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The unique solvability of the first main probiem of the dynamic elasticity theory is proved in
a complete scale of Sobolev spaces. The method is based con the properties of the retarded and the
advanced elastic potentials.

1. Introduction

The solvability of the Cauchy problem and mixed problems for strong hyperbolic
equations and systems of equations in the complete scales of Sobolev spaces was researched
by Ya. A. Roitbergin [1-3 ]. These investigations are continued in this paper. Its objective
is to prove the unique solvability of the first main mixed problem of the theory of elasticity
in the complete scale of Sobolev spaces which includes,.in particular, the spaces of
generalized functions with the negative Sobolev norm [4 }. We point out that the system of
equations of the elasticity theory is not strong hyperbolic one (moreover, V. D. Kupradze
called it the "degenerate™ hyperbolic [5 ). We will use the elastic dynamic potential theory
methods as the main tool. The mathematical base of the theory was constructed in 6, 7.
It is shown below that the combination of results obtained in {6, 7] concerning the
solvability of mixed problems in the spaces with positive Sobolev norms together with the
idea of the "transposition” makes it possible to study the mixed problems in the spaces
with negative Sobolev norm.

2. The notations and the formulation of the problem
Let S be a closed hypersurface of class C* which divides Rd, d = 2 into domains Q*
(internal) and Q" (external). A displacementofa pointx = (x,...,x ) of an elastic medium
filling either Q% or Q7 at the moment ¢ is denoted by u(X) = (4, (X),...,u (X)),
X = (x,1). In the presence of volume forces with density ¢(X) = (¢,(X),....¢,(X)) the
vector function u(X) satisfies the motion equation

02u(X) + (Au)(X) = g(X). @

either in Gy = Q" x(0,T) or in G, = Q7 x(0,T), T>0. Here 8, = 9/0t, A is the matrix
differential operator of the anisotropic elasticity theory:
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(Au),'(x) == 6]. Uij(u), 2

0,=a/ axj . Let us explain the notations used in (2). Here and later on the summation rule

J
with respect to repeating subscripts from 1 to d is used. The equality containing free indices

is supposed to be valid for all values of the indices from 1 to d. In (2)

d : : d
o(u) = { aij(u) i j=118 the stress tensor related to the strain tensor e(u) = { al.j(u) } =10
- = d i
2eij(u) =du;+ oy by the Hook law aij(u) = G €,,(4) where {al.jkh} ijdoh=1 1S the
tensor of elastic constants of the medium which satisfies the symmetry and ellipticity

conditions [8 ). The initial conditions are supposed to be homogeneous

u(x, +0) = Qu)(x, +0) =0, x€Q* (3)
To formulate the boundary condition let us denote 2, = §X(0,7). In the first main
problem If (internal or external) the displacements of the boundary points are known
u=(X) = f(X), x € 2, . Here and later on the superscripts "+" denote the limit values of

the corresponding vector functions when their argument tends to ZT from within Gi. To

present the correct formulation of these problems it is necessary to introduce some
functional spaces of Sobolev type.

3. The functional spaces

We denote by H, . (Rd+1), m, k € R, the Sobolev space consisting of J-component
real-valued vector functions u(X) = u(x,£) with the finite norm

Bl =S+ 1E]+ 12D+ |z )| &) | dedr,
Rd+1

where the variables £ € RY, 7 €R, are dual 10 x, ¢, respectively, u(&,7) is the Fourier

transform of u(x,f). The space H k(Rd”), (H, (Rf_‘)) is the subspace of

+ s,k

H, . (RdH) which consists of elements vanishing when <0 (¢>T). The spaces
Hr;m' X (G;f), Ha;m, & (G;‘) are formed by restrictions onto G; of elements of the
corresponding spaces H,. (R‘f:), H_ . (R‘;“L_l), their norms are induced by the norms
of these spaces. For example, the norm of the space H,. (Gi) is defined as follows:

. ~
1 gz = 0 1l

d+1
#S Hr;m,k(R+ )
where infimum is taken all over the set of extensions & € H (R‘i“) of the element

+ d+1 d+1 d+1 d
wu€H,,  (Gy) Thespaces H (R7™')and H,  (R7") where R7™ = R*x(0,T)

0 0
are defined in the same way. Finally, the space A - (G'Tt), (Ha;m, B (G;)), is the subspace

inH, . (Rg.“), ;e (R‘;'H)) which consists of elements u such that supp u C ‘G;.
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The solvability of the first main mixed problem of the theory of elasticity

Let us turn to spaces of vector functions defined on the boundary hypersurface ..
When S = R the spaces Hm k(SxR), m, k € R, consist of J-component vector functions
u(x', t) with the finite norm

Il II,",,,,“SXR = Sd(l +E |+ T DA+ |t D) @E ) | dE dr,
R

where the variable £’ € RY 71 is dual to x'. In the general case these spaces are defined
using the resolution of identity and the corresponding local coordinates [4 ]. Let us denote
by H_, [(SXR), (H,  (SxR. ), R, ={€R:(<T}) the subspace in
H, (SXR) which consists of elements vanishing when (<0 (#>7). The spaces
Hr;m‘ k(ZT) and Ha;m‘ (&) are formed by restrictions onto 2. of elements of the corres-
ponding spaces . (SXR_ ), H (SXR, _), their norms are induced by the norms

of these spaces.
For m>1/2, k €R, let us define the trace operators yf, y: mapping continuously

+ & ;
Hr;m.k (GT)’ Ha;m.k (GT) onto Hr;m—l/2.l< (ZT)’ Ha;m—-I/Z,k (ZT)’ respecnvely. The
vector functionu € H,, (G;’) is called the generalized solution of the problems Irt if

yfu = fand u satisfies the variational equation

(0,-!-(“)’ 5[](’7)) P (at‘" at’7> or = (3 Mo,r “

for any element 7 € l-?a_ 10 (G;'). In (4) the same notation (-, Dot

is used for the scalar
d

product in the space L%(G") and the space [Lz(Gf)] . This, however, will not cause any

confusion.

The solution u € H, 0 (G;—f) of the first main "advanced” mixed problem I: is defined
in a similar way. The only difference between the problems If and IZ’ is that instead of
the initial conditions (3) the conditions u(x,T — 0) = (¢ WxT-0)=0, x€ Q* are
given in the problem If.

In case ¢ = 0 we denote the solving operators of the problems If, Iut by ﬁfr g I%fa ;
respectively. It was shown in [7] that for all m = 1/2, k € R, the operators I%fr, 13;—"0
setting a correspondence between the boundary value f and the (generalized) solutions of
the problems /7, I perform the continuous maps:

2 4

Rl_.r: Hr;m,k(z’r) - Hr;m+1/),,k—1/l(6'7:),
Ri—,a: Ha;m,k(zT) = Ha;mHQ'k—l/z(G;)' ()

In what follows, the solutions of the formulated problems will be represented in a form
of elastic retarded (or advanced) potentials. The properties of them are presented in the
next two sections.
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4, Elastic single-layer porentials

Let @ "(X) and ® “(X) be the "retarded" and the "advanced" fundamental solutions of
the equation (1), respectively, which satisfy the "causality” condition: ® "(x,f) = 0 when
t<0, ® % x,0) = 0, when 1> 0. They are dXd — matrixes whose columns are denoted by
<DJ’.(X), <I>;.'(X), 7= 1,...,d. Itis easy to check that the following equality is valid:

¢7(X)T=(Da(_x)’ (6)
where the superscript "T" denotes the transposition of a matrix.

