Mavemarueckas GU3NKa, aHannsa, reomMeTpus YAK 517.958
1995, 1. 2, N0 3/4, ¢. 296-305 : :

The multistability in the stationary scattering
problem for a nonlinear mean-field model

A. Boutet de Monvel
Universite Paris 7, Mathématiques, case 7012, 2, Place Jussieu, F-75251, Paris Cedex 05, France

A. Marchvenko

Moscow State University of Communications, 15 Obraztsova str., 103055, Moscow, Russia

L. Pastur

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
47, Lenin Ave., 310164, Kharkov, Ukraine ‘

Received November 15, 1994

We consider the stationary scattering problem for the nonlinear mean-field model of wave and
particle propagation and the quasi-stationary solutions of the scattering problem for the wave
equation with the same nonlinearity. The multistability phenomena are discovered and studied.
For the quasi-stationary solutions the asymptotic decomposition is obtained.

In {1]Jona-Lasinio with coauthors has investigated numerically the one-dimentional
nonlinear mean-field model of the electron propagation. They obtained results demon-
strating selfgenerating oscillations of the transition coefficient in the non-stationary
regimes of the wave propagation.

We shall consider the stationary problem for the model and the quasi-stationary
solutions of the scattering problem for the wave equation with the same kind of
nonlinearity. As for the physical background of the problem we refer to [1 ) and start with
the Schroedinger equation (in dimensionless variables)

2
SpL LY _avyp - B+ 1) +3(x = D)y M
t o ax
or the wave equation
?.=3;.T_avw-p(a(x+ 1) + 8(x = 1)y, a9

where a and § are non-negative costants and the potential V = V(x) depends upon y in
the following manner:

0, lx|>1

V(x)=« 1 (2)
fltplzdx, | x|<1.
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The multistability in some nonlinear stationary scatterig

The stationary scattering problem consists in finding' the solution

yx,t)=e ~ iEt u(x) of (1) with given E, satisfying the conditions
e iEtHIk(x+1) 4 R~ iEt-ik(x+1) Lo,
v(x, )= Te~ 1Bt + ik(x = 1) x>1 3
with E = k% (k 2 0).

For (1’) the solution is of the form

v ) =e” *ux)
with given k and satisfies similar conditions with & instead of E.

The constants T and R are called the transition and the reflection coefficients, res-
pectively.

The paper is organized as follows we study the stationary solution of (1) in Section 1.
The only difference for (1') is that kf should be substituted instead of Ef in all the
exponents. The result and even the pictures are the same since our denotatlons include
k=VE

Section 2 devoted to the quasi-stationary solution of the scattering problem for the wave
equation, We get the asymptotic expansion of the solution of the scattering problem with
slowly changing amplitude of the incident wave.

The last section is devoted to a discussion of the multistability phenomena that
manifest themselves in the obtained solution.

It is the pleasure of the second and the third authors to express their grantude to the
University Paris VII for its hospitality.

1. The solution of the stationary scattering problem

Let us define z by the equality
. Z=aV -k 4 v | - (4)

Then, since k, V2 0, wemaysetz=§orz=i{ with{ = 0.
Substituting (3) into (1) we see that (for z % 0)

eik(x+l)+Re~ik(x+l), x<~1; , - (5)
“u(x) =4 Ae®™ + Be~ **, | x| <1;
Tekx— 1), x>1,

or (for z = 0)
GG D) 4 pe=ikx+ 1) Lo .
u(x) =4 Ax + B, |x|<1; <"
Telkx=1), x>1,

with some unknown constants 4, B, T, R and z.
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Using the giuing conditions at the pomts x;=*1wefind 4, B, T, R (z # 0 being
considered as a parameter): ‘

A=2ike  *(B -z~ ik)A™ !, ®
B = = 2iké* (B + z — ik)A™ L.
= — 4] -1 .
= — 4jkz A ‘, ‘ D
R =2{ (22 + ¥* + %) sinh 2z + 2Bz cosh 2z }A™},
where A equals v ‘ ,
A =4{zcoshz+ (B — ik)sinh z}{zsinh z + (§ — ik) cosh z }. (8)

Asonecaneasﬂvcheck | T2+ | R 2=1.

Calculating explicitly Vin terms of A, B and z and using (4), we obtain equality (9)
connecting z with E, «, and f:

(E + z2){ | z cosh (z) + B sinh (;) |2 + E | sinh (z) |2} x
x{ | zsioh (2) + Bcosh (2) |2 + E | cosh (2) |2} =

—aB((15 |24 £ e S LE) o
+(l2|2—5~52,E‘L_Z,Q_Z-pﬂsihh(h)smh(z;)} : o 9

2(z -

(we have also replaced K by E). :

This equality is in fact the equation with respect to z, with given E, a, . But the
investigation of the solution z(E, a, ) is very complicated. However, it may also be
considered as a cubic equation with respect to E, with a, §, z being its parameters. Finding
the solution E(z, a, f8), we get the inverse function to z(E a, f) that can be studied.

