Martemartuueckas ¢pu3uka, aHanu3, reomeTpms YAK517.5
1994, 7. 1, N2 3/4, c. 479-504

Generalization of the Darboux transform

Anne Boutet de Monvel
Universite Paris 7, Mathématiques, case 7012, 2, Place Jussieu, F-75251, Paris Cedex 05, France

Viadimir Marchenko
B. Verkin Institute jor Low Temperature Physics, 47, Lenin Avenue, 310164, Kharkov, Ukraine

Recelved February 7, 1994

We construct generalization of the Darboux transform depending on functional parameters,
which transfer the solutions of a given n-th order differential equation into solutions of another
equation whose coefficients depend on chosen functional parameters.

0. Introduction

In 1882 G.Darboux [1 ] proved the following result.

Theorem (G. Darboux). Let (1) be a differential cquation depending on a parameter z
‘ -y + q(x)y = zy, (1
and let yo(x) be an arbitrary solution of this equation with z = z,. We set

d . d - '

D=—-—y(x) , with y(x) =210 y(x) = 35 (). @

Then, applying the operator D to any solution y(z,x) of equation (1) with any z € C, we
obtain the solution ¢(z,x) = %(y(z,x)) - Y(x))(z,x) of the equation

2
- - ql(x)¢ =zp , with ql(x) = q(x) - 2?1%7(’() = q(x) - sz;c—zlﬂ y(x). 3

This beautiful Theorem was completely forgotten for 70 years. Meanwhile in the
thirties the theory of a generalized shift was initiated by J. Delsarte and developed by him
and B. M. Levitan. Some special transformation operators were used by them. A general
notion of the transformation operator was introduced by A. Povzner. The transformation
operators are of the Volterra type; they can be introduced for each pair of Schrodinger
equations. The Darboux operator (2) transfers solutions of a given equation into solutions
of some other equation which is determined by two numerical parameters only, namely,
zy and & = y51(0)-3,'(0).

Repeated application of the Darboux transform transfers a solution of a given equation
into a solution of a new equation depending on a finite set of parameters. M. Crum [2 ] has
shown that the result of repeated application of the Darboux transform can be compactly
written as a Wronsky determinant. So in similar cases solutions of given equations can be
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transferred into solutions of other equations whose coefficients depend only on a finite set
of number parameters. Nevertheless, the Darboux transform has found a wide range of
applications in obtaining explicit solutions of nonlinear equations.

In this way V. Matveev [3] found interesting solutions of many nonlinear equations.
A. Shabat and A. Veselov [4 ] have recently found a generalization of chains of Darboux
transforms which has found interesting applications in the spectral theory. These trans-
forms depend on a finite number of parameters too.

The aim of this paper is to generalize the Darboux transformation which will depend
on some functional parameters. This generalization permits us to obtain a wider class of
solutions of nonlinear equations.

The paper consists of three parts. In the first part the abstract form of the Darboux
transform is given. In the second part we introduce an elementary projection operation,
which is of prime importance later, and in the third part, on the basis of this, the Darboux
transforms depending on functional parameters are introduced.

1. The abstract Darboux transform

Denote by U an arbitrary associative algebra over the field C of complex numbers with
the unity 1. A mapping L of the algebra U into itself is called an operator if

L(Ax + py) = AL(x) + pL(y)
forallx,y € UandA, u € C. Thesetofall operators is denoted by L(U). It forms an algebra

with respect to the conventional operations of addition and multiplication. The operator
I defined by the equality /(x) = x plays the role of unity in the algebra L(U). An element

T € Uis called invertible if there exists an element ! € Usuchthat T ! T =1T"! = 1.
Every element a € U generates the right, a_, and the left, a;, multiplication operators

defined by the equalities
a(x) =xa, = afx)=ax
The associativity of the algebra implies that the operators a, and @, commute
(a,b, = a b)) for any a,b € U. It is obvious that (a)™' =(a™"),, (a)™' =(a7"), if ais
invertible.
Anoperatorv € L(U) is called a homomorphism if v(xy) = v(x)v(y) forall x,y € U. The

set of all homomorphisms is denoted by Hom (U). An operator 3 € L(U) is called a
derivative if

(xy) = a(x)y + x3(y)
for all x,y € U. The set of all derivatives is denoted by Der(U).

Definition 1. An operatord € L(U) is called a generalized derivation if there exist
such operators a,f € L(U) that for all x,y € U

S(xy) = 8(x)a(y) + xB(y).

The set of all the generalized derivations with given operators «, 8 is denoted by

Aa, B).
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For example all the operators a,,a,ve Hom(U), ¢ € Der(U),v — 1, a,+ Ad, a,vare
generalized derivatives with a.€ A(0,a) q € A(LO), veAE,0), €A,
v— 1€ AW, v ~1),aqv€EAWX), a,ﬂaeA(ua)

The ordinary Leibnitz formula fot' d"(xy) in the case of a generalized derivation
d € A(a, B) is: -

X)) =, a’%‘;/’(x) "7, 871, (1.1)
=0

where the operators [a"~/ ,,B’ le L(U)\g are sums of all distinct products containing
n — joperators a and j operators j: :

", B0 =a"% ("', B 1=a" 1B+ a" 282 + ... + a5 ..
In particular, if af = fa ,\then

n— n! .
[a j,Bl ma ",ﬂj.

