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A theorem about polynomials stated at the beginning of this paper is first extended to
entire functions of small exponential type and the result then used to deduce the muitiplier
theorem of Beurling and Malliavin. A precise characterization of the order of magnitude of
a non-zero periodic function’s Fourier coefficients, compatible with that fanction’s vanishing
on some interval, is also given.

o0
The sum Z log" I P(n) |/ (1 +n 2) may be looked on as a discrete analogue of the

-0

[oo]
integral j(log*] P71+t 2)) dt. 1t is well known that the size of a polynomial P(z) is
— oC
controlled, in the whole complex plane, by the latter expression; it is thus not too surprising
that the former one can also, with suitable precautions, be used for the same purpose. One
has indeed the

Theorem. There are numerical constants m 0 0 and k such that, for any polynomial
» :

P@) with Y log"| P(n) |/ (1 +n )= <n,, the relation | P(z)| < Cﬁek "zl polds for

— o0
all complex z, with Cn depending on v but not on P.

This result can be found on p. 520 of [1]. In it, the restriction to small values of
1 > 0 is really necessary, as is shown by examples. Such a theorem for evern polynomials
P(z) with P(0) = 1 was already published in 1966 (see [2]), and the main work is in the
proof for that case. From there, the passage to general pclynomials is rather easy.
Treatment of the special case is straightforward in principle, but made intricate by various
technical difficulties. '

The establishment of the result was originally motivated by a desire to deduce from it
a new proof of the multiplier theorem due to Beurling and Malliavin ([3]), but up to now
that project has not been realized. The purpose of the present article is to show how the
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deduction can be carried out. In doing so we will obtain some auxiliary propositions of
independent interest.

I thank Henrik Pedersen for having called my attention to some mistakes - and
obscurities in a preliminary version of this paper.

1. Extension of result cited above to entire functions of small exponential type

The carrying out of such an extension is proposed as problem 24 in [1] (p. 318); there
the reader is asked to imitate the proof of the result for polynomials. One can also,
however, arrive at the extension directly.

o0
Lemma. Let f(z) = H (1-z 2/ i), with the A | > 0, be of exponential type a. Then,

1
for all sufficiently large integers N, f\; (z) = H (l-z 2y lzﬁ ) satisfies

lk.<.N
> (og' Ay e ) /02 <> (og'f(m) )/ n* + Ca+ (1),
1 1

Here, Cis a numerical constant and the o(1) term tends to zero as N — oo,

Pro o f: Let v(r) denote the number of & (counting multiplicities) in (0, 1] and put
Vy () = v(£) = v(N) for t =2 N, with vy (=0 for 0 < ¢ < N. The last function is in fact zero

on an interval [0, N+ €), where € > 0.
We have

log | fyy (x) | = log | /()| - f log | 1=x2/1% ldvy (0.
N

Integration by parts converts the right side to

o0
. 2x 2 V}\r(’)
loglf(x)(+J- = 5l
Vi

because v(¢) 1s O(1) for large 1. Here, the infegral — call it g\, (x) — is positive and

’\/
N-1 '

increasing for 0 <x <N, so Z gy /n 2<4 J (gy (x)/x 2) ¢, and
I 0
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N v
N-1 log™ N-1
SR T L

n

] h )

Since f(z) is of exponential type a., a standard application of Jensen’s formula gives
v(t)/ t < ea +o(l) for t —> oo (see [l] prob]em 1, p. 5). Thence,

4
J‘g]v(x) VN()dtdxz
I O] ©
vy U t+N dt n?
=J ; log. | —4—(ea+o(l))
N

with the o(1) term tending to zero as N —» co. (We’ve used
w0

jlog((t+l)/(t—— D)dt/t=n>/4)
1

N
o .
To estimate Z(logJ’[j}v m/n 2 note that log | fy () 1= ‘[log | x 27421 | dv(?) is
N : ) 0 v

increasing for x 2 N, so, in [N, ), log | f, (x) | is 2 0 precisely on an interval of the-form
[xg» ), where x > N. Let M be the first integer 2 x;. Then, since log | /), (x) | increases on
[N, ),

> (og*lfy (m ) /n?= Z (log | fy () )/ n? <
N

o N
<4'[(logf/§v(x)|/x Ydx = 4Iflog[ —lev(t)

MO
The last expression, after doing its inner mtegral by parts, becomes

4v(N) J' log (ﬂ - 1]

