MaTemaTtnueckas puanka, aHanus, reomeTpms YAK 5517
1995, 1.2, N 1, c. 15-24

Polarized modules and Fredholm modules

J. Brodzki
University of Durham

A. Connes, D. Ellwood
Institute des Hautes Etudes Scientifiques, Bures-sur-Yvette, 91440 France

Received December 27, 1994

The basic notion of a polarized module over a C* algebra A is introduced. A. Such modules
are more basic than Fredholm modules: every Fredholm module naturally reduces to a polarized
module. It is shown that the polarized module associated to a given Fredholm module is invariant
under the action of the group 4, (M) up to a canonical isomorphism.

1. Introduction

It is by now a well established fact that the notion of a Fredholm module plays a
paramount role in both the formulation of the cycle concept and its geometric analysis in
the framework of non-commutative geometry [1 ]. However, it is easy to see in the context
of an ordinary differentiable manifold that the construction of a Fredholm module
necessarily involves the choice of an additional structure above and beyond that with which
a manifold is naturally endowed. Indeed, one might think of the theory of bounded
Fredholm modules as non-commutative conformal geometry as illustrated by the recent
constructions of Connes, Sullivan and Teleman (1,2 ]. On the other hand, the theory of
unbounded Fredholm modules may be regarded as the starting point of non-commutative
Riemannian geometry [1,3]. In both the bounded and unbounded theory there is a
naturally associated quantum calculus which displays several advantages over the classical
calculus in the special case of an ordinary manifold. The greater power and flexibility of
the quantum calculus over the latter has opened up exciting new "semi-classical” appli-
cations in both physics [3,4 ] and mathematics [5 ], when the space of interest exhibits a
fine structure beyond the reach of ordinary differential geometry.

Our aim here is to free up the notion of a cycle by characterizing the orbits of a bounded
Fredholm module under its canonical group of perturbations. More precisely, the various
choices involved in the construction of an even Fredholm module over a given C* algebra
A arerelated by a natural generalization of Beltrami differentials. Given an even Fredholm
module (H, F,y) over A, the action of the generalized Beltrami differentials yield a natural
group "u,, (M)" of perturbations of F by the commutant M of A (1].

Our pirrpose here is to introduce the more basic notion of a polarized module over a
C"* algebra A. Such modules are more basic than Fredholm modules in that every Fredholm
module naturally reduces to a polarized module. However, the definition of the latter has
been carefully designed so as to only capture the content of a Fredholm module up to the
action of the group u,, (M). In fact we will prove that the polarized module associated to a
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given Fredholm module is invariant under the action of the groupu,, (M) up toa canonical

isomorphism. Furthermore, the ambiguity in lifting a polarized module to a Fredholm
module is again precisely the group u , (M).

The main difference between Fredholm modules and polarized modules is that in the
latter the Hilbert space norm is irrelevant. Instead one retains only an indefinite inner
product (or Krein space structure) on the underlying Hilbertian space. More precisely, if
(H,F,y) is an even Fredholm module over 4, the pair (H,o) is a Krein space where o:
HXxH - C denotes the sesquilinear form determined by the Hilbert space inner product
(+,-)and the Z,-grading operatory, i.e.,o(§,n) := {&,yn) V&, n € H. Therepresentation

of the C* algebra is left unchanged, but the presence of the operator F in the triple
(H,F,y) is replaced by the specification of a subspace E of H which is totally isotropic with
respect to the Krein space inner product 0. The natural invariance group of a polarized
module over 4 is then by construction the Krein unitary group of the commutant M of A
in H. Itis a crucial result of the theory that this group be exactly identifiable with the group
u ev(M) of perturbations of an even Fredholm module by the generalized Beltrami

differentials.
Thus the notion of a polarized module provides a nice characterization of the orbits of
the group x,, in the space of even Fredholm modules and hence is likely to be of central

importance to the proper understanding of the concept of cycle in non-commutative
differential geometry.

2. Polarized modules

Let H be a Hilbertian space. This means that H is a locally convex topological vector
space isomorphic to a Hilbert space. On other words, there exists and inner product norm
on H which induces the same topology.

21.Def inition. Let A be a C*-algebra. A polarized module over A is given by a
triple (H,E,0) where:

1. H is a Hilbertian space on which A acts by a unitarisable representation.

2. E is a closed subspace of H.

3. o is a continuous hermitian invertible sesquilinear form on H which is such that:

(a) E is a totally isotropic subspace with respect to o, i.e., o(§,m) = O for all§, nj in E.