Definition 2. LetT be an invertible'element of the algebra U and 6 € A(«, ,6) The
element

y=r"" 8 L
is called the logarithmic derivative of T" with respect to the generalized derivative .
R e m a r k. It follows from the definition of the generalized derivative that if
0 € A(a,b), then
o) = o(T'1) = d(D)a(l) + IB(1)
and
y =va(l) + (1), va(l) =y — B(1). (1.2)
In what follows we denote by T the invertible elements of the algebra U and by
y=I" 6(!‘) their logarithmic derivatives.

The invertible elements I' € U generate inner homomorphxsms in the algebra L(U)
that transfer the operators L € L(U) into the operators

L=r7'or,.
The above operators obviously satisfy the equality
L(x) =r! L(Fx)
Let nowd € A(a, f) and § = r, 6F Then,
50 = T™' (%) = T71@(D)a(x) + TB()) = va(x) + B(x) =@, + B)(x)

and the operator § may be expressed in terms of the logarlthmlc derivativey =T ! o)
as follows:

5= r;‘6r1=yla +8.
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It follows from the obvious equality & k= I‘l—l 8 T, that
yia+ B =5 =T kT =17l oK) 1.3)
and ,
@ + BT D) =@ + B (1) = 171 4D, .4
The operators R of the form

R= i a(k), ok, [R(x) = i 6"(x)a(k)],
k=0

k=0

where 8 € A(a, f) and a(k) are arbitrary elements of the algebra U, are called the
generalized differential operators.

Definition 3. The first order generalized differential operator D defined by the
equality .
D(x) = d(x) — xI" 1 () = 3(x) ~ (1.5

is called the Darboux operator generated by the g.d. d € A(«, ,B) and the invertible element
I’ € U. The element ¢ = D(x) is called the Darboux transform of x.

Remark. Letd € A(a, B). Then,
D(x) = d(x) = xy = 8(x1) — xy = d(x)a(l) + xB(1) — xy = d(x)a(l) — x(v — (1))
and, according to (1.2),
D(x) = D(x)a(1). (1.6)
Lemma 1. The following equalities are valid for all k = 0,1,2,...
S x) - ar71 kD) = 0, (#), (A7
w_here the generalized differential operators Qp are defined by the formulae

Q@) =0; Q) =¢;

1 (1.8)
Q, () =8°(p) + _}%éf@a(y,a +BPTI) (=1
=

and satisfy the recurrent equalities

0,(8) =30,_,(@) + galy,a + BY(1).

Proof. The equality (1.7) is trivial for kK = 0 (x = x) and is equivalent to (1.5) for
k = 1, Now, if (1.7) is valid for k = p, then

3Pt (x) = 3(xr1 8P(D)) = 00, ()

and, since d € A(a, f§), we have
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S(xI™! 8P(1)) = 8(x)a(T ™! SP(I)) + (™" &P(I)) =
= ga(I™! 8°() + x(va(I™" 8°())) + £B(C ™" 87(T)) =
= ¢a(I™1 8°(I)) + x(y,a + B)(T ™' 87(I)).
It follows from here, according to (1.3), (1.4), that
3(xI™ 8P(D)) = pa(y,a + B)P(1) + xT ™ 6P 1(T)
and

8P (x) — AT 6PU(T) = 8Q, (@) + galy, @ + BY(1) = Q (4).

Here

0,@) =80, _,(#3palya +BY(1) =

p=2 | )
=) + > 9 (galy,a + P (1) + (gay,a + BP(1)) =
j=0

ol .
=8P(¢) + 2)5'(@(710 +B)PT(1)).

Corollary. The identities

n
R(x) =17 R(T) = Y Q,_ (#)a(k) (1.9)
k=0
are valid for all the generalized differential operators R.

Indeed, we get (1.9) just by multiplying (1.7) by a(k) and summing up the results.
Now we will derive the explicit form of the operators Qp for the most interesting

generalized derivations.
Let & € A(, 0). Then, y,a + B = y,a, and since in this case

o(xy) = S(x)a(y),..., 6k(xy) = 5k(x)ak(y), (1.10)
then we have '

sk(paty,a + BPHD) = @)k 7,07 4D

and '
p-l . o
Q@) =& (¢) + ¥ @)’ (v, @) (1).

-‘ It follows from (1.6) and (1.10) that
8P(¢) = &P(ga(1)) = 8P(p)a”*' (1).

This allows us to transform the previous formula into
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Q,¢) = ﬁ; @)t )P~ (0).
i=
Letd € A(1,8). Then,
va+B=y+p  of=pq [an-j,ﬁj]=ﬂjcl,;

and, according to (1.1), we have

l 3 .
S(galy,a + BPi) = N 8 k@)ck g, + BT =
k=0

! . .
=k§_:od"(¢)0f“"ﬂ""(7/,+ﬂ)”"(1)-
Hence,

Q,) = M @)Ci* Bk + B =
i 0

= ﬁ @) i cimkgi~ky, + gyP~i(1) =

k=0 izk
ko
=S o) S B, + BRI,
m=0 '
And finally for 8 € A(1,B),

p . by o
0, =3 8@ > L ko, + pr-i-kw.

