aln= 1‘2},=2)‘y|1”51]‘1 ~vik o

By (4.24) and (4.9) fori> 1
¢ 2 _ 4 _
2 pl-)-a —2v,-+2 k,A

=1 ¥ vl
=2Vi+2:( k"‘E + 2v 2 —'“y+v‘.zN_lky—].

y =

This proves (4.30).

Equation (4.31) with y > 1 follows from (4. 25) Let y = 1. Then 4,,, = 0. By (4.25)
and above mentioned equations, \ ' _

2 _ 2 N 2 2 -

6%, = -ZFZ(NHM)_a +§j NG+ gaE, S v/ =

s - ! - l -
=P+ kLY v/ D= =k D v/ U= (- 1= ).

Q.E.D.
Notice finally that all equations of this Lemma are the consequences of Proposition 3.

5. Proof of Theorem 2

This proof is verificative by nature. Really, by virtue of Proposition 1 the umbilical
submanifold can be determined completely by one of its points, the tangent space and the
mean curvature vector in this point. The possible types of tangent spaces and mean
curvature vectors for N C M have been considered in detail in Chapter 4 (lemma 4.18).
Therefore, the proof of Theorem 2 can be constructed in the following way: choose a point

Qe 1\7! a tangent space TQN and a mean curvature vector H to N C M at this point.
0 to N C E (it can be determined by T )Nand H). Verify
that L (M is umbilical in M and is of the dimension /. Then the intersection coincides

Compute the osculating space L

with N 1 .
TypeA is trivial. Before considering the other types reduce them to the common form,

i.e. embed every factor M M y(k ) of M as the totally geodesic submanifold into
-}\—4 MI'H(k ). Then, con51der1nglhe standard embeddings into the (pseudo) Euclidean
spaces, we get
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d d +101)
r(k Dl '
M y (l\y) CE
N N
ﬁiﬂ(k}) c EH—Z(,]) )
In this diagram the "vertical” embeddings are toially geodesic (E dy +1GH passes through
the origin in EF2D ), and the "horizontal" ones are totally umbilical (and standard).
Obvicusly M7 = A_/!y N £4 16D (the intersection in £ 720Dy,

Multiplying these constructions fory = 1,...,N, we get the diagram

M=m"_ mMhr)ycE=TV_ E4*ICD,
Yy y =1

y=1

N N

M=n"_ M )ycE=nV_ g+1D,
y=1"7y be y=1

The "vertical” embeddings are totally geodesic and the "horizontal” ones arc standard.
Notice that M = M ( E.

It is convenient to prove Theorem 2 replacing the ambient space M by M . It can be
easily seen that

a; if N is umbilical in M , then it is also umbilical in M with the same langcnt space
anc ine mean curvature vector, In particular,

b) the projection of the principal Ricci directions (Xj} j=1 and the vector A of the

submanifold N € M onto the factors {7\—1—}/ } f/Vz , are cqual to those of N C M. Morcover,
the relations of Lemma 4.18 hold (with the same ty , ky T, and§);

©) the osculating spaces, the mean curvature vectors, and the position vectors at the
point Q € N1to N C Eand to N C E coincide.

(Roughly speaking, the differentials of the corresponding embeddings transform the
mean curvature vector to N C M into one to N C M etc. )

Thus it is enough 1o prove statement 2) of Theorem 2, replacing M M by M and E by

. This replacement preserves everything except the fullness of N C M .

Denote bye = *1 ,0 the sign of the curvature ky ,¥ = 1,...,N. Introduce the Cartesian

N  [+2
y = li=1 inE,

2_ <V [+1 Y2 o g yl+2\2
ds >, 2[: (d¥)? + ¢ (dx"T?)

(replacing e, = 0 by I in the case ofk =0).

coordinates { X' } in which the metric gon E of the form

The submamfold MCE can be defmed by the system of N cquations of the form

2”1 (yl) +e (xyl+2,.= -1

)’

for k # 0 (in the case of k, <0 we add the condition RO
or

xy1+2 - O
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for k = 0.
Choose the orthonormal normal frame (n } N =1 ON M putting

0 d=y
. 2 _
ndl = . (Il n |I*= ey) for k, # 0 and

xyjlkylllz a___y

yl+2

= 1, the other coordinates to be zero fork = 0. Denote by { X } the projections

r=1
of the vector X tangent to M onto the spaces tangent to the factors {M } y=1° res-

pectively. o
The second fundamental form of the submanifold M C E is
ME =< 1/2 ¢.D
AME(X, Y) E,= g Lk 1 on g(X,, Y)

for the vector fields X, Y tangent to M . :
Consider the case a) of Theorem 2: assume N to be of constant curvature ¢.
In the notation of Lemma 4.18 the following is true.

Lemma 5.1. 1) The second fundamental form of the submanifold N C E is
ME — (g 12, \ oo, )
RMEX, ) = (H }_‘,y Are Lk 1120 )eX, )

for X, Y tangent to N. _
2) N is a totally umbilical submanifold in E ; its mean curvature vector equals

- - 2 1/2
H=H 2 _ Ae k.