(b) Foralla€ Aand &, nin H ‘

o(af, n) = o(§, a'n).
(¢) The operator associated to o from E to the annihilator E* of E in the topological
dual H* of H is Fredholm.
(d) For any ain A, the form (§, n) b o(a, n), where &, 1 € E is compact.
It is necessary to make a few remarks to clarify this definition.

22.Remark :

1. First note that the requirement that the representation be unitarisable means that
there exists a certain inner product norm on H for which the given representation lifts to
a *-homomorphism from A into B(H). Thanks to work on the similarity problem for
non-selfadjoint representations of C*-algebras, this lifting can be achieved in great
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generality. Indeed, using the deep results of [6 ] on injective von Neumann algebras and
the characterization of nuclear C*-algebras given in [7], one gets the result that every
bounded representation of a nuclear C*-algebra is similar to a *-representation (c.f. (8]
theorem 3.5 and [9] theorem 4.1). Thus any continuous representation of a nuclear C*-
algebra is unitary in the above sence. Furthermore, thanks to [10] the above still holds
for any cyclicrepresentation of an arbitrary C*-algebra. The requirement of unitarisability
which underlies these results is essential in the lifting of a polarized module to a Fredholm
module (see section 3).

2. The operator from E to E* referred to in 3() is given by the explicit formula
[T,8) ¥n):=o0(n,&) V& E E,n € H. Notethat T (£) € E™ by construction as o is totally

isotropic on E.
3. Finally, we say the sesquilinear form defined in 3(d) is compact if for any weakly
convergent sequence §, - 0, the associated sequence {o )1 C E* converges uni-

formly to zero bounded subsets of E.

It is also important to remark that polarized modules are often far easier to construct
than Fredholm modules. In fact the above definition is motivated by the following classical
example.

23.Example. Let ¥V be a smooth even dimensional compact oriented manifold,
dim V = 2m, andlet H be the space L( V,A"T¢) of square integrable middle dimensional

forms. By construction H is Hilbertian* , however using only the differentiable structure
and the orientation we have a hermitian sesquilinear form

o(w,, w,) = f w, /\?52
v
that is totally isotropic on the subspace E of exact forms in LX(V,A" 'T¢). Itis easy to check
that the triple (H,E,0) thus defined satisfies all the conditions given in definition 2.1.
Before we proceed further, it is interesting to remark that the pair (H,o) is a special
type of indefinite inner product space called a Krein space. In fact, the transition from
Fredholm modules to Polarized modules can be understood as one from Z,-graded Hilbert

space to Krein space. Basically a Krein space is just an indefinite inner product space
isomorphic to Hilbert space. More precisely, let H be a C-linear space and o: HxH - C a
hermitian sesquilinear form on H. We recall;

24.Definition. Thepair (H,0) is called a Krein space if there exists a pair of
Hilbert spaces H | » H, such that:

1.HEH1XH2,

Note that a choice of a conformal structure is sufficient to define the action of the restriction of the Hodge
*-operator to the space of square integrable middle dimensional forms. Then H becomes a Hilbert space under

the usual inner product
(), 0y)= fwl A*Dy.

14
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2.0, m)=(En ) — (&), (VEREH)
where (§,,§,) and (1, 1,) are the elemtents of H X H,, corresponding to &, n € H.

The basic geometry of such spaces is nicely explained in [11 ]. For a more comprehensive
treatment see [12-14] and the references contained there in. The original motivation
behind the study of Krein spaces arose from various problems in quantum physics and its
structure continues to underly certain constructions in quantum field theory [15].

For our purposes it will be more convenient to understand the relation of Krein space
to Hilbert space through the existence of certain types of inner product norms. We recall

2.5.Definition. LetH be a C-linear space and o: HXH - C a hermitian sesquilinear
form on H. Then the pair (H,0) is called an indefinite innerproduct space if there exists a
certain inner product norm || - || on H which satisfies

NEN = sup |o.n)| (£, 7 €H).
A
Such a norm will be referred to a finite unitary norm on H.

Now let (H,0) be a Krein space. Then by definition H is Hilbertian since it can be
identified with the direct sum of two Hilbert spaces. Moreover, under this identification
the sesquilinear form oand the direct sum inner product{-, - ) arerelated by the self adjoint
involution y € B(H) associated with the splitting, i.e.,

o, n)=(&wm)

for all £, 7 € H. These remarks lead to the following useful lemma.