M 0
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oo}

The first term is 4 X%’) J. log (iz -1 -a% <
AN g

S%Mj‘og & - l)gs(ww(l)) log (3+2V2)

2
with o(1) tending to zero as N — oco. The second is
M
fv(’)n ; M ,_<_4[v(t), o |1EM | dt
-M{ ¢ -M it
0 | 0
1
:4_[ v%‘c) lo ::L : Ci < n? {ea + o(1)),

]

where o(1} again tends to zero as N -— oo (because M = N and
1

J.log (l+7)/ (A -1)dt/r= n? /4). Thus,
0

)
Y (log*1f;, () ) /n? < (n* + 4 log (3 + 232)) (et + o(1)).
N

Combination of this last with (2) and (1) yields the lemma.
Theorem. Let f(z) be entire, of exponential type o, and suppose thai

g log'l /()| _

I+n2

Provided that . and ny are both less than a cerlain numerical constant c, . we have, for

all z,

1f@) < (_i'avne"(“ +m)lz]

with a numerical constant x, and C . depending on o and v . but not on f.
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P r o o f: Suppose to begin with that /() is even and has only real zeros, and that
[ 2]

f(0) = 1. Then the condition in the hypothesis makes Z (log*l f(n) N/ n 2< 2mn, so by

1
©

the lemma, Y (log*| fyy (n) ) /n 2<Co+2n +ey (with €y, — 0 as N— oo) for the
l B
polynomials f, (z) considered there. Thence,

e ¢] .

3 (og*lfy M )/ (L +n?) <2Ca+4n +2s,,

-0
so, if 2Ca +4n is < the number 1 figuring in the theorem cited in the introduction
we have by that result, for sufficiently large N,

C o
|fN(2)|$KC’ @ 0(414T]+28N)/ |z]

with K depending only on 2Ca + 4n + 2¢,. On making N —> oo, we get an estimate of the

desired form for £(z).

When /() is even and one at the origin, but with complex zeros, we can form the even
function g(z) with rea/ zeros having the same moduli as those of £, and g(0) = 1. Then
g(2) is of exponential type and indeed | /(2) | < | g(#| z|) |, whereas | g(x) | < | f(x) |on R.
The result just obtained therefore implies that g(z), and hence f(2), satisfies the inequality
in question when the hypothesis holds for /.

In the general case, we may take f(z) to be real on R since f(z) +/(z) and
(f2) = £ z))/ 2i both have that property. Then, corresponding to any n >0, one has a

constant M such that Z (log u(n))/(l +n )< 3n for u(z) equ'll either to

-0

1+z (f(z) +f(- z))Z/M orto 1 +(f(z) - f(-2) /M whenever the hypothems holds

for f (for details, see [1], pp. 519-522). Both of these functions u(z) are entire, of
exponential type < 2a, even, and 1 at the origin, so, when 1 and a are small enough, our
estimate holds for them. One of the same form then holds for f(z). Done.

2. A weak multiplier theorem .

It is better to call the result of this § a

Lemma. Letf(2) be entire, of exporentiol type o, wz‘th‘ (og®1 f) |/ (1 +x 2))dx <ow. If o is

small enough, there is an entire finction ((z) % 0 oqux:mntza/ type < mwith| ¢ (x) | and
| £(x) ¢ (x) | bounded on R.
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Proof. By Fourier analysis and duality. We first reduce our situation to onc involving
an entire function g(z) of modulus = 1 on R, having all its zeros in .z < 0. For that

purpose, let G(z) = 1 +f(z) f(z); this function is entire, of exponential type < 2a, and

> 1 (sic!) on R Also, J(log Gx) /(1 +x2))dx<oo, so by a well known theorem of
— @

Akhiezer ([1], pp. 55-58; [4], pp. 125, 132; [5], p. 567) one can write G(z) = g(2)g(z)
with g(z) entire, of exponential type < a (the some in the upper and lower half planes, see

[1], p. 66), having all its zeros in .9z < 0. Since | g(x) |= V1 +| f(x) '2 on R the lemma
will follow if we can get an entire function ¢(z) # 0 of exponential type <= with
| @ (x)g(x) | bounded on R.