Elastic retarded and advanced single-layer potentials with d-component densities
a,(X), a (X) are defined as

(V@)(X) = S (P (X = ), a,(V)) efhs,
T

(V@ )(X) = 5 (DX = Y), a (1) egdsy
T

respectively, where ¢ is the j-th unit vector of the coordinate system, (-,-) is the scalar

product in R% It is evident that for smooth densities a,, a, such that
supp a, C S$x(0,T1, supp a,C Sx[0,T) both the potentials satisfy the homogeneous

equation (1) and the homogeneous initial conditions for ¢t = O or ¢t = T, respectively. The
introduced potentials bear the boundary operators V, .V, settingcorrespondence between

the densities a, , a, and the values of the corresponding potentials on ZT. The properties
of the operators Vr , Va in incomplete scales of Sobolev spaces were researched in [6,7 ].

It is proved below (Theorem 1) that these properties are valid in the complete scales of
these spaces. d
Wedenoteby( -, ), rthereal scalar product in [LZ(Zn] and remark that the spaces

By, (&) and Hy . ((Z7) are dual with respect to the duality defined by the form

(", )o.7- Let us introduce the spaces C:’(:‘I_T) and C:(S‘-.T) consisting of vector functions
of class C°°(§T) with the supports lying in $x (0,7 ]and in $§x [0,7), respectively.

Lemma 1. For alla, € CP(Z,), a, € C*(Z,) the equalities

< Vrar’ aa >O,T = (ar’ Vaaa >0,T O

are valid.
Proof.Leta € C:"(ET), a,€ C:(ET) anda, ,a, , are their k-th components

( Vrar’ % >O,T =5§ ZS aa,k(X)q) ZI(X -9 ar.i(Y) ds)’dsx =
=T
r N
ZS a, (X) (g DY = X)u, (V) dsy> dsy .
T T

It follows from (6) that ] (¥ = X) = ® ¢ (X — Y), as needed for (7).
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The solvability of the first main mixed problem of the theory of elasticity

Theorem 1. For all m, k € R, the operators Vr R Va perform the continuous injective
maps:
Vr: Hr;m,k(ZT) - Hr;m+l,k~1(ZT)’
Va: Ha;m,k(ET) - Ha;m+1,k—l(zT)’

their ranges are dense in the corresponding spaces.
The inverse operators extended from the dense sels onto these spaces for allm, k € R,
perform the continuous maps:

1,
V;- * Hr;m+l,k—-l(zT) e Hr;m,k—-l(zT)’

V; : : Ha;m+ 1,k—1 (ZT) = Ha;m,k-— 1 (ZT)'

Proof. Incase m = — 1/2 case the statements of the theorem were proved in [6,7 ].
For m < — 1/2 the operators V., Va are defined on the spaces Hr;m, k(ZT), Ha;m, k(ZT),
respectively, by the equalities V, = ¥V, V= V. Obviously the reasons for this definition
are contained in the statements of Lemma 1. The continuity of the maps V_, V, follows
immediately from the continuity of the operators V.o V, for m> — 1/2. Another

statements of the theorem are evident.

Let us introduce the operators v, Va .. setting correspondence between densities

’
s

a, , a,and the values of the corresponding potentials (V .« )(X), (V, & J(X) for X € G?. It

,
was shown in [7 ] that these operators perform the continuous maps:

. +
Vr,t' Hr;m,lc(ET) - Hr;m+3’2,k—l(GT)’

Va,t: Ha;m,k(zT) = Ha;m+3’2,k-— 1 (G;)

for m = — 1/2, k € R. In the next section it is proved that these statements are valid for
allm, k€ R.
In conclusion of this section we take into consideration the equalities

St _ -1 g=x _ ~1 S+t g= .
R 1r= Vr,t V., R 1= Va,: Va where R L R 1q are the solving operators

introduced in the third section.

