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We have proved thata A. van Daele *-algebra related witha C*-Hopf finite algebras is always
simple.

1. The quantum group theory [1] is now developing intensively. It generates also
interest in the Hopf algebras [2 ] and some related problems.

Let A and B be two Hopf *-algebras which form a dudl pair (see definition 2 below).
A.vanDaele [3 ]introduced construction of a *-algebra AB for such A and B. In the present
paper this algebra is studied under the assumption that A and B are both finitely dimen-
sional Hopf C*-algebras. We prove that AB is semisimple. However, if A is either a group
algebra over C with the usual structure of the Hopf *-algebra, or an 8-dimensional Kac
algebra [4], then the *-algebra AB is simple. Thus, it is reasonable to ask question about
simplicity of the AB algebra in general.

This question was solved in the positive in section 4. Section 3 contains the proof of
semisimplicity of AB, and section 2 presents auxiliary information. ’

All necessary preliminary information and results can be found in [1]-{4].

2. Let us recall the definition of a Hopf *-algebra.

Definition 1.Let Abea *-algebraover C with identity. Let A be a *-homomorphism
of A into A ® A such that (A ® NA = (I ® A)A. Lete : A -» C be a *-homomorphism such
that (e ® NA = (I ® €)A = I. Finally assume that S : A » Ais a linear, antimultiplicative
map such that S(S(a)*)" = a for all @ € A and such that d(S ® NA(a) = e(a)l for all
a € A, where d: A ® A > A is the multiplication map defined by d(a ® b) = ab. Then A
is called a Hopf *-algebra and A, e, S are called the comultip]ication,‘ the counit and the
antipode of A, respectively.

Definition 2. Let A, B be two Hopf *-algebras. A bilinear map( -,- ): AXB > C
is called a pairing if we have

<A(a))b1 ® b2> = ( a’blbz )v
(a, ®a,,A(b)) = (a,a,b),
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(a",b)= (a,S(b)")",
(a1 > = e(a),
(Lb) =e(b),
(Sa,b)=1(a,Sh).
forall a, a,a, € Aandb, bl, b, € B. If this pairing is non-degencrate, then (A, B) is called
a dual pair of Hopf *—algebras.
We will indicate the construction of the *-ailgebra AB.
In [3]A. van Daele has defined the linearmapR: BQA > AQ® B

RE®a) = 5 Lagybay) o) @ bay

where
Aa) = E a4y ® 4z

A@) = 2 b1y ® by
. ®
Now we denote by J the involution on A and B and by o the flipon A @ B.
In A ® B a product can be defined as follows:

’ =dOdUIRRIN(x®Yy), (x,y EAR®B) )
and an involution in A ® B as follows:
x" = R(J ® N)o(x), (x EAQ B). 2

It turns out that (1),(2) impose on A ® B the structure of the *-algebra. For a detailed
proof we refer to [3]. We will only show that x™* = xforany x € A ® B.

Lemma 1. (R(J ® J)o) 2=JonA®B.

Proof:Leta€ Aand b € B. Then,

R ®N)o(a®b) =R} ®d") = (a
(a),(b)
_E(S_laz’ n? 4 2)°
& @M () ()
If we apply R(J ® J)o once more, we get

‘(A%S 43y (1)““(2)’ @ %) ®b3 =

_ -1
@E(g (1® 5™y, ®ag.by ®by)) 4y, ®b

-1 -1
_(G)Z<b§ (S® l)A(a(z)) o(ST @ STHAB) ) ayy ® by =

2%y 40y ® by =
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= > ((S® DAy A b)) Y ayy @ by =

(@).(b)
~1 _
ia%bg 45 ® D) (S8 ) a) ® by =
= z S(a(l))s(s—lb(i))a(l) ® b(Z) = (1 ® E)A(a) ® (g ® I)A(b) =a®b.

(@).(b)
Q.E.D.
It may be proved that A and B are subalgebras of A @ B.

Proposition 1. The mapsa-»> a® 1 and b > 1 @ b are *-homomorphisms.

P roof: At first we remark that, if a € A, then
— ( - =
R(1 ® a) %\a(z),l)a(l)®l (19)A(@)®l=a®]1,

@®)*'=R(1®a")=a"®1.
So, for a, ¢ € A we obtain
(c®DN@®)=[dRDUORBINcRI®a®l)=
=d®@d)(c®a®1®1)=(ca®1).
Q.E.D.

Proposition 2. For all a € A and b € B we have
(@a®b) =(a®1)(1 @),
Rb®a)=(1®b)(a®1).

P r o o f: These formulae follow from (1). Q.E.D.
The algebra (A ® B) with the structure of (1) and (2) is denoted by AB.

3. Theorem 1. Let A and B be the dual pair of Hopf C*-algebras, and let p A and u B be
the two Haar measures for A and B, respectively; thenu 4 Qu plisa faithful central state of
AB. Moreover, the *-algebra AB is semisimple.