Jj=0 k=0
Thus,
p 3
0,) = 20 & (#)a,(,
. £

where

o1y, ay (1) if € Aa,0),

qp(j)= o= ) .
kE L—)—k!ﬂ B, + BYTITH) if 8 € AULH).
=0

Theorem 1. If x, I’ € U satisfy the equations
R(x)=8,(x), R()=29,I),
with

(1.11)

(1.12)

(1.13
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R(x) =k_§,‘06"(x)a<k),

SEAa,pB), O, €MayBy, J,€A(@y,py), and 83=085,, 6,6=285,,
then the Darboux transform
@ =9d(x) — xI" 1) = 3(x) — xy
of x satisfies the equation

3,(#) =kZ {Q(®)a(ak)) + Q,_,(@)(B(a(k)) — alk)ay()) }.
=0 ;

Proof. Applying the operator d to equations (1.13), we get
OR(x) =8,(3(x)) =6,(xr +¢) =
=6, (x)agk) + xBy(¥) +8,(#) = R(x)ay(y) + xBy(¥) + S,(#),
SR(T) = 8,(8(N) = 8,(Ty) = 8,(Nag() + [By¥) = R(D)ag(y) + TBy(»)-
Thus,
OR(x) = R(x)x () ~ xBy(¥) = 6,(#),
OR(T) = R(T)a(v) — TBy(v) = 0,

and

R (x) = xR () = 3,(#),

where R, isthe generalized differential operator

R,(3) = 8R() = RMay(y) = 3,() =

=2 (3@ p)atk)) = sk aiay)} - By(r) =

=k20 {651 (atak)) + 843) Blak)) ~ a(Rag())} = °0)B,)-

It follows from here due to (1.9) that

9,(#) =k20 {Q@)a(a(k) + Q,_ (@) (B(a(k)) — ak)ay(v)} }.

We denote by

(x;k) =(x1, Xopeenr X3 kl, k2,..., km), x;, € R, k’, ez,

the points of the direct product R"xZ™ of the m-dimensional Euclidean space and the
m-dimensional lattice. :

Let O € R™ be an open domain. The set C*B(H) of all the infinitely differentiable in
the variables x; mappings a(x;k) of the space O C Z™ into the algebra B(H) of bounded
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linear cperators acting in the Hilbert space H form an algebra. The operations of addition
and multiplication, and the differentiations 9, are defined in this algebra by the formulae:

(a, + pay)(x;k) = Aa, (x;k) + pa,(x;k),
(alaz)(x;k) = al(x;k)az(x;k),
o @)(xk) = 2488

0x.
1

’

where A and u are arbitrary complex numbers.

The subalgebra of all constant mappings coincides with the algebra B(H).

An arbitrary (nonlinear in the general case) mapping d(k) of the space Z™ into itself
induces the homomorphism & of C* B(H) into itself:

o(a)(x;k) = a(x;0(k)).
An important special case form the homomorphisms 6i induced by the mappings
S, (k) = (kyskopenos by s b+ 1 ke k)0

The operators of the differentiation 9, , homomorphisms é'. , and the operators of the right
and left multiplication by the elements of B(H) commute with each other. If the space H

is of a finite dimension r, the algebra C*B(H) coincides with that of the square (rxr)
matrix-valued functions. In particular, if » = 1, then it is the algebra of scalar functions.

Example. Let the functions I', ¥ € C*B(H) satisfy the equations

2

3! (Da(i) = 20T + 20, (),

0
i o} (Wya(i) = 2¥ + 40, (I,
i=0
where

a(i) € C*(B(H)), z,29 e BH), 1€C.

Since zfo) + 162 and z, + 102 belong to the same set A(I,laz) and commute with 9, , it
follows from Theorem 1 that the Darboux transform

@ =9 (W) -T"'o,(T)
satisfies the equation
n
S {Q(®)al) + Q,_ (P)D,(a(d) } = z® + 10,(P),
i=0
where Q(®) are defined by formulae (1.11), (1.12) with

y=T"loM), B=0,

and
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D\ (a(®) = 3,(a(®) — a(i)y.
In particular, for A = 0, n = 2 we get the Darboux Theorem.
If we take the homomorphism 61 instead of the differentiation 9, , we will obtain the

same kind of results but for the finite difference equations.

2. The extension of the algebra U and the projection operation

The generalization of the Darboux transform is based on extension of the initial algebra
U to some algebra U; O U and applying the so-called projection operation of the algebra

U, onto its subalgebra U.

Let P € U, be an idempotent (P = P2). The set of all the elements of the form PaP
(a € U,) is a subalgebra of the algebra U, . We denote it by U = PU, P. Its unity is the
idempotent P. The mapping a - PaP is called the projection operation of the algebra U,
onto its subalgebra U = PU, P. The use of this operation is based on the following simple
lemma:

Lemma 2. Assume that the equation

n

z Li(u)a(i) =0, @.n

i=0
where L, € L(U)), a(i) € U, , has the solution u € U, salisfying the condition
Pu=PuP, P=Pr%

If the operators P, and P, commute with L, (1 =i < n), then the element v = PuP is the
solution of the equation

n
> L(v)Pa(i)P =0 2.2
i=0

in the subalgebra U = PUP.

Proof. Astheoperators L, commute with P, P and Pu = PuP, we have
PL(u) = L(Pu) = L(PuP) = L(PuPP) = L(PuP)P = L(v)P.

Multiplying equation (2.1) by P on both sides, we obtain the equality

n

0=P| > Lwa()|P= i PL(wa(i)P = 2": L (v)Pa(i)P,
i=0

i=0 i=0

from where it follows that the elementv = PuP € U = P U P satisfies equation (2.2).