2.6. Lemma. The pair (H,0) is a Krein space if and only if there exists a finite unitary
norm || - || under which H is complete. Then o is bounded with respect to || - || and the
associated inner product {,) can be expressed uniguely in terms of o according fo the
following formula

(&, n)=0(& )

wherey = y* = v~ Y is a bounded linear operator on H.

The above result is elementary in the theory of Krein spaces and can be found for
instance in {11 ] where the involution y is referred to as defining operator of the finite
unitary norm || - ||. We will later give a detailed construction of the finite unitary norms
involved in lifting a Krein unitary representation on Hilbertian space to a self adjoint
representation on Hilbert space. The existence of such norms provides the crucial ingre-
dient necessary for promotion of a polarized module to a Fredholm module (see theorem
3.1). Indeed the general significance of polarized modules arises from their relation with
Fredholm modules. Before explaining this relation we first recall the definition of an even
Fredholm module.

2.7.Definition. Let A be a C*-algebra. An even Fredholm module over A is given
by an involutive representation of A on a Hilbert space H, together with a bounded self
adjoint operator F and Zz—gradin.g operatory such that:

1.F =1and [F,alis a compact operator for every a € A,
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2.yF + Fy is a finite rank operator,
3. Iy,al=0VaeE A.

Note that the above definition is a slight generalization of that contained in [1 }in that
the operator F and the grading y are only required to anticommute modulo finite rank
operators. We are now ready to state the central result of this section.

2.8. Theorem. Let (H, F,y) be an even Fredholm module and V the positive eigenspace
of F. Then there is canonically associated polarized module (H,F,0) where
o, n) =(& )
and
E={t€V,0¢,7)=0 VpeEV]}
Moreover, the action of the groupu,, (M) on (H, F,y) leaves the associated polarized module
invariant up to a canonical isomorphism.

Proof. Weleave H and the representation of A unchanged but forget about the Hilbert
space norm. It follows from the definition of o that it is a bounded continuous sesquilinear
form on H. It is hermitian because y is self-adjoint and invertible because y is inrvertible.
By construction the subspace E is closed and totally isotropic with respect to o. Moreover,
E s of finite codimension in ¥ because F and y anticommute modulo finite rank operators.
Let us define an operator T : E - E* CH by (T i) =o¢,n)VEEHandy € E. Itis

clear that this is a well defined map from the subspace E to its annihilator E* in H*. But
the conjugate linear isomorphism defined by the inner product on H, that identifies H*
with H the complex conjugate of H, transforms T _ to the restriction of y to E C V. Thus

the operator T is Fredholm as required.

The next step is to check that the form o satisfies the required compactness condition.
We have that forany a € A

o(ak, n) = (a&, vy ).

Thus for a € A the form (&, %) > o(a, ») is compact if and only if the operator PyaP is
compact where P := (1 + F)/2.

Working modulo the ideal of finite operators in H, F and y anticommute and thus
PyaP = y(1 = P)aP = y(1 — F)a(l + F)/4
is compact since [F,a]is compact. This finishes the proof of the first part of Theorem 2.8.

To prove the second part, we first need to recall some basic facts about the group
R, (M) of perturbations of (H,F,y) by the commutant M of A [1]. By definition, u(M) is

the space of matrices
ab
(55) em0n
which satisfy the identity

(3ol )= (5% )6 - (61)

It follows easily that
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aa®* - bb* =1, ab* = ba*, a*a-b'b=1, a'b=b"a Q2.9

and that the matrices of this type form a group. Indeed, this group turns out to be the
natural group of perturbations of an odd Fredholm module (H, F) over 4 and is isomorphic
to GL,(M) as explained in [1]. However, in the case an even Fredholm module, we must

also account of the fact that the algebra A acts in a Z,-graded Hilbert space. Then the
relevant group of symmetries is restricted to the subgroup ,uev(M) consisting of matrices

as above but where a is even and b is odd as operators in H.

Now let (H,0, E) be the polarized module associated with a given even Fredholm modu}e
(H,F,y) over A, and U(M,0) be the group of Krein unitary operators in the commutant
M of A, i.e.,

UM,0) = {x € GL,(M); x* =x71} (2.10)

where xT denotes the Krein adjoint of x with respect to 0. Be construction U(M,0) is the
natural invariance group of the polarized module (H,0,E). The following proposition
identifies the group U(M,o) with the group u, (M) of perturbations of (H,F,y) by the

commutant M of A.