5. Elastic volume potentials

Elastic retarded and advanced volume potentials with the d-component densities q,;

g,are defined as

U,g)(X) = S (cb,’(x -, a,(v)) ¢, dY,
d+1
R
T
= ax — 1))
(U,4,)(X) fjﬂ(@,(x n,qam) e;dY,
Ry
respectively. The properties of the potentials are given in the following statements.
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Theorem 2. For all m, k € R, the operators U,, U, perform the continuous maps:
. 5 + Tecs
Ur' Hr;m.k(GT) - Hr;m+2,k—l (GT)’

. B * +
Ua' Ha;m,k(GT) e Ha;m+2,k—l(GT)‘ ao

Proof. We present the proof of the theorem for the case of operator U,.Letusintroduce

for all x =0 spaces H (R‘i“) consisting of (generalized) d-component vector

rm,k,x
functions u(X) = u(x,?), vanishing when 7 < 0, whose Laplace transforms u(x,p) have the
following properties:

1. a(x,p) performs a holomorphic map from the right-hand half-plane
C. = {p = o + ir: 0>« } into the standard Sobolev space [Wf(Rd) ]d.

2.sup S (1+ &+ |o+a )0+ |o+a )| o+ ir) | didr < o, where
o>K Rd+l
u(&, p) is the Fourier-Laplace transform of u(x,?). The norm in this space is defined as
follows:

l| u "3n,k;x=,f+§1 + | E|+ | c+a DA+ |k +a )] Wk + i) |2 dEdr. (D
R

We denote by H

rim,k,x
space A, . K(R‘iﬂ) with the corresponding induced norm. Note that in case T'< « the

d+1
spaces H,,  (R;"")andH .

Let us define the operator U, on elements of the space H

(R‘;H) the space of restrictions onto Rf;“ of elements of the

(R‘;+ l) coincide as sets and their norms are equivalent.
(R‘f’) by (9) where the
integration is, however, performed over Ri“ instead of R‘;N”. On choosing and fixing

d+1
r;m,k,x( + )

k>0 let us study the properties of the operator U, in the spaces H
d
Let q.= (qr el d) € [C: (R‘i“):l . The Fourier-Laplace transform of the vector

function (U g ) (x,!) has the form
rer
(U:qr> Ep)=® ;j(.f,p)('fr,[(g,p)ej , (12)

where & ;j(g ,p) and ('ir 'i(g ,p) are the Fourier-Laplace transforms of <I>:j(x,t) and qm.(x,t),
respectively. From the equalities

2
after multiplying them by 5:}.({-‘ ,») and summing up in { we get the system of equations

s 2 i o = e
P| B P+ ay £ B EnT D) = B (ED) 19

(not sum with respect to j!). Separating the real and ti.e imaginary parts in (13) and taking
into account the symmetry properties of the elastic constants: Din = Ypir = At [8 ] after

elementary transformations we obtain the estimates

| BjEp) | sacTHplUp P+1E1HT J=1,d, (14)
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The solvability of the first main mixed problem of the theory of elasticity

with a positive constant ¢ not dependingon p € _C_K. From (12) and (14) we have

~ 2 —4y ~
|(Ua)&n | s e+ 1p DA+ 1pl+ 15D TER I*
This estimate together with (11) proves the continuity of the maps

. d+1 d+1 1
Ur' Hr;m,k,x(R+ )—)Hr;m+2,k—l,x(R+ ) as)

forallm, k € R.

Let Il be an operator of extension of vector functions from R‘;H onto R‘i“ which maps
d+1, .

(R;"") into Hr;m, =

functions onto R‘;“

condition (®"(x,?) = 0 when ¢ < 0) for any vector function g, the equality

H

. R4*1y continuously. The operator of restriction of vector
rimk.x + y

is denoted by m. We remark that as follows from the causality

(U,g)(X) = (*U lg)(X), XERL,

is valid. Using continuity of the map (15) and the equivalence of the norms of the spaces

d+1 d+1 . L
H,.,. (R, H,.. w(Rp ) we obtain the continuity of the maps

. d+1 pd+1
Ur' Hr;m,k(RT ) - Hr;m+2,k—l(RT )

The continuity of the maps (10) follows from this statement immediately. The
continuity of the operators U is proved in the same way.
Let us introduce for m > — 3/2, k €R, the operators U, , = YU, U .= y;‘U
performing continuous maps:
0
U ‘”r;m,k(G}L) - H

rx

r;m+3/2,kwl(2’l‘)’