The simplest extension of the algebra U is the algebra Mat, (U) of the N-th order
matrices A = (aij) over U (with the elemeqts a‘.je U). The initial algebra U may be
identified by the correspondence
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a0..0
2> 00...0
00...0

with the subalgebra PMat, (U)P of Mat (U), where

10...0 ‘ 2.3
00...0

00...0

P=P2=

Any matrix L = (Ll.j) of the order N with elements L‘.j € L(U) generate the operator
L € L(Mat,(U)) defined by

L(4) = (L(4),) = [20 Lis<as,.)}-

We will denote by M, (respectively Ay) the diagonal matrix from L(Mat,(U))

(respectively Mat(U)) with one and the same element M € L( U') (respectively A € U)

on the diagonal. One can easily check that the diagonal matrix é € L(Mat(U)) with the

generalized derivations 8, 9,,..., 9, € A(a, B) (with the same «, 8) oo the diagonal is a

generalized derivation in the algebra Mat, (U) and belongs to the set A(ay, B,).
Letnowd, € A(a, f) CL(U), f,€U(l si=< N)and

9, 0... 0 f10...0
5 G4, ... .0 , P f,0...0 2.4
PR o
Definition 4. The matrices W € MatN(U) of the form
VTN TR e
F= ' R 2.5)

NN N e Iy

are called the Wronsky matrices and are denoted by W(5 I F).

Lemma 3. All the Wronsky matrices satisfy the equality
SWE|F) = SNF)P + W(S |PS(Ly - P) = SM(w(s | PSP+ W@|HSUy = P),
2.6)
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where 1 N is the unity of the algebra Mat N(U), while P is defined by equality (2.3) and

010..0
0oo1..0
S=]. . ..
000 ..1
100..0

Proof. Since multiplication by the matrix S from the right hand side shifts cyclically
the columns of a matrix from the algebra Mat N(U) by one step to the right, the Wronsky

matrices may be represented in the form

N N
W@ | = Y NURST =Y SN TUFSTY).
/=l j=1

So,

N »
a(W(alp)) = z aN~j+l(FSj°'1) =
j=1
N—l . . N N .
=oNF) + > oVUFsh = V(P - F+ Y SN T(FS) =
j.—-._l J=1
N ] .
=3N(F) - F+ > N (FSTHS = oN(F) - F + w(s | F)s
j=1
and since (2.3), (2.4), (2.5) yield
F=FP= W(alf)SP,
then we get’

S(W(S | F) =NFP + W [ F)S(1,, - P) = V(W [F))SP.+ w( | F)S(1, — P).

Corollary. The Darboux transform

¢ =3(W(3|G)) + W(a|G)r'la(r)
of the Wronsky matrix W(3 | G) generated by the generalized derivation 8 and the invertible
Wronsky matrix T’ = W(3 I satisfy the equality

¢ = ¢P.

In fact, since the Wronsky matrices W(dl G) and W(4 | F) satisfy equality (2.6), we
have :

¢ =3%GP + WG |01y~ P) - W(| ofr-tle¥FP + 501, - P)} =
= [s%© - we|or'sV(m)r = ¢». 2.7

R e m a r k. The following formula for the logarithmic derivative y = F—lé(l‘) of the
invertible Wronsky matrix I' = W(S l F) may be derived from (2.6):
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y=T"'8() =T"'3"F)P + 51, - P).

This means that only the first column of the matrix y is unknown. Its elements
Y1s Yo+ ++» ¥y My be found from the linear system

& N Nypo ’ 2.8
zl‘ai j(f,.)yj =3)(F), 1=isN. :
=

From equality (2.7) it follows that the Darboux transform ¢ has only one non-zero
column, i.e. the first one, and its elements ¢ 12 Preeer Py MAY be expressed in terms of Y

via the formula

N \ ‘
¢,=3)(g)~ 2 8 e, )y, 2.9
j=1
Finally it follows from (2.8) and (2.9) that the homogeneous system of N + 1 equations
N N N-j - . :
CUCARTAVE I A CAVEL 2.10)
. N - ‘ .
CAAINS 2;:1 s¥ Wy, =0, 1<is<N,

has the nonzero solution
y0= 1) yl = —)’1 ) }’2= _72 Y eee .VN~= —YN‘

So, if U= C”(B(H)) and the dimension of the Space H is equal to 1 (which means that U
consists of the scalar functions with the ordinary arithmetic operations), the solution of
the system (2.8) may be found by the Cramer formula:

Y, = (Detr)“‘Det(rp),
where ' = W(d I F), I‘p is obtained from I'" by substitution of the elements of the p-th
column by 6?’(/1.), and the determinant of the system (2.10) is equal to zero:

N _ N=1,_
0y(g) =9, 0, (8,) .- &

N N~1
peg| STV =0 TN ey

N-~
NN =0 N - Sy
From the latter equality it follows that

N N=-1 N-1
3,(8,) 3, °(8) - g, ¢, 0, (&) - g,

8¢y VTN .. f 0 Yy . g

Det — Dei =0

SNUW SN Uy - Ty 0 NG - Iy
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and
¢, = Det(W(| /)~ 'Dey(W(3| F),
where
3, 0 g 0..0
5o e I VAR
0 ) dN f;v O ) 0

Lemma 4. If the elements f‘. € U satisfy the equations

N
> ok (f)atky =L(f), 1 <isN,

k=0

.11

where a(k) € U, L,€ L(U), 9, € A(a,f), and 8,L, = L,9,, then the Wronsky matrix

W | F) satisfies the eguation
N

S skwyb(k) = L(W),

where

b(k) = (b,(K)) € Mat,(U), and

[N, B ak)) iz

b, (k) =
‘ 0 0 i<j.