2.11. Proposition. The group u(M) is isomorphic to the group GLl(Afl) of invertible
elements in M, while the subgroup u ‘,U(M) is isomorphic to the Krein unitary group
U(M,0) C GL,(M).

Proof.letm= (‘bl z ) be an element of u(M); in the graded case we shall assume

that a is even and b is odd. Let x = a + &. It follows from the identin:es (2.9) that
(@a+b)a-b*=(@-b'(a+b =1

so that x is an invertible element of M with inverse x| = (a — b)*. The map m t>x gives
a homomorphism from u(M) to GL,(M). In the graded case, we have that

yy=y@+by=(a-b*=x""1
Moreover, by construction the Krein adjoint and the Hilbert space adjoint are related by
the grading operator y according to yx*y = x1. Thus it follows that
+ 1

yx'y=xT = x"
and so x is in U(M,0) as required.
Conversely, if x € GL, (M), then let
a=(a+yxy)/2,
b= (x—yxy)/2.

This determines the inverse map and so establishes the required isomorphism in the
ungraded case. In the graded case we check that wnen x is Krein unitary then a is even
and b is odd as required.
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Now let (H,F,y) be an even Fredholm module and m € u , (M). Then (H,F",y), where

F' = m(F) = (aF + b)(bF + a)_l, is an even Fredholm module satisfying the same
summability condition. This defines the action of the group 4, (M) in the space of even

Fredholm modules. To complete the proof of theorem 2.8 we need to show that the
polarized modules associated to (H,F, ¥) and (H,F', y) are canonically isomorphic.

Let x be the element of U(M,0) corresponding to m under the above isomorphism, and
let V and V' be the + 1 eigenspaces of F and F' respectively. Then F'§ = £ for some
£ € V' means that

(aF + B)(BF + @) 'E =& (2.12)

which may be rewritten as (aF + by = (bF + a)y, wheren = (bF + a)"& . This implies

that Fy = 5, and so £ € V' if and only if » € V. But then (2.12) gives
§=(aF + byy = (a+ by = xy

and thus V' = xV.

We now show that the map x: H » H induces an isomorphism of polarized modules.
Since x is an element of the commutant of A, this map is a map of A modules and so does
not change the representation of A. Furthermore, since x € U(M,0) we have
o(x§, xn) = o(&, n), for any & and # in H. But by definition

E={§€V;o,n=0VY eV}

and so E' = xE also. To summarise, the isomorphism x € U(M,0) maps the subspace E
to E’ = xE and preserves both the representation of A and the form o. This ends the proof
of Theorem 2.8.

3. From a polarized module to a Fredholm module

In this last section we go backwards and show that a polarized module can be promoted
to a Fredholm module. Indeed, we now prove the exact converse to theorem 2.8,

3.1. Theorem. To any polarized module one can canonically associate an orbit of
Fredholm modules under the Krein unitary group of the commutant.

The proof of this theorem will be an explicit construction of the required orbit of
Fredholm modules and is split into several steps listed below. First of all, since H is
hilbertian and representation assumed unitarisable (e.g. A is nuclear or the representation
cyclic), there exists an innerproduct (,)1 on H that lifts the given representation to a
x-representation in B(H). From now on we shall assume that H is equipped with this
Hilbert space structure. Then (the Krein innerproduct) o becomes a bounded invertible
hermitian sesquilinear form on Hilbert space, and thus corresponds to a unique invertible
bounded selfadjoint operator 7', through the formula

o(§,n) = (&, T]” )1

forallé,n € H.
Let us denote by T, the restriction of T, to the subspace E. Then for any E,ninE
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which shows that TE maps E to its orthogonal complement £*. Moreover, we see imme-

diately that the choice of Hilbert space structure on H, which provides a (conjugate-linear)
isomorphism of E* with the annihilator of E in the spacc H" of continuous linear
functionals on H, identifies 7' with the operator £ = E™ determined by the form 0. Thus

T is a Fredholm operator, and so is its adjoint Tz.: E* - E. Therefore, relative to the

orthogonal decomposition H = E @ E* we can represent the operator T, by the following
matrix
&
_ 0 Ty,
| =
TE S
where S: E* - E* is a self-adjoint operator. It is not difficult to see that the operator T,

is an element of the commutant M of the algebra A. Indeed, we have that for any ¢ in A
and any two vectors § and in H

o, ap) =(&, Tan), ,
while, on the other hand,
o(a@'é,m) =(d"§, Tyn), =(& aT ), .