0 . (16)
Ua,i: Ha;m,k(GT) > Ha;m+3/2.k—— l(ZT)’

; = Y=t © 0 yd+1
Lemma 2. For all vector functionse € C (2,), «, € C (Z,), q,, q,€C (RT+ )

such that supp q,C Q* x(0,T}, supp q,C Q*x 0,7 q, and q, are finite in the case of the

domain Q, the equalities are valid:

( Ur,: qr’ aa )O,T = (qr’ Va,tau> 0 T,

< Ua,t qa’ a, )O,T = (qa’ Vr,ia an

’) 0T

Proof. Let us check the validity of the first equality in (17)

— r ) _
< Ur,i qr’ au >O,T - }:S gza'k(x)q) /(l(X - Y)qr‘i( Y)d Ydsx =

TRT

= 5 g, (X) ( S®IY-X)a, k(Y)dsY) dX.
RT+l ZT
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The relation (I)Zl.( Y—-X)= <I>:.'k( Y — X) proves the required cquality. The second equality

in (17) is proved just like the first one.

The results of Lemma 2 make it possible to d-fine the operators V. oV, U

st r,t’

U . on the corresponding Sobolev spaces with the negative norm. For m < — 3/2,

a,x o
k €R, we define the operators U, ,, U, in the spaces H,, (Gy), H,, (G}),

a,

respectively, by U, , = v, U ok = V:’ - From the continuity of the maps (8) and the

a,*x’

duality of the spaces /., k(G}‘),]-}a;_m,_k(G;f)and H o G, A,

y—m,

_(G7), itfollows
that the maps (16) are continuous for all m, k € R. The operators V, .V, are defined
onspaces H,, (Z.), H, (Z)form<-1/2,keR,byV, =U, ,V, =U;,.

a,x’ "a,=*x
The continuity of the maps (8) for all m, k € R, follows from the continuity of the maps
(16). Let us formulate these results as a theorem.

Theorem 3. The operators V, V, . perform the maps (8) and the operators U, .

V . perform the maps ( 16) which are continuous for allm, k € R.

1,
o

The introduced operators U,, U, have been defined on the spaces ﬁrm «G1)s
ﬁa,m k(G;:)’ respectively. In conclusion of this section let us introduce the operators Uri,

T . + + * + .
U, acling in the spaces Hr;m' k(GT), Ha;m‘ k(GT)' Let lr and la be operators of extension

of vector functions from G‘TJC onto R‘;H which perform the continuous maps:

lr_: Hr;m,k(G;) - Hr;m,k(

(R;I:’-l).

d+1
RO,
*, +
la * Ha;m,k(GT) - Ha;m,k

d+1
T

the operators U, U by U =2*U IF, U = n*U . Clearly, for all m, k € R, these
operators perform the continuous maps:

= Be
Ur : Hr;m,k(GT) =8

Let ™ be the operators of restriction of vector functions from R onto G%. We define

+
r;m+2,k—l(GT)’

.48 st s +
U(I ' H(I',nl,k(GT) e Ha;m+2,k_.1(GT)' (18)

Form > — 3/2, k € R, the operators Uf_t = yf Uri, U:t = y: U;‘ perform the continuous
maps:

+ +
Ur,:' Hr;m,k(GT) e Hr;m+3/2,k—l(z7‘)’

U :H (19)

+
a,* a;m,k(GT) = H

a,m+3/2,k—1 (ET)’
Note that the operators Uri, U;f (and hence the operators Uf o U: ) depend on the choice

of the operators of extension lrt, l:.
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6. The solvability of the first main mixed problem

Let us suppose that the right-hand side of the equation (1) g€ C% ( G;" ) ,
supp ¢ C Qix(O,T] and g is finite in the case of domain G;. Also suppose that the
boundary value f € C:"( ZT). It is evident that the solutions of the problems If can be

represented in the form
wX)= U)X+, V.- U, .9)X), XEGj.