Proof. The matrix equality (2.12) is equivalent to the system

~ i ﬁ KW yb (k) = L(W,)
pont Y ip""pj (A
where
W= ‘5?,—]“ )
are the elements of the Wronsky matrix W(d | F).Sinced L, = LJ., we have

LWy = L@ ) = oY Ly =

= a{‘"/‘{i ‘af.‘(f,.)a(k)) = i SNIsk(sya(k)).
. kéO ‘ k=0
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It follows from formula (1.1) that

' N-j ' . '
sy I@kpat) = 3, &Y TS UN N, B (ak)) =

m=0

N=j _ - :
=3 SNy, B (alk)) =
m=0

N=/ . 2, e
= W,y )T B N a(k) = 3 (W) (VP 77 Ka(k)
m=0 p=j ‘

and, according to (2.13),

) N
CARICHIAYI(3) =p§0 SE(W, )b, (k).

Substituting this expression into the r.h.s. of equality (2.15), we get the desired
equality (2.14). ’

Example. Wewill denote by f(z) € C*(B(H)) anarbitrary solution of the differential
equation

n

> A U@)atk) = 21(z) + A0,/(2),

k=0
where 1 € C, a(k) € C*(B(H)), z € B(H).

Let W(z('), £, z(N)) be the Wronsky matrix obtained by applying the differen-
tiation of a9, to the solutions f(z(l)), f(z( )), v f(z(N)). 1f 2z =2 and f(z(‘)) =0,

2 < i < N, then the corresponding Wronsky matrix will be denoted by W(z).
These matrices belong to the algebra MatN(C”(B(H))) and, since the operators

9, EA(L,9)), z+ A9, € A({, 9,) commute, they satisfy by Lemma 4 the equation

kgo Sk (wyb(ky = L(w),

where b(k) is the triangle-shaped matrix with the elements

__N=PY nimf o
b, k) = V=i =t 01 @), iz,

0, i<j,
and L is the diagonal matrix with

z(f) + 132 if W= W(z(l), 2(2),.‘., Z(N)),
i 2420, if W= W)
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Let the matrixI' = W(z"), 9, z(N)) be invertible in the algebra Mat, (C¥ B(H)). Then
Theorem 1 yields that the Darboux transform
#(2) = 9,(W(2) - W ',(D)

of the matrix W(z) satisfies the equation

S {Q@)5(K) + Q_ (@)D, (5(K)) } = (z +4d,) \(#),
k=0

where

D, (b(k)) = 3,(b(k)) — blkyy; y=T"'o ()

no k—j .
o) =3 @i a0 =3, Lo oo+ apt )
= p=0

After some elementary transformations this equation can be reduced to the following one:

z?‘- Y (@ICU) = (2 +20) (@),
=/

where

n '
CO) =2, q,(){b(k) + D, (b(k + 1))}
j=0
and b(m) = 0 for m > n.
Note now that only the first row of the matrix W(z) is nonzero. This means that the
Darboux transform ¢(z) has only the first row not equal to zero. Hence, ¢(z) = P¢(z) and,
since the corollary of Lemma 3 implies ¢(z) = ¢(z)P, we have

P(z) = Pp(2)P = ¢(2)P,

with ¢(z) € C*(B(H)). Using Lemma 2, we can sce now that @(z) is the solution of the
equation

> A @CO) = 28 + 10,(3)
k=0

in the initial algebra C*(B(H)), where the cocfficients C(j) € C*(B(H)) are defined by
the equation
PC(HP =C(H)P  C(j) € C*(B(H))

G.e., E(j) is the element of the matrix C()) standing in the first column of the first row).

If, in particular. the Hilbert space H is of the dimension !, then g,
z(l), 2(2),..., Mec ,while fﬁ(z),C(j) are scalar functions. According to (2.11), we have
in this case
Det W(z, z(l), 2(2)’. e z(N))

Det w(z(, 2 .., z(N))

One can show now that the transformation f(z) - z};(z) is equivalent tosequential appliation
of the usual Darboux transform N times.

#(2) =
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3. The Darboux transform depending upon functional parameters

All the differential or finite-difference equations we deal with are considered in the
algebra C*(B(H)). We are going now to construct the Darboux-type transforms for them
but this time these transforms will depend not on finite number of number-valued
parameters but on finite number of functions.

We introduce the following notations. Let 4 be a finite Borel measure with a compact

support Q C C and du(§) =pu. Let H be a Hilbert space of the dimension r

(=1,2,...,o) and a scalar product (-,~)H. We denote by Hl the Hilbert space of the
H-valued functions f(§), § € C, with the scalar product

00y = [ (1©.00) , dut®.

All the constant functions (f(§) = f € H) belong obviously to the space H , and form a
subspace of H | that is naturally isomorphic to /. The operator Il defined by the formula

@@ =u [ i)

is the onhogohal projector on this subspace that we will identify with A. Then the algebra
B(H), is obviously the extension of B(H) while the algebra C°°(B(Hl)) — that of
C™(B(H)). We will identify B(H) with TIB(H )[1 and TICZ(B(H ))I1 with C™(B(H)).

One can extend the algebra C°°(B(Hl)) to Mat, (C”(B(Hl))) and identify the initial
one with the subalgebra PMat,, (C™(B(H,)))P of Maty (C*(B(H ))).

In what follows we will use the notations of Section 2. In particular, A y is the diagonal -
matrix of Mat, (C”(.B(Hl))) with the same element A € C”(B(Hl)) on the diagonal.