Proof: It is enongh to show that x # 0 = xx* # 0 for any x € AB and thatu , @ ugis
central. First of all, it is to be noted

(4,®5)(@,®b)" = (,@ (1 ®b)(1®F) @ ®1) =

=(4,®)(1®5;5)(@ ®1) f% bf)(";)a)’ By ) 4@y ® (b)) zy:
a. N
J7vg

Applying the formulae
I ®u)(Ba) = (1, ® (Aa) = p, ()1,
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(e®D(Aa)=a, a€A,
we get

Hya®lg ((a. ®5)(4;® bj)*) -

2 @)y kpBF) )01y a8 ) =
(g )(bb ) ‘
= tuA ( E ( ((1;)(2), /‘B((b,b;)l ) ai(a;)(l)) =
(a;)
=t (1508 3 (@) )@} 1) = K (@) 5B
«
Therefore,

”A®”B((2ai®bi)(zai®bi)*) Z/‘A(“ @) uy(bb))- 3

Letu=u, Q@up.

It follows from (3) that ,u(xx Yy=u (t(x)t(x) ) ,XEAQ®B,where1: A® B > ABis the
identity map and A ® B the C*-algebra with the ordinary multiplication.

If p (z(x)z(x) ) = 0, then u(xx") = 0 and x = 0. Therefore «(x) = 0 and u is faithful.

Thus, x # 0 = xx* # 0 for any x € AB.

Sincep , and u g are central statesof A and B, respectively (see [4]; [1,appendix D,

M 4 ® pp is a central state of AB. Q.E.D.

Example. Let Gbe a finite group and let A be the group algebra over C with the
usual structure of the Hopf *-algebra:

AR =g®g S =g, e@=1 ,g=¢g"

Let B be the algebra of complex functions on G with the usual structure of the Hopf
*-algebra :

AN(E® &) = f(gg): (SN(E) =), () = Ae), f'(g) = (@)
It easy to verify that ( g,f) = f(g) defines the pairing between these two algebras.
It is obvious that & ,(h,h,) = > & pply) 8,-1(h) and
p

AB(N=D6 1) ©3,-1()-
p
Then,

R(O)®8) = ‘57:‘ (83,,())e®8,-1() = % 0,,(8)8®9 -1() =g ®J,-1,().

It turns out that e ® ée(.) is the minimal projector of AB. Indeed, for any g ® f € AB,
we have

(e®3,()E®N(E®,() =(e®3,()NE®1)(e®N(e®S,()) =
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=(g® 6g—l(.))(e ® f(e.) (58(.)) =g® f(.) 5g—l(.) 5e(.).
Since, '

e®d. (), g=e
g®3,-1()8,() =1, ¢ g e

then e ® ¢ (.) is the minimal projector. Next,

€' ®1)(e®3,()E®1) = ("' @ )(E®3,1,()) = e®3,-1,().
It follows from the expression above that e ® §,(.) and e ® 3 (.) are equivalent.
Thus, it implies that
(e®3,(NAB)(e®3,() =c(e®3,()), cEC,
for all A € G. Therefore,
(e®3)(g®1) = (e®9,(N(e®1)(e®F,-1,()) * 0.
Now it is easy to see that the AB algebra is *-isomorphic to a simple matrix algebra

|G| x |G|
Thus, the AB algebra is simple. Q.E.D.

4. Theorem 2. If A and B are a dual pair of finite-dimensional Hopf C*-algebras, then
AB is simple.

Proof: Sincee: A = Cis the one-dimensional representation of the algebra A, then
there exists the one-dimensional central idempotent T € A, such that
/ va = 1e(a), for all a € A.
Let A = A®) + z, A® p=p0 4 z B, where A®,...,B are simple algebras.
Let n(k)(a) = e(k)ae(k) be the irreducible representation of the A algebra, where
a€E A, X = z e‘(.f), { el(.;‘) } ;jare matrix units of A% algebras.
We denote by n(/‘)(.)pq the matrix elements of 7%,
D0y =
Then x (e‘.j )pg = 61,‘61.”6{{
Let us define elements ‘qu € Bby
& q) = 7K
% (@) =m (a)pq, a € A.

Note that (pg’l)(a) = ¢(a), a € A.