The left hand sides of the above equalities are the same by the definition of (t1,F,0),
and thus Tya = aT | for any ain A.

Now by hypothesis T, invertible and selfadjoint. Thus its polar decomposition
T, =y | T, | yields an isometric involution y = Y=yl

Finally, sinceany @ in A commuteswith T and | T, |, we have that the representation
of A in H is unitary with respect to the modified inner product (&, 7):=(&, | T, | n),
V& nEH.

3.2. Lemma. The space E @ yE is of finite codimension in H.

P roof. The operator Vgt E= E* is Fredholm. The codimension of the space
E®yEis — Indexy.

Let P be the orthogonal projection onto the subspace £’ with respect 1o the scalar
product (,). We denote by F = 2P — | the corresponding involution. Then it follows from
the above proposition that we do not have yF = Fy unless the index of y is zero. However,
we do have yF = — Fy modulo finite rank as required.

The next step in the proof of Theorem 3.1 is to check that the commutator [F,a]is a
compact operator for all «in A. We use the assumption thato(ag, #) is compact on E, which
with our choice of the Hilbert space structure is equivalent to PyaP being a compact
operator on H. Now yPayP is also compact and

yPyaP = y(PyPaP + Py(1 — P)aP) = (1 — P)aP
where we use that Py(l — P) = y(1 — P)and PyP = 0.
It follows by taking the adjoint that Pa(1 — P) is compact, too, so that the commutator
{P,alis compact. It is now clear that [F,a]is a compact operator for all « € A.
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Our considerations thus far depended on a particular choice of the Hilbert space
structure, and we now want to study this dependence in more detail. Assume then that we
have chosen a different scalar product (,)’ on H. This scalar product is rclated to our
original one by means of a positive invertible bounded operator x which satisfics

(&) =(x& ).

The Hilbert space H with the new scalar product will be a *-represcentation of the

algebra A if and only if x is an element of the commutant M of A.

Relating the new product to the form o we see as before that there exists an involution
y' such that

0(‘5’77) = <Evy77>= (&, v'm).
But then

(&vm) = (xk xv'n)

so thaty’ = x_zy. Since y' is an involution we have that

= yXY.
Letusdenotea = (x + yxy)/2and b = (x — yxy)/2. Thenaand bare sclf-adjoint clements
of the commutant M. Itis clear thatyay = aand yby = — b. We note that ¢ and b commute
since
) =xx 1 =x"lx = (yxy)x
and so

- b= (@ + b)(a — b) = wyuy = 1.
This demonstrates that x = a + b is in the subgroup U(M,0) of GL,(M) isomorphic to
the even group of perturbations ;(W(M). This complete the proof Theorem 3.1,
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IMonsipusoeaHHbie MOAYH U MOaYau Dpearoasma

IO x. Bponcku, A. Koun, [1. Onnsyn

BBeaeHo 0CHOBHOE NOHSTHE NOASPUIOBAHNOTO Moayns naa C'-anreGpoir A. Takme
Momyam aBasuorca Gonee obwmmm, uem moaynmn Dpepronbma: mobolt Moayas
Dpearonsma  ecrecTBeHHBIM  00pa3oM  peyuMpyer NOASPU3OBAHHBLIM  MOXYJb.
IokasaHno, 4TO NOAIPH3OBAHHBIN MONYJb, ACCOUMMPOBAHHBIN C AAHHBIM MORYJEM
DpearonbmMa, HHEAPHAHTEH OTHOCHTENILHO AEVCTBMS TPYNNEL 4 ev(M) < TOUHOCTLIO AG

KaHOHMYECKOr0 H3omMopduama.

Tloaspuzosani Moayai ra moayni ®pearosbma

Hx. Bpoxcki, A. Koun, [. 3ansyn

BseneHo OCHOBHE MOHATTS MOSPM30BAHOrO Moayas nap C*-anrebporo A. Taki
moxyJi € 6inbin 3araneHUMM, Hixx Mony i D penronsma: Gy ms-axuit mony as Openrosma
NPUPORHMM  CNOCOGOM  PefyKYE  ROASpH3oBaHMii  MOmyAb. Tlokazano, wo
NONAPH3CBAHMIA  MOZYJb, aCCOUiAOBaHMIt ¢ paauuM  mopysem  @Dpenronsma, €
iHBapiaHTHMM BiHOCHO Nii rpym g W(M) 3 TOUHICTIO B0 KAHOHIYHOTO naoMopdiamy.
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