We have ! (log | g(x) |/ (1 +x %)) dx < oo, s0 for Tz > 0,

-0

Fz log | g(t) I

log|g(z)|<a. Jz+— I
LA lz=1f

and similarly, forx € R,

FI%I&’(!H)i
log |g(x}|<a+- JW*

t)+1

(see [1], pp. 38 and 47-52; [4], pp. 92.93; [3], p. 311). Substituting x = » into the second
formula, dividing by 1 + n? and adding. one finds with the help of the first formula and

[>¢]
the relation Z /(- M)2 + 1)(n 24 1) < const/ (¢ 2, 1) that
-
= log | g(n) |
Z Ty <o, (3)
o l+A

log | g(#) | being > 0 on R.
Denote the zeros of g(z) by A, ; we have 7 A, <0 for each £, and the A, may without

loss of gencrality be taken as distinct. If indeed that is not so, we may split each multiple
zero A, of g(z) into simple ones very close to it (by adding different small negative
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imaginary quantities to A, without, however, altering the corresponding exponential

factors in g’s Hadamard factorization) and then, after multiplication by a suitable constant,
the new function will be in modulus > | g(x) | on Rand still satisfy (3). That new function
can then be used instead of g(z) during the following discussion.

A
I say that if a (the type of f(2)) is small enough, the ¢ o cannot be complete in

At . .
Lz( -z, ). Foreach &, , el * has, on ( - w, ©), the Fourier series

[+ o] . }\l

Z (- l)n SIn A ) 1 eint
T M—n ’
—

so if the exponentials were complete in L,(— =, ), the functions of n equal to
(- l)"/(kk —n), and hence those equal fo 1/(A, —n) would, by Parseval’s theorem, be
complete in /5(Z). ‘

But that cannot be true when o is small. Otherwise there would be a sequence of finite

sums s, (n), each of the form Z ay, / (A, = n), with, in /5(Z), s, (n) — 8(n) (the Kronecker
- _
P .
8, equal to 1 forn = 0and to 0 for n  0). Each s (1) can be expressed as g, (n) / g(n) with

g, (z) an entire function of exponential type < a; g, (2) is obtained by dividing g(z) by the
factors A, — z corresponding to the denominators in the sum s, (1) and then multiplying

the quotient by other linear factors, fewer in number. We thus have
e ]
> 1(, )/ g(m) = 80m) >0,
L)

This implies first of all that | g (n) [<const-|g(n)| on Z and then, by dominated

convergence, the definition of 8(#) and (3), that

2 log* g, (n)/g(0)]
2 2 g
-

- 0

1+n

For small o 2 0, this and the theorem of §1 imply that | g (z) | < Kyl g(0) |eKYI Zl when

r is large. Here, k is a numerical constant, y may be taken to be any number > o, and
KY depends only on y. A subsequence of the g,. (z) thus tends to an entire function A(z) of

exponential type < «y with A(n) = 8(n)g(0) on Z. That, however, is impossible for
Ky < 1/e, since h(z) / g(0), although 1 at 0, would vanish at every n # 0 in Z (see proof
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) ) i t : )
of lemma in §1). This means that for small o, the ¢ * are not complete in Ly(-m, m),

as claimed.
Y9
That being the case, we have a non-zero (1) € L,(— 7, nt) with Je' M "{J(z‘) dr=0at

-

T
each A, . The function y(z) = I e Y(r)dl, entire, of exponential type < w, and # 0, thus
-
vanishes at each zero of g(z), so the ratio ¢(z) = y(z)/g(z) is entire, and of exponential
type by a theorem of Lindelof ([1], p. 22). This ratio is bounded on R , for y(x) clearly
is, and | g(x) | = | there. We can thence conclude that ¢ (2) is in fact of exponential type
<n (see [4], p- 127 or [5], pp. 207-208, p. 315 and p. 605). The product
¢ (x)g(x) = y(x) is bounded for real x, so, since y(x) # 0, we are done.

R e mark: The following observations (prompted by a question of Peter Jones) really
fall outside the scope of the present discussion, but their inclusion here is perhaps

nevertheless worthwhile.
o0

Givenany W(n) 2 1 such thm‘z (log W(n)/ (1 +n 2)) <, there are ¢, , not all zero,

- Q0
[e o] o

with Z | ¢, [W(n) <o (and hence in particular | c, | < const / W(n)), such that Z c”ei"}“
. vanis_/fzoeos onaninterval —h<A<h where h>0. —

Verification of this fact uses an idea from the proof just given. There is no loss of
generality in supposing that W(n) — o for n -— £ oo, for otherwise one may replace