It is easy to check that the operators P and II,, commute, while the element
I1 € B(H) is identified with the idempotent PI1, = I, P of the algebra C*(B(H)).

Let now be U = C*(B(H)), U, = C*(B(H))), U, = Mat, (C*(B(H,))). Taking into
account the identifications made above, we see that U C U, C U, and

U=MNU =0,PU,I,P=PI,U,PI,; U =PU,P

To simplify the calculation, in what follows, we will consider the simplest case when
dim H = r = 1 so that the algebra C*(B(H)) coincides with that of usual infinitely diffe-
rentiable scalar functions. In the case of any finite r the algebra C*(B(H)) coincides with
that of infinitely differentiable matrix-valued functions but all the considerations follow
the same way without considerable complications. '

Since we consider now the one-dimensional space H, its extension H | consists of the

scalar functions f(§) € L, (du).
The algebra B(H ) contains the commutative subalgebra T(H ) that consists of all the
operators of multiplication by the bounded functions T'(§):
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TEN =TE/E),  sup l T(¢) [ <o,
teQ

Consequently the algebra C*(B(H 1)) contains the commutative subalgebra C™(T(H )
All the operators of the algebra B(H) commute with differentiations 9, and homo-
morphisms 9, . \

Now we will deal with one important special case.
Consider the equations

o) =&, o) ="y,
where §" , 2" € T(H ) are the operators of multiplication by the function " (the support Q

of du is compact!) and by a constant function T(¢) = 2", that is by the complex number 2" .
The first equation has the solution T’ € C*(B(H 1)) which is an operator-valued

function of the form
n-1
= 2 Ck(g)'exp (ekfxl)L , 3.1
k=0

where € = exp (27i/n) and C (&) are arbitrary functions bounded on the compact Q, and
L, are some arbitrary operators of the algebra B(H ).
The second equation is solved by the functions

exp (ekzx,) € C*(T(H,)) C C*(B(H))),

withk=0,1,...,n - 1.
Theorem 1 1mphes thatif I" (see (3.1)) is mverublem the algebra C* (B(H, )), inen the

Darboux transform
¢(ezx)—6 (sk”) ‘kzxy'-eale(ez—y)
where
y=T"la, (0) € C*(B(H)))
is the solution of the equation
Q) - Q,_, @)y =1"8,

since in this case a(n) = 1 and a(k) = 0 for k< n.
According to (1.11), (1.12), this equation, is

> K@) a,) — 4, O)) = 2, (3.2)
j=0

where

-j (m +12 -
O e U TRV =My, j < p,

= 2’
q,() = (3.2
0, ‘ i>p.
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Note that the coefficients of the equation obtained above and its solution belong to the
algebra C*(B(H 1))- But if we manage to find the coefficients in (3.1) so that the conditions
of Lemma 2 (with P = Il) are satisfied, then we will receive, after making the projection,

the equation and its solution in the initial algebra C*(B(H)) of the usual scalar functions.
LetCy(x) = land L = I'in formula (3.1). Then,

r=&n +n§ C e L
- & k k’

n-1 k
oM =TE+ 3 C e’ Sueksr, - LE),
=1
and if the operators L, satisfy the equations
k = .
L, ~LEi=r11 3.3
(here r, are arbitrary operators of the algebra B(H,)), then we get

y=§&+y 11, 3.3)
with
ln.-1 sk§x
y =T Y C®e® > ir =7, ().
k=1 ¥

Since the operator II transforms the vectors f(§) of the space H 1 into constants, then
r, I1is an integral operator with the kernel r, (§)T1(£"):

@ = [ r@neEverawue,

where r (x) = r,(1) and ¢ = .u';l - Hence the operator y, is that of multiplication by
the function y| (£, x,), that can be found from the equation ‘

7@ =:§i Cu®reSir, @) 3.4
Now it follows from (3.3') that if (3.3) holds, then the Darboux transforms are
pets) = e (eke - —y, @ xn)
It is obvious that if the function ¢(ekz) solves equation (3.2), so does

k
(e*s) = (F2 = H gk = e T (1= (K2 - 7Ny, € )

and
k ~
Ty(ekz) = e 111 = T(ekz = §)7y, (€, x I = My(e*2)IT = P(et2)IL.

Here the scalar function $(e%z) € C*(B(H)) equals
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k
t‘/-;(skz) = e X (1 __ﬂ—lf (ekz — E)_l')’l &, xl)dy(ﬁ)) . 3.5

(We consider only the values of z for which ez & Q.) According to Lemma 2, the function
P(*2) = p(ete, x,) satisfies the equation

n
2, A@IY) =Y, (3.6)
=0
with the coefficients
s() = (g, () — g,,_, ()L € C* (B(H)), (3.6")
which also are scalar functions.
Using the identities

== (f - B ()" + (P + L+ £,
one can transform formula (3.5) to the form

- eXox _ k_n—1 k_\n—2 n—1
P=e l(l—# AT AT 2B ) | =

P

gn— 1—j

- "

k n—-1 k
=e% 1 + 2 (}’1(e€ le)/l—l 14 ¢ xl)d/"(é)‘
/=0

So the solutions P = ¥ ekz, x,) of equation (3.6) may be obtained from the functions
1

k
e® * by applying the same differential operator of the order n — 1:

n-1
D, =2 d("x)d +1, . @D
j=0
where
_ n—-1-j
dj (zn: xl) =H : ff?:—;yl &, Xl)d/l(f)- Q.7
k

Since the functions ¢®* **1 (0 < k < n — 1) form the basis of the solutions of the equation
d1(y) = 2"y, the operator D ,— transforms any solution of this equation into the solution

of equation (3.6).
It still remains to find the operators L, solving equations (3.3) with the integral

operators (3.3) with the kernels r, (§)1(§’) (herer, (§) = r (1) and I(§") = u~") as their

r.h.s. We will look for special solutions of these equations in the form of integral operators
with the kernels L, (£, §'). According to (3.3), they may be found from the equations

ekEL (5, &) — Ly(E, ENE' = r (OTIE").