3) The osculatlng space LQ at the point Q€ N to NC E is of the dimension I + 1:
LQ = TQN 135 HQ

Proof. hletQ&€Nand { X I.} ;=1 ‘be the principal Ricci directions of N at Q. By
- (5.1) and 1) of Lemma 4.18, we obtain
rME(X, X) = He(X,, X) - 2 e, |k, |l/2n gX

=1 7 & yir Xpp =

N
= (#- 2)’? e e 112 ) (X, X,

.

Case 1) has been proved. Case 2) is trivial. Case 3) follows from 1): we only need to
verify that H = 0. It is true since ,17 >0 foreveryy = 1,...,N

Q.E.D.

The following Lemma concludes the proof of statement 2 a) of Theorem 2.
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Lemma 5.2. N = —A;fﬂLQ .

Proof. Choosea Cartesian coordinate system { x } ;\’: 152? in E such that the

coordinétes of the point Q equal x"i(Q) =Q0fori<i+1, x"”z(Q) = Qy , where either
Qy = | ky | 1/2 (ky #0) or Qy =0 (ky = 0); the coordinates of the vectors X, and H are:

(x,-)we[l” = H’f=[A"H’ T WY

0, JERA 0, j¢l+1,
Then,
Ay,H, j=l+1,
vi _ | _ ".! 1/2 - -
HY = eylylk_yl , J=1+2, y=1,..,N
0, l=sj=],

(here and in the sequel weregard X, , H, H, Ay , Ay a and so on to be calculated for the

point Q).
The osculating space L 0 is defined by the system of NX(/ + 2) equations:

I\H>

N
S=2 !
2 ’ 2
Ye
X=X u
Y
P, >
xyl=.27ul
Wyl 1+1
x -—lylHu
yi+2 _ 12 /2 1+1
X = ~Ae |k 1
_ Q-He kT

To find the intersection M N LQ we have to solve the system of N equations of the

form

+1 42 1422 _ -1
yi 0 =
Ei=1(x ) +ey(x’ ) ky , kyx(),
or

2=, ky =0.

The latter equation is obviously true (if M has the Euclidean factor). In the case of
ky # 0 we get for everyy = 1,...,N:
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-1 _ 2 N2 4 =1 _ a2 41 4132 (42 4
G2y @kt - 242 it (xym + ky).y).
Now, by (4.22) of Lemma 4.18, we obtain
! .
2. , (ul)2 - 2u1+1 + (u1+1)2‘:___ 0.
i=
Let f(tI ye ..,tl) be the continuous function defined as follows:

S -+ ef =0, (5.2)
f(0) =0.

The [-dimensional submanifold N’ = M ﬂLQ C E is defined by the system of
Nx(l + 2) equations of the parameters { ¢} f=1

N
o1 =Aytl
=2 72
Y

xﬂ:/lytl

I+1 _
xy[ 2_/1?”{f2 1/2

Y+2 _y 32,
X Qy /1ycylky| f .

By routine calculations one gets the first and the second fundamental forms of the
submanifold N' C M

&; =9, * i/}
N'M
R M = @l = enfom,
wherefl. = 0//01‘ ,_/’l.j = Ozf/()t"at" and » is the unit vector with the coordinates
7= -4, £e- kyzj)/a, l<is],

+1 _ 1 . YA
n’ =4, (1= fe- A)‘Ay)> la,
yl+2 _ 42 : V2 42
7 Ace |k 17" /¢ kyiy)/a
fory = 1,...,N. Differentiating (5.2) twice, we obtain
Ot fif; =11 = o).
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Therefore, A VM = ang, i.e. N' istotally umbilical in M . The submanifold N’ passes
through the point Q, TQN = TQN' and the mean curvature vectors of N and N' at the

point Q are equal.

The proof is completed by applying Proposition 1.

Q.E.D.

Now consider case 2b). There exist the nonequal principal Ricci curvatures at the
general point of N. Compute as above the second fundamental form of the submanifoid
N C E. Notice that M contains rio Euclidean factors and the relation of slatement 2) of
Lemma 4.18 holds.

Lemma 5.3. 1) The second fundamental form of the submanifold N C E at the general
point is
ME _
R (X, Xj) = aij H+v,1),
where

)

= -1/2
H=n+3 & 14170,

= 2 | & | =12 is the position vector,
b% 4 4

{x i} f: | are the principal Ricci directions of N.
— {
2) The mcan curvature vectorof NC EisH + (zk—l vk/l) r.

3) The osculating space LQ at the general point Q € N is of the dimension [ + 2; itis

spanned by the tangent space, the mean curvature vector and the position vector at the point
o: L = T ,N© H , © o

Proof. 1) By (4.9) of Lecmma 4.18 and (5.1), we obtain: .

ME \ : ~-1/2
hME (X, X) = He(X, X)) = ZY ¢, |k, | n, g (X

):

r'/

’

yii

=3, /H+§ ik I—I/Zn + v, 2y|k}|_1/2n7>.