W(n)by (1+n 2)W(n) in what follows.
When />0 is small enough, finite linear combinations of the LY W(n) with
— h £ X < h cannot be uniformly dense in UO(Z). Otherwise there would be a sequence

of fnite sums g, (2), each of the form Z alei A . with g, (n)/W(n) tending uniformly on
~h<h<h

Z to &(n) (the Kronecker §-function) as ¥ — . From this one arrives at a contradiction

for small #>0 by arguing just as in the above proof but using the condition on

log W(#) instcad of (3).
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Because W(n) — oo as n — * oo, the result just found gives us by duality a sequence

0 0
of b, , not all zero, with Z |6, | <o and Z(e””’/ W(n)) b, =0 for —h<k<h. Our

-0 -~ o0
statement thus holds with ¢, =b, / W(n).
Suppose now that we have such a sequence { ¢, }. Let us form a complex measure p on
Z by putting p({n})=c,. On taking the convolution of p with the function

A(x) = max (1 — 4] x |, 0), one obtains a non-zero u(x) in L,( - oo, ©), vanishing on each
intervaln+i—$x$n+%, n € Z,and with | u(x) | < const / W(n) if|x —n | Shl-forsuchn.
s o]
The Fourier transform I e hx u(x)dx vanishes also, for —h <A< h.
-0
No regularity is required of W(n) for these results, beyond the condition that
o0
> (log W(n) /(1 +n?)) <.
-0 .
One can give a necessary and sufficient condition on W(n) 2 1 for the conclusion of
the above statement to hold. That condition is not altogether explicit, and we limit our
discussion to functions W(n) tending to co as » —> t oo in order to save time.

Given any 4 > 0 we let W, (z) denote, for each complex z, the supremum of | ¢ (z) | for

the entire functions ¢(z) of exponential type </, bounded on the real axis and with
[@(n)/W(n)|<1forneZ

Provided that W(n) 2 1 tends to o as n — t o, a sequence of c, , not all zero, with
0 [ ] -

Z |c, |[W(n)<co and Z c,e ink vanishing on an interval of positive length exists if

- 0 -
[o0] .

and only if Z (log Wy (m)/ (1 +n 2)) <oo for sufficiently small values of h> 0.
-

Proof of the sufficiency is like that of our first observation: it suffices to note that the
functions g.(z) figuring therein actually satisfy (by -definition!) the relation

| gn) | < const-W,(n) forne Z

The necessity follows from classical results. If a sequence { c, } having the stipulated
[+ o]
ina ei nhi

properties exists, the function Z c,€ will, for suitable choice of the parameter a,
) —
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vanish on an interval —A<A<h, h>0; finite linear combinations of the ¢/ *" / W(n)

with A from that interval are therefore not uniformly dense in (7, g (Z). A result of
[0 o]

Mergelian ([1], p. 174) thence implies (a fortion!) that j (log W, (x) /(1 +x 2)) dx < o0.
e

From this it is easy to deduce by an argument like the one on pp. 523-524 of [1] that

z (log W,(n) /(1+n 2)) <o, (Cf. also the proof of (11) in §4 below and then the one

L)
for (3).)
3. A lemma about Poisson integrals

If, in the lemma of §2, one could take the type a of f(2) to be arbitrarily large, we
would have the theorem on the multiplier of Beurling and Malliavin. Such an extension
is possible. For it, we will need a result about the Poisson integral

72(/(1)

IZ!

U(z) =~

Q0
formed, for 7z > 0, from a positive function U(f) # 0 with J- (U /(1 +¢ 2))a’t < o0,
— 0
Foreachx e R the ratio U(x + iy) / y is, when y > 0, a strictly decreasing function of
~», tending (by dominated convergence) to 0 as y — co. Given any fixed a > 0, there is

hence a definite Y(x) > 0 such that U(x + iy) <ay for y > Y(x), while U(x +iy) > ay for
0<y<T(x) (itis possible that Y(x) = 0 if U(¢) vanishes at x).

Theset

D ={xy); y>Yx)}

is thus a certain domain in the upper halfplane, and Q = { .Yz 2 0 }~2), a certain closed

region lying above and on the real axis, whose interior may consist of several components.
Concerning Q_ one has, from [6], the important

Lemma. (Beurling and Malliavin, 1967). For a > 0 we have

J‘ J _dedy

l+x +v
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For the reader’s convenience, we sketch the proof. Fixing a consider the function
V(z) = a.¥z — U(z), harmonic and > 0 in f/)a and zero on its boundary y = Y(x). Fix any
Yo > 0 for which V(iy,) > 0.