Lemma 2. We have

AV’E:? => ‘Pf,/f,), ® ¢$,’fg, Ap() = {9 @ 9,

m

)\ = ®)* = g,
E(‘qu) apq’ Ypq S‘pqp'

Proof. Fora € A we have

1%
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Awﬁ)’y(al ®a,) = w(")(a ay) = Jr(k)(aluz)
= <n(k)(al)n(k)(a2)) g 2 (A)(u )pm ® (“2)”14

m

- k k — k
= D pim(a) el = 2 (5 ©#l0) (e, @ a

m n

Since dim 2™ =1, A(,o(’) = «p(’) ® <p(1'1), then

®) = &1y = 7 * =
E((qu) =Pp (D=7 (])(m) d/w'
PW* (@) = n(S(a)") ,, = 7(S(@)),, = Sp{;)(@). QE.D.
The equality
&) oDy = oD (&)
(e p 2 = Py (€))

defines the pairing between A and B. Consider now any algebra A(k), for example AW,

Remark I u,( (<p(l)) (p('))) = Oforanyq,r,q # r.
Indeed, by virtuc of Lemma 2, all {y)f)lq)} g ATC the matrix elements of some repre-
sentation tp(l) of the group algebra B [1,section 4. Since 4,05)‘/)(11) =71 )(u)pq and & is

irreducible, then y)(l) is also irreducible. Hence ([1,proposition 4.8 1,15 ], the matrix
elements of p(1) are orthogonal, i.e. p ,( (plq)) ((p(l)‘) =0,¢g=r

Lemma 3. t ® | is the minimal projection of AB.

Proof. Let
- k) (&
a—111+.2 Agj)cl(.j),

b=B,9)+ 35O 9,

0,/,8
Then, using ra = ve(a) and definition 1, we have
TONEWRIHERIN=CER;NURINHURHET®I1) =

=@ TRNIRHE®) =1, (1O 1)({?{)(1(2),17(”)r(,)®hm =

= A ;<Tb )T®b(2)“1 ﬁ(/)(t)(:[)@(/xll’ ,BZCOHSL
’)

Since theonly term{( 1, (/a(irl) )= y)(l’l)(r) in the latter sumis not 0, the equality holds truc.
Thus,
ERDARNE@ N =ar@p) =cr@ L

From the expression sbove it follows that (v @ 1) is the minimal projection. Q. E.D.
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Lemma 4. Lct P, and P, be two equivalent minimal projections and u be the corres-

ponding partial isometry. If tru = 0, tr p.= \,i= 1,2, then P, and P, are orthogonal.

P r o o f. From the conditions of the lemma it follows that PluP2 = u . Consider the

polar expansion of 1, P,

P Py=v|P P, =2"2up,
where 4 is such that P,P, P,= /IP2 and v is the partial isometry such that ” v P, = v.
But thenv* u = P, and hence
v=vP,=wu
Since vv* = P, thenv = Plu=u.
Therefore, tr P, P, = A2 4 = 0 and P, and P, are orthogonal. Q.E.D.

We continue to prove Theorem 2.

Now we consider the basis {zl(j’)} of the (group) algebra A introduced in ([4 ],

ryi,j
sect. 6) with the following properties:

Az‘(;) = 2‘ zl(;‘) ® zg),
e(zgp) =4
520 = *,
i i

The reader can compare the relation with lemma 2. Let L(ill) =3 . v Then,

if,r jl jl
EeNIREAPRN =01 > ( v 2k )20 @by =
0),i,5,4,r
=(b)2~<Vt€jr)zz(/‘r)’bl)t®b2"y<‘11*"1>T®b
t,].r

Ifb=¢{), r=1,.,n,n=dim A"), then we obtain
E@ DAYV @) =r@p), 1=1,.
Thus, there exist n minimal subprojections of ihe projectior: e( ) & 1 which we denote
by Pr’ t=1,...,n.Observe thatt ® 1 and Pt (t=1,...,n)are equwal«.nt. Hence, all Pt are

mutually equivalent. We will prove tkat the projections Py, 1 = 1,...,n are mutually ortho~

gonal.
Since T ® tp( ) intertwines the operators T ® 1 and P, ®(p§l) and intcctwines the

operators 7 ® 1 und P, T® (p(] )) ® <p( )) intertwines P, and 7.

To prove orxhogonahty of projectors P, t == 1, ..,n, we use the arguments of the proof
of lemma 4.
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Since P p and P_are equivalent, then there exists partial isometry u such that
Prqu = u. Then,

@) @ @p() =P @) G @p)P =12 4
Applying u 4®ugto both sides of (4), we get

pa®@up @Y @ @) =p, (M up (LN @) =27, @ty (w).
By virtue of remark 1, u4( ((p(l)) («p(l))) =0, g # r. Therefore, u 4 Oug(u) =0. By
virtue of Lemma 4, the projections P and P, are orthogonal.
To complete the proof of Thcorem 2, it suffices to observe that 2, P, = eg 1) ®1.
In fact, letX (Pp=P. Since Pt, t = 1,...,n are mutually orthogonal and equivalent to
the minimal projection, then dim P = an, where « is a normalizing multiple. Note that

pcdlel.

Sinceu , @ uy, (e11 ® 1) = an, then dim (e(l) ®1) =an.
Therefore, P = e(l) Q1.

Thus, the *-algebra AB is simple and dim AB = m, where m=1+Z, n
n, = dim A®). Q.E.D.
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