In case supp ¢ C EZ_EX (0,T ] we represent the solutions of these problems in the form
w(X) = (UF)X) +(V, V' = U .a)X), XEGi. 0

Letus introduce the solving operators Rfr of the problems Iri which set the correspondence
between the pair { ¢, f } and the solutions u(X), X € G=, of these problems. Our objective

is to study the possibility of extending operators Rit, by continuity onto products of
Sobolev spaces including spaces with the negative norm.

Theorem 4. For ull k € R the operators R;‘ , perform the continuous maps:

2
H,. (G5 X H, m=—1

r,m+3/2,k—l(2T)’

* *
R1 e - Hr;m+2,k—3/2(G7‘)'

Hr:m,k(G;) A Hr;m+3/2,k—l/2(zr)’ ms — 1

Proof. First we consider the case m = — 1. From (20) and from the continuity of the
maps (18), (19) it follows that UTg € H,, ., (Gy), [~ UZ q€H, 0. (5}

foranyge H k(G;L), fEH,, 34 1(Z;) Recalling that V, tV;—l = ﬁlir and using
continnity of the maps (§) we obtain the required statement for all m = — 1.
Now let us suppose thatm < - 1, g € Hr;m‘k(G;),fE Hr;m+3/2,k—l/2(>:T) and write

the solutions of the problems /= in the form

= Urq + Vr,: (V:lf— V:]Ur,tq)'

Noticing that V:lUr L= (V V;l) Y= (ﬁfa) and using continuity of the maps (5) we

a,x

have the continuity of the operators

1 .17 +
V;- Ur,t * Hr;m,k(GT) = H

r;m+l/2,k—l/2(2T) Q20

forallm = — 1, K € R. From (21) and the statements of Theorem 1 it follows that
—1 1
Vr /- Vr— Ur,i- g€ Hr;m+l/2,k-—l/2(zT)'
The statement of the theorem for m < — 1 follows from Theorem 3.
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R e m ar k. The solving operators R;‘a of the problem Ij are introduced just like the

operators Rlir. It is evident that these operators perform the continuous maps:

x
Hoym kG X Hyp i34 Ep)y mz -1

b.cs
Rit.a: g Ha;m+2,k-—3/2(GT)

7 *
Ha;m.k(GT) A Ha;m+3/2,k—l]2(z7-), ms< -1

forallk € R.
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Pa3peuMoCTb NEPBOH OCHOBHOW CMeLUAHHOMN 33a44 TEOPHU YIIPYTOCTH
B MOJIHOM LWKae COO0NEBCKUX NMPOCTPAHCTB

H. 10. Yyaunosuy

JlokasaHa OAHO3HAUHAS PA3PELIMMOCTL NEPBOI OCHOBHOM CMELIAHHOM 321auM AN~
HAMMUECKON TEOPHUM YMPYTOCTH B MOJHOW mKane cO60AEBCKMX NPOCTPAHCTB. MeTon
NROKA3aTENLCTBA OCHOBAH Ha CBOMCTBAX 3aNa3AbIBAIOLMX M OMEPEXAOWMX YNPYTHUX
NOTEHLMANOB.

Po3e’g3yBaHicTh Nepu10i OCHOBHOI 3MilLIAHOT 3a/1a4i Teopil NPYXHOCTI Y
TNIOBHIi WiKani cOBONEBCLKUX NPOCTOPiB

I. 1O. Uynisosnu
Josenena opHozHauHa po3s’s3yBaHICTs NEPIOT OCHOBHOT aMiluanol 3apaui aMHa-

MiuHoT Teopil npys>KHOCTI y NoBHIM wKani coboAEBCHKMX NPOCTOPiB. MeTOR HoBEAEHHS
FPYHTYETBCS HA BJIACTUBOCTSX 3AMNI3HIIMX Ta BUNEPEMKAIOUMX MNPYXKHUX NOTEHUIANIB.
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