For each r > Y(0) there is an open arc o(r) of the circle |z | =r lying entirely in Vja R
with endpoints on the curve y = ¥(x) and on opposite sides of the y-axis. The union of
these o(r) is a certain domain D¢ 2 ), (perhaps properly). Put Q = { Fz203~2; then

-~

Qo Q, and we proceed to show that J_‘.dxaiv/(l +x
Q

2 + v 2) <o, which implies the

lemma.
If R>y,, we denote by 2 (R) the part of £ lying within the arc o(R), making
¥, € £(R). The harmonic function F(z) is < aR on o(R) and zero on the rest of 0.2(R),

so we have

Mivy) < ako y(S(R), i), | @

where w, (', ) is harmonic measure for D(R).

Writing r8(r) for the lengih of o(r), we have by a formula of Ahlfors and Carleman
(I71, p. 102),
(|
_dr

0 R(G(R)’ z‘yo) <constexp|~n J. ré(T)J .

’VO

The endpoints of each arc o(r) are of the form re'® 1), o™V with ¢ (#) and y ()
both 20 and <=n/2. Thence, 6(r)=n — ¢ (¥) — y(r), and we can use the relation
L/6(my=1t/n+(p(r)+w(r)/ 7 in estimating the integral on the right. In that way it
is found that '

const.y ' )
O p(O(R). iy) €= exp |-+ jﬁﬂm{fﬁ dr] .

b4 T r
J
The integral here is just jj.dxdy / (.x2 +y 2) , SO ifjjdxa’y/(l +x? +y 2) =0, We
Qn{y,<lz|<R} Q

must have p(c(R), 1y,) =o(l/R) for R-> oo, That, substituted into (4), gives

W(iy,) = 0, a contradiction. We are done.
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4, Construction of two majorants

Taolée now any fixed entire function F (z) of exponential type with | ¥ (x) | > 1 on R

and j(log |F(xj|/(1+x 2))dx <o ; log | F (x) | 1s then continuously differentiable
-0 ‘
and indeed real analytic at the points x € R. There is no loss of generality in supposing
that all the zeros of F (z) lie in .Yz <0 ([1], p. 54; [4], p.90), and that property we
henceforth assume.
We first show how to construct, for any 4> 0, a majorant W(x) of | F'(x) | with

o]

| log W(x) — log W(x') | <h|x—x"|on Rand alsoc j. (log W(x) /(1 +x 2)) dx <o,
-~ 0
Start by taking the open set
O= {xeR; log|F(E)|-log|F(x)|>hE-x) for some §>x}
outside of which d log | F (x) |/ dx is everywhere < A, (Jis a finite or countable union of

disjoint open intervals. All of those must have finite length, for otherwise there would be
a sequence of &, tending to oo with lim inf(log|F (§,) )/ &, 2 h, and that would
k— o

contradict the known fact that functions F (z) of the kind under consideration here have
zero exponential growth along the real axis ({1], p. 174; [4], p. 97; [5], p. 313).

We thus have O=1_) I, with the disjoint finite intervals I, = (a; , &, ). Their forma-
k
tion is best visualized by imagining parallel rays of light, all of slope 4, shining downwards
upon the graph of fog | F (x) | vs x. Certain disjoint portions of that graph will thus be cast
in shadow, and the intervals I, lie precisely under them.

From this dbservation it is clear that for each Ik = (ak , bk ) we have
log | F(b,)|=log | F(a,)i+h(,-a,) (5)

Let us now define a function o (x) by putting '

[log ! F(x)| for x g O

®,(x) =1 : .

1 log | Fa,)|+h(x~a,) if a,<x<b, .
Then © _(x) is continuous, piecewise smooth, and > log | F (x) | on R. All the discon-
tinuities of o', (x) are at the left endpoints ay of the intervals of (; elsewhere, ', (x) exists

and is <h. Atany a, , m;(ak —)and co"_{ak + ) both exist, with the former equal to the

derivative of log | F (x) | at @), and hence < /; the /atter is just equal to A.
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We have, besides, the

Lemma.

Proof Because F(2) has all its zeros in ¥z <0, we may just as well assume
| F (x + iv) | to be an increasing function of y > 0 for each real x; that will in any event be

so if we replace F (z) by e "?F (z) with ¢ sufficiently large > 0. (Verification by
logarithmic differentiation of the Hadamard product; see [4], p. 226; [5], p. 457.)