Case 2) van be proved by direct computation.

By Vi, h NE - H@r. It can be easily secn that H and r are not collinear since Q is the
general point.

Q.E.D.

To complete the proof of Theorem 2 it remains to prove the following Lemma:

Lemma 5.4. N = M LQ where Q is the general point.

P roof. The pian of proof is similar to that of Lemma 5.2. Choose the coordinate
system { x”' } in E such that the coordinates of the point Q are

SQ)=0, Is<isi+],
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.2 —
Q= 1k T =
those of the principal Ricci directions are
0, Jj=#i

(X,-)y'i = [,1

.. = 1,...,N;
e J=h v

those of the mean curvature vector H for N C M are

b 6 ., 1<i=l
yli
b7 - - -
HY = AylH, i=1+1, y=1,..,N.
0, i=l+2,

Then the coordinates of the vector H are

0,0 l<sis|,
HY = |1, i=l+1, y=1..N
'Eylkyl—uz’ i#1+12,

(all vectors and functions are computed for the point Q).
The osculating space is defined by the system of NX(/ + 2) cquations

N
| i +1
&= E +0),“u
{. 3
L R T
yil vl

yl+1 t+1

X -—-}Lymu

xyl+2= ik l—~l/2 5 lll+l +[([+2+l
{ Y Y y=1.

To find the intersection LQ N _/V—!, onc has to solve N equations of the form
1+1 : v —
> 1 (N2 + e, (¥ 22 o k Loy =1,..,N (5.3)
je=

(with the additional condition ¥***2> 0 in the case of e, =- 1.

By the relations of statement 2) of Lemma 4.18,
1 _ -1 ! N2, e g L i
/\y = ky (Zi:‘] (e’ ( 5, v;) + 2u zi:l pou

+(-§—5y22:Iuk/(z- D)@+ 2 ) 4 W 1)2).
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Summing up overy = 1,...,N, we obtain
R U [ 0 1+1N2 _ o 141 4 142
0= 2i=l wh? + (2k=1 v, /(1 1)) @hH? — 24 W2 e .

Multiplying this by §  and adding the previous equation, we get
y y .
! ; [ . o
1 = - Elrl V{ (ul)z + 2ul+l lel‘ul ul — C(ul""l)z + (ul+2 + 1)2 .

It can be easily scen that the system of the latter two equations is equivalent to (5.3).
Define the continuous functions fb(tl,. . .,t’) and lI’(tl ,...,t[) by the conditions ‘

[ !
2i=l (11)2 + (2k=l vk/(_l - l)) (Dz - 20¥ =0, 5.9
! )2 . ‘ 2 w?_ .
®(9) =0, ‘

w(0) = 1.

Then the I-dimcnsional submanifold N’ = M N LQCE can be defined by the
{

following system of Nx (I + 2) equations of the parameters Aot

=2 46 D I

yil yll

\

vl _ {
x[——/lyut+6y”(b -
yi+1 _
xl Z—Ay”l(pl/2
yi+2 __ -
X =1k ED+ Y
N },1 (y ) y=1

The coefficients of the metric tensor of N' are

! ‘ )
g;= (zk=l v /(1 1)) Db+, ~ W~ D,

where ®, = 9®/of , ¥, = oW/ ot .
One can csmpute that the first nermal space of the submanifold N' C M is one-

dimensional. It is collinear to the vector  with the coordinates

yi_ i —d ]

n -By (Ayli’ Hiy”(b) ’b‘.Ay”, l=i=s|
yl+1 _
n -—Bylym(b,

yl+2 _ ~1/2 _ -1/2
7 =8 k| ¢, e+W)— |k | ,
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_ _ ! i g ! i _
where By—&y ((I) 2i=1 { d)i) +\ Zi:—-l (vl.t ;tl.d))CD’. for y = 1,...,N.

This vector is spacelike (because it is tangent 1o M) and

2 ! 2 N -1 np2
= . - B *
P =2_ @?-3" K'8

Now one can obtain
WM = (2 , - <b) Iy s,.

Thus, N’ is totally umbilical in M. The tangent spaces and the mean curvature vectors of
the submanifolds N and N’ c01nc1de at the point . Hence, by virtue of Proposition 1
N=N'.

Q.E.D.

Theorem 2 is proved. :

It follows from Theorem 2 that if one defines [ = 3 vectors { X} .:1'-——1 and the vector

H satisfying the necessary conditions of Lemma 4.18 at some point Q of the space M
(of Theorem 1), then there exists a totally umbilical submanifold N C M such that
QEN, TQN = Span (X, X,,..., X)), and the mean curvature vector of N at the point Q-

equals H. _
Thus, to find the umbilical submanifold of the space M (one of the types of

Theorem 1) it is enough to choose the numbers /ly“. , Bvli i E Moo, and

satisfying the relations of Lemma 4.18 (which are in fact lhe consequcnces of
Precposition 3 cquations). From simple algebraic argument one caa sce that it is always
possible.
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