So the operators with the kernels
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((3)81(¢
L&) = “&‘kg)'—gz

are some special solutions of (3.3). One can add to these operators the solutions of the
homogeneous equations

ekbm, (8, E') — m (&, E)E' = 0.
It is easy to check that these equations are solved by the operators m, defined by the
relations

(m, NE) = m Ex, GFEE), (3.8)

where x (£) are the characteristic functions of the sets

Q,={tlteq,feql},

while m k(&) is an arbitrary function bounded on this set.

Summing up, we can state that equations (3.3) are solved by the operators L, of the
form

- f&' ,
€N = m@m@nets) + ron [ )

on the assumptions that these equalities define correctly some bounded operators
L, € B(H)).

The general sufficient conditions of this correctness are obtained in [5}]. Supposmg
that these conditions are fulfilled, we get the following expression for I':

@NE) = e517®) +k2 ¥ [vk@)xk@)f(e";) +o®) [ 8 d#(&’)] ,
=1 -
where
V(&) = CEmME),  p &) = C&)r .
Now equation (3.4) that is used to find the function yl(.f;') = yl(é‘, x,) takes the form

E"lr.(&) +2 ef “x) [vk(g)xk(g)yl(ekg) +p, (&) f ﬂ(gr)] Z ot kex, p,®).

k
c-¢ =! 3.9

To sum up the result we formulate the following

Theorem 2. If Equation (3.9) has the unique solution yl(g) yl(é' x,), then the
differential operator Dn-—l defined by equalities (3.7) and (3.7") transforms the solutions
of the equation 3{(y) = 2"y into the solutions of Equation (3.6) with coefficients that can
be found from formulae (3.2'), (3.6’) with& + yl(f, x,) substituted fory.
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Remark. Formulae (3.2’) and (3.6') are very cumbersome. It is much easier to find
the coefficients 5°(j) by substituting the r.h.s. of relation (3.5) with £ = 0 into Equation
(3.6), multiplying the resulting expression by e~ **1 and noting that the coefficients of all
non-negative powers of z must be 0.

For example, if n = 3, then the coefficients 5°(j) of Equation (3.6) are

SO =1, 5@ =0, 51 =37 [ 1,E x)e®)
50 =3 [ 03,6 x) + 80,7, x ) +

+ 372 [ 1,@ 0 [ 0,7, xpe®.

The equation 87(y) = 2"y whose solutions are transformed by the operator D,_, into

the solutions of equation (3.6) (see Theorem 2) is the simplest one among the n- th order
equations.

Now we will consider an equation of the general form (in the algebra C*(B(H)) of the
scalar functions)

n—-1 -
af(y) - 20 Ofl(y)a/.(xl) = gny ’ 3.10
j=
and denote by E(§) = E(¢, x,) its solution with the initial data
REE X)), o=t Osksn-1L @.1D

The functions E(ekg, x,), with e = exp 2i/n,0 <k <n-1,and & = 0, form a basis of
the solutions of this equation. Let W= W(E, "1) be its Wronsky matrix made of these
functions:

fTIEBE X)) ... Ex)
W e . 3.12)
O EE"TIE, X)) .. E(€"TE x))
According to Lemma 4, the matrix W satisfies the equation
(W) —2: (Wb (x)) = §"W, (3.13)

with the coefficients b (xl) € Mat (C“(B(H))) that can be expressed in terms of the
function a (xl) using formula (2.13).

We can pass to the algebras Mat (C (B(H,))) and c” (B(H ))) and regard &¢" and
E(e f,-‘, x,) as operators of multiplication by these functions. Then the matrix W appears
to be a solution of Equation (3.13) in the algebra Matn(C“’(B(Hl))). Any matrix
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c(§) € Mat, (B(H,)) with the elements that are the operators of multiplication by the
functions c‘.j(l;') commutes with the operators 9, and &", while any diagonal matrix L, with
the same operator L € B(H ) on its diagonal commutes with the matrices bj(xl) and the
operator 9, . Therefore the operator-valued matrices

F=W(E, x) + CEOWE x,)L, 3.14)
satisfy equation (3.13) as well. According to (2.6), we have
9, (W) = aj(W)SP + WS(1, - P),
where a'l'(W)SP is the matrix that has all the columns but the first one is equal to zero,

while the first one is composed of the elements af(E(ekS » X)) It follows from Equation
(3.10) that

n—1
I"(E(eRE, x))) = 2)0/1(12(5"5, xafx) + E'E(e*E, x)),
/=
so that
IW)SP = W(A(xl) + spg”)
and
,31(”/).___ W(A(Xl)+SP§"+S(IN.—P)>, 3.15
where the matrix
a,_(x) 0 ..0
a, ,(x) 0 ...0
A(xl) =.
a,(x) 0 ... oJ
commutes with L . Hence,
3, = W(A(xl) +SPE" + 81, - P)) + C(E)W(A(xl) + SPE" + 51, ~ p)) L,
= r(A(xl ) + SPE" +5(1, - P)) + CEWSPE"L, — L, &
and if I'is invertible in the algebra Mat, (C*(B(#,))), then
y=T"'0,() = A(x)) + SPE" + S(1, - P) + 7, , (3.16)
where Y= w! %0 and ¥, is the solution of the equation