We have j (0,00 /(1 +x?) de= J (log | F (x) /(1 +x 2)) dx < oo, 50 it is only nec-
R~ R-O) '

essary to show that
o (x
j ) dx <o,

| +x°2

For that purpose, we apply the lemma of §3 to the function

=]

L[ Zzlog|F ()|

Y fz-tfp

Uz) =

harmonic and ( without loss of generality) strictly positive in .z > 0, noting that for
suitable choice of the number 4 > 0, we have in that half plane

log | F(2) | =A% + U(z) - (6)

([1, p. 47; [4), p. 92; [5]. p. 311).
Consider any interval I, = (ak , bk ). Since log lF(bk +1y) | increases for y > 0, we

have, for

1 |
V=57 108 1 F(B,)] ¢

. I
Ulby+ 1y ) 2 5 log [ F (b)) | =4y,

by (6). From (5), we have 4y, > % h(b, - a, ), and Hamack’s theorem hence gives us a

constant ¢ depending on 4 and A with
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Ulx +iy, )2 cdy, for a,<x<b, .
The rectangle of height y, with base on the interval /, therefore belongs to the set
Q  figuring in the lemma of §3 if a is taken equal to c4. By that lemma, we thus have

b

==

_ﬂ_qo_

I +x +y2

o!—.kﬁ
ey

o

k
k
When a; > 0, the denominator in the corresponding integral appearing on the left is,
by (7), <1+ bi +(log [F (b)) 27447 <1+ const.bk , I (2) being ofexponential‘type.
Referring again to (7), we see that
Z( —a,)log | F (b, )I

2
4,20 l+b

®

This, and (5) imply in particular that Z (b, —a, )2 /(1 + bi ) <o, but then there can only

>
ak_O

be a finite number of bk > 1 with bk > 2ak . Thence, by (8),

S by ~a)log | F(b )|/ (1 +ar )<,
bkzl

" 50, by the definition of @ (), we have

The corresponding sum over the /; with a; <-1 is seen in like manner to be

convergent, and the remaining /, (if there are any) lie in [-1,1] on which @ (x) is certainly

bounded. Therefore.
0} (x) o, (x)
z 25 <o

_l+\¢ l+x
7

The lemma is proved.
Our next step is to obtain a continuous pieccewise smooth o _(x) > log | F'(x) | with

®_(x-) and o’ (x+) both >~ A, by a construction analogous to the one of ,(x). The

function o_(x) may even be gotten by applying the latter procedure directly to
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log | F (- x) | instead of log | F (x) | and afterwards changing the sign of x. It is readily
seen that

>}
®_(x)
— dx < oo;
I +x

-0

for that it suffices to répeat the proof of the lemma with F'( —z) in place of F ().
With ® (x) and @ _(x) at hand, one takes finally
o(x) =max (o (x), o_(x))
and puts
Wix) = @,
One then has the

Theorem. For the function W(x) just defined, we have

| Fx)|<Wx), xe R,

[eo]
[lost@ g o

1+x
o0

and
| log Wi(x) —log W(x') |[<hlx—-x"| on R .

Proof: The first two relations follow directly from the corresponding properties of
o (x) and 0 _(x).

The last one is a geometrically evident consequence of the inequalities m;(x) <h,

©' (x) > - h and the definition of w(x); let us nevertheless give a formal proof in order

that there may be no doubt.
For any given x, , o(x,) = max(e_(x,), 0_(x)) is either equal to log | F (x,) [ or >

that quantity. In the former case, @_(x,)) and @_(x,,) must both equal log | F (x) |, so x;,
lies outside the two open sets where cither of the first two functions is > the last one.
That makes d log | I (x) | / dx both <h and > - h at x;, (see the description of (Jabove).

At such a point x,,, o’ (x+) has the same value as the preceding derivative, while

u);(x +) is at least as large, being, however, <A, We see that o'(x, +) exists and lies

between — A and A.
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When o(x,) > log| /" (x,) | and w(x) coincides either with o (x) or with ©_(x) on a
neighbourhood of x,, '(x,) exists and is either # or — 4. The remaining possibility here
is that @(x) =w_(x) for x;—-n<x<x, and o(x)=w (x) for x, <x<x,+n, where
M > 0. Then o'(x, +) exists and is equal to 4.

The continuous function o (x) thus has a right-hand derivative ®’(x + ) at every point
x, with —h < o'(x+)<h. This implies that |o(x) - o(x') |<h|x-x"| on R. We are
done.

The construction just carried out enables us to do another one, interesting in its own

right.

Theorem. If F (2) is entire, of exponential type, with |F(x)|21 on R and

j(log [Fx)|/7( +x2))dx <, there are entire fimctions H(z) of arbitrarily small

— 0

exponential type with | H(x) |2 | F (x}|on R (mdj (log |H(x)| /(1 +x 2))dx <.

- 0

Proof: Fixingany A > 0, we form the majorant W(x),'ofl F (x) | having the properties
ensured by the preceding theorem and show how to obtain an entire function H(z) of
exponential type < 24 fulfilling the above condition on iog | H(x) |, with { H(x) | = W(x)
on R. The procedure has been used elsewhere ([8] pp. 302-303), and we-explain it here
for the reader’s convenience.

Put

Q@) =ad+ Y)Y,
and then define M(z;) (for any complex z;) as the supremum of | f(z,) | for the entire
functions f(z) of exponential type < 4, bounded on R, with

j (@) P/ Qe < 1. S ¢
For such f, we have
log /)1 <41 21+ '%"Ogif&?l oy

|z~

([11, pp. 47-52; [4], pp. 92-93; [5],p. 311), so'by (9) and the ineqm{ality between arithmetic
and geometric means,
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[ o]

8%
logif(z)|sh;yz|+2iﬁj'll 2 | g(Q(t))dt’

t ] T

-0

provided that | 9z | = 1. We have, furthermore,

0

ogl) <+ L [0

forx € R so by the preceding relation and Fubini’s theorem,

logl/(x)|<2h+ g @O/™) 5 reRr.
(—t) +4

This holds for all fof the kind under consideration satisfying (9), so by the definition of M,

e ]

log ((t + 1)(W(t)) Yt
(x- t) +4

log M(x) < 2h + - J.

on R, and thence

0

—-5—de<oo S an

l+x
-0

Substituting log | £(f) | < log M(¢).in the right side of (lO),i we see by the last relation
that the collection of our entire functions f(z) satisfying (9) is a normal family in the
complex plane. That means that to get the supremum M(z) we do not need to use the

whole collection of those functions £, but may take any subset of it, dense therein in the

12

norm ( (LF ) B/ 1) dt

Lo

One can now show that (M(x))2 coincides on R with an entire function of exponential
type < 24. Take any countable subset of our collection of functions f(z), dense therein in
the above norm. By applying Schmidt’s orthogonalization process to that subset, we arrive
at a complete sequence { p, (2) } of entire functions of exponential type < /4 bounded on -
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e o]

R, orthonormal for the inner productj (p(x) a;)- 1 Q(x))dx. According to the obscrvation
- m-
just made, M(x) can then be obtained as a supremum of the finite lincar combinations of .
the p, (x) satisfying (9). From this, a simple computation bascd on Schwarz™ inequality
shows that
M= 1p, 0P, xeR.
H
Foreach N, Gy (z) = Z r,@p, ( z)isentire, bounded on R, and of exponential type
n<N

< 2h. Moreover, Gy (x) < (M(x))z, so by an analogue of (10),
[o.¢]

|.Vz | log M(1)

Y

(12)
lz—1f

log | G () | <2h | 72| + i

-0
for all N. We see from this and (11) that the G, (z) form a normal family in the complex
plane. When N — oo, they converge on R (to (M(x))z); they hence tend cverywhere to an
entire function (G(z) also satisfying (12), and it is thence readily verified that G(z) is of
exponential type < 2h. (To estimate the growth of G(z) inside sectors of the form
|arg z| <8, |arg z — m | <§, use first (12) to get uniform estimates for the Gy (z) on the

boundaries of those sectors and then apply Phragmén-Lindelof to deduce uniform
estimates inside them.)

Since G(x) = (M(x))z, we have

Q0
j(log G(x) /(1 +x2)) dx <o
-0
by ¢l1).
It remains finally to show that a suitable multiple of (M(x))2 dominates W(x); that is
where we use the property

| log W(x) - log W(x’) | <hlx-x'] (13)

Fixing any x, € R, we take the test function

.f(‘)(z) = CO0S }7 ’J(z — .\"())2 - [e(z)
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with R, = (log W(x,)) /N2 h. Because the Taylor series of cos w involves only even

powers of w, fi(2) is entire; it is of exponential type 4 and bounded on the real axis. We

have log f,(x,) < (log W(x))) / 2, so log [ /() | < log W(x) for | x - Xy [<R, by (13).