Yo + CEOWL, Wy, = CE)WSPE"L, - L, &"). (3.17)
Let
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C € C¢) ... C, ()
0 0 ... 0
CE) = PCE)| - R

n—1
L(E) =k2 m(NE + ANE),
=0

ADE) = rE —E—f{“{]« du(n),

and the operators m, be defined by (3.8).
Then E"Ln -L, = r(€)I, and y, =7, (§, x)PI1,, provided that Equation (3.17)

has a unique solution. The scalar function 7, (§, x) satisfies the equation

7o (€) + Ty €) = D) CEEEE*E, x)), (3.18)
k=1 .

where the operator T € C®(B(H,)) is defined by the formula
T = PCEW(E, x,)L, W (E, x,)P.
It follows from (3.18) that
PCEWE, x)m, WE, x)™'P = PCEWE, x)WEE, x) ' Pm, .

Since multiplication by the matrix S from the left (right) hand side shifts cyclically the
rows (columns) of a matrix by one step upwards (1o the right), we have

Wik, x)=S kwie, x,)
and
PCEWE, x )W, x)) 7' Pm, = PCE)S™ Pm, = C,,  (E)m, P.

Hence,

‘ n=1 . n—1
PCEW(E, xl)[z mk] wolE, x) = [E Crpi (E)mk] P. (3.19
k=0 k=0

Next, we have, due to (3.15) and (3.11), that
9, (W& x )W, x)~") = E" = n"YW(E, x)SPW(n, x) "

and

WIE O)W(n, 0)™" = (w,; (. m)),

where
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1 pn
CANCEEEN

w, & 7)) =

Therefore, the matrix

x

(W& x)W(, x)™') = WE OW, 07" + " - ") f WE, 0SPWE, 0™ dr

has the following elements:

& - n")[ —
nn

1
ey & x‘)l’

X
%1
where Kij are the elements of the matrix f W(E, H)SPW(y, t)"l dt which is analytic in §,
. A . .

nand PCE)WA, w~!P s an integral operator with the kernel

1
n—-1, i—j +
" TE =)

2 ('5‘)’(5)[ K, (S,n,x,)] (3.20)
p=1

It follows from (3.19), (3.8) and (3.20) that

EOGEDS lcp Em,_, G,y ENEPTIE) +
. p=1

.
+c,ere [ Im;""‘ T K G x,)}f(n) d#(’?)]

and Equation (3.18) has the form

7o &)+ D v, €,y O (P78 +

) V
+p, (E)f {nr]"—l(ei—jf - + K, &m,x)

z EE ', )

7o () {1/4(77)}

@3.2D)

wherev & =C (E)mp 1 &), P &= C ©&r @).
Fmally, lety = y(z,x,) be an arbm‘ary solution of Equation (3.10), wnth{-‘ =z Then
the Wronsky matrix
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L) TG - )
0 0 .. 0

Y =Y(zx)=
0 0 0

satisfies Egs. (3.13) and (3.15) with £ = z and its Darboux transform
p=¢(zx)=0,(Y)-YT o) =
=Y{A(x)) + SPz" + S(1, — P) — A(x)) + SPt" = S(1, = P) =y, }=
= (" - ENY{SP - (" = ENTIWTIE, )7, &, x)PIT, )

satisfies the equation

n
2 @) =", (3.22)
j=0 |
where
of) =/¢2 g (Db (x) + 9, (byyy () = b, (X7 ) 3.22%
=j
k—j '
%0 =2, KP.I;"‘}_'J)_' oy, + 9))I7Pq), (3.22'")
2y P

and b (x,) = 1,4, ,(x,) = 0.Itis obvious that
=" g =Y{SP - ("= IW & X7 € k)P, ) 32D
also satisfies equation (3.22). Since the operator I, = Hi commute with Y and S, we have
PNl y =PIl yPIl =yPI_, ‘ (3.24)

where the scalar function ¢ = 9(z, x,) € C®(B(H)), according to Lemma 3, is a solution
of the equation

n
%ag(@ SO = 2", - (3.25)
j=1

where the coefficients ¢{j) € C*(B(H)) are defined by the formula
SGPIL, = PIT CGPTL, ' (3.26)
It follows from (3.23) and (3.24) that
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Pz, x) =¥z %) + 3, 8" 0zx)) d; (),
j=1

where the scalar functions d (z ,x) € C”(B(H)) are the elements of the first column of the
matrix

:u—l f (&n - Zn)—l‘w—l(gi xl)70 ('51 xl)d.u(g)'

Thus, we arrive at the following theorem.

Theorem 3. If Eq. (3. 21) has the unique solution yo(E) 7o (&, x,), then the differential

operator
n .
:21 d; (2", )9}/ + 1

transforms the solutions of Eq. (3.10) into the solutions of Eq. (3.25) with the coeffzczents
that can be found from the formulae (3.22"), (3.22'"), (3.26) with

y=A(x)) + SP§"+ S(1, - P) + wlE, x,)¥o(&> x)PIT, .

Note. The functionsv » ) py (&) and the measure du(n) are arbitrary parameters on
which the above obtained Darboux transform depends.
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