The same holds good when |x-x,[>R, . for then |f,(x)|<1<W(x). Thus,
0, .

| £y(x) | < W(x) on R, so kby the de‘ﬁnition of Q(x), J‘(]ﬁ)(x) |2/Q(x))dxs 1. Thence, ‘

M(xg) > fi(,) 2 % (W(x) 2, and finally G(x) = (M(x))? 2 % )2 on R , making

4G(x) 2 W(x)> | F (x)| there since |F(x)|>1. The theorem follows on taking
- H(z) =4G(2).

S. The theorem on the multiplier
- Theorem. (Beurling and Malliavin, [3]). I f(2) is entire, of exponential type, and

(log*| f(x) |/ (1 +x 2)) dx < oo, there is, for any v > 0, an entire function \(z) £0 of
log |,

Z);;mncntml type < with (1 + | f(x) Dy(x) bounded on R .

Proo f Let Giz)=1+f(2)f(z); then G(z)-is entire, of exponential: type and

[o o]
Gx)y=1+|f(x) l?‘ >lonR. Also,J- (log G(x) /(1 +x 2)) dx < oo, so the theorem of Akhi-
7 -
ezer already used in §2 gives us an entire function g(z) of exponential type with all its
zeros in 7z < 0, such that G(z) = g(z)g(Z ). Given 1 > 0, we put

F(2)=g(nz/n),

F (z) satisfies the hypothesis of the second theorem in §4 so there is, for any 4> 0, an
entire function H(z) of exponential type <2k with |H(x)|>|F(¥)| on R and

o o]

I(log {HG) |/ (1 +x 2))dx < oo,
—

Taking A >0 small enough we get from the lemma of §2 an entire function
¢ (z) # 0 of exponential type < 7 with H(x)¢ (x) bounded on R. The product F (x)¢ (x)
is thus bounded on R and the desired conclusion holds with y(z) = ¢(n z / 7). We are
done.
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Remark. Beurling and Malliavin also proved in [3] that if W(x) = | has the last two
of the properties enumerated in the first theorem of §4, there are entire functions
y(z) # 0 of arbitrarily small exponential type with W(x)\y(x) bounded on R . At the end
of [8] is was shown that this result follows from the theorem just proved; for that purpose
the construction made to establish the second theorem of §4 was used. Now we see by
the first theorem of §4 that the result just stated also implies the theorem of the present §.
These two results are thus equivalent.
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CooTHoOLIeHWe MeXIy ABYMS Pe3y/bTATAMHU O UeNbIX (hyHKINAX
9KCTIOHEHUNAJILHOTO THNA

IMon Kycuc

Teopema o nomuomax, chopMyIHpOBaHHAas B Ha4ale CTaThi, PACAPOCTPAaHEHA
Ha cify4ail Ueibix (BYHKUMH MaJlono SKCIOHEHUMAIBHOTO THRA. DTOT pesyabsrar
MCTIONB30BAH JIs1 BRIBOMA TeopeMbl bepauura—Mannsisana o MyIbTHIUIMKATOPAX.
[MpuseneHa Takke TOYHaS XapaxTepH3aliMsa FCpsuka yObIBaHMA KOa(QPHUMeHTOB
Dypre HeHYNCROH DYHKIMH, McYe3al0lIel Ha HEKOTOPOM WHTepBale.

ChiBBinnomeHHs MK IBOMa pe3yabTaTamMu Rpo uimi ¢pyHkuii
eKCNoHeHabHOro THITY

[Ton Kycic

Teopemy npo moninoMu, 1o cQOPMYILOBAHA Ha NOYATKY CTATTI, POIMOBCION-
KeHO Ha BHIAIOK Rix GyHKILIT Manoro ekernonemiiannioro tuity., Lleit pesynn-
TaT 3aCTOCOBAHO JUIS BHBeASHHA TeapeMi Bropailra—Manasisena npo MyJILTHRII-
Katopu. TIpupesico  takox  TOUHY  XapakKTepHsailii)  NOpSaKy  cragaiHs
KoaiieHTis Ddypp’e HeuyIboOBOT PYHKLUITL, SIKa SHMKAC HA JCAKOMY iHTepBa.
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