Three cases arise from (4): z may be :

a) imaginary (z = zc“,, >0,

b) real (z = >0),

¢) zero (z = 0).

They should be considered separately

a) Let z = i { with & > 0 (this means that E = k> >aVand k >£). Then (for§ # nx/2)
equation (9) has a unigue positive root. We denote by E(§) this rcot considered as a
function of §. If & = nn/2, itis larger than Zj Note that though E({) is unique for a fixed
§ there may exist many values of ¢ with the same E(§).

ForC nr/2 (9) degenerates to a quadratic equation. If a < ?;2 there still exists a root
E(%) >t For a = £ there are no positive roots, and as ¢ - n:v/ 2 the root E({) tends to
+ o, :

One can easily get main asymptotics of E: they are
E=t%+2a +0(1/¢) when & - + o,
E=(a -3 - nn/2)” % when § » nn/2<Va.
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When § - 0, the result depends upon the relation between a and g : if

2 ' '
a<a0—»§ﬁ%1—é-)—— o (10)
2(48% + 6 + 3)
we get . o
“E->+0,as £-»0;

if on the contrary & > a,, , we get

0?
E->E0+0, as £ =0,

‘where E, is the positive root of the limit equation
EE+EA+pH=3E e+p+ LD

This means that for a sufficiently large « and E < E, a) cannot be the case. In other

words, we shall have E = k*< aV, which is the case b). ‘
b) Now for fixed ¢ and small « there are no positive roots of (9); as a grows it reaches
the critical value « , (, ) where a single root of (9) appears, while fora >« , (€, §) there

are two roots. As a - + o, one of them tends to 0 while the other tends to + «. Note that
this time for £ < E; there exists the unique{ = { (E, a, f).

As § = 0, we come to equation (11) as in the case a), but this time the largest positive
root approaches £, from below. In this case (9) has no roots larger than E,.

¢ In the case@ 0 representation (5) of the solution in the domain — 1 < x < 1 is no
longer valid. In this case we have (5"). Going through all the calculations (that are rather
easy), we come to the limit equation (11) that was considered above.

The computer simulation gives the picture fig. 1: the larger is « the higher is thc curve

shown in k() = VEQ).

2. The quasi-stationary solution of the scattering problem for the wave equation.

The physical considerations show that for the wave equation the mean-field approxi-
mation may be valid only in the case when the time it takes the wave to cross the nonlinear
area is small when compared with that of the considerable change in the wave’s charac-
teristics. In our model this means that the incident wave should be modulated by some
slowly changing signal. Since the speed of the wave in dimensignless variables equals 1,
we should introduce the small parameter ¢ in the modulalmg function and obtain the
mc1dent wave that looks like the following;

win (x, 1) = ezk(x e p(e(x+1-1) ’ 12)

for <0 and x < — 1. For technical reasons we shall assume that log (p(y)) is a smooth
function.

The scattering problem in this case consists of finding the solution of the wave equauon
(1') satisfying the following conditions at infinity:
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, Yy, (x—=0D+y, (x+1), x>1;
" (x, t) = in R(

Yr(x=10, x<-—1
with some unknowny, andy, .

Since the wave changes toa considerable extent, we must assume that the characteristic
time considered is atleast of theorder O(e ™ 1) We shall seek for the solution of the problem
in the form (cf. (5))

HEFI=D o (e(x + 1 = 1) +

4o TN o e(x+ L+ D) R (e(x + 1 + 1)), *x<—1

Yy(x, 0= e” ® o (= &) u(x, e1),

KX =D g (e(x = 1 = 1) T (e(x — 1 — 1)), x>1,

where the functions «, T'and R have the asymptotic expansions

u(x, 1) = ug(x, et) + e u,(x, &) + ... + &"u (x, et);
R(x) = Ry(x) + e R (x) + ... + "R (x);
T(x) = Ty(x) + eT () + ... + " T (x).

Inserting these formulas to equation (1') and glueing the solutions at x = = 1, we get
the sct of problems for all the terms of the expansion. Due to the introduction of "the slow
time" ef = 7, they are analogous to those for the stationary problem. To shorten the
nolations we write everywhere u; (x) for U (x, et) and ¢ for p(— €t); the dot like in u

stands for the derivative in respect to the "slow time e = 7" (and not just ¢):
We get for the zero order

1
uy (X) + k2u0(x) - ap? [uo(x) f | uy(x) |2dx:| =0,
-1

) (14)
B - ikyus(— 1) = u")(— 1) = — 2ik,
8- ik)uy(1) + u(',(l) = (;
for the first order we get the linear problem
1 ) 1
) (x) + kPu, (x) — a p? I:ul(x) f | ug(x) | Zdx + 2u(x) f Re(uo(x)q(x))dx] =
o -1 ) - 1
J = = 2k ((X)p — Uy’ a5
p (B —ikyu (= 1) —u(-Di==20"+ujp (= 1) =i (- Dy
p B - ik (1) +uy() =uyp’' (- 1) = (- Dy
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and for the order j (1 <j< n) the same kind with the different r.h.s. that is a sum of the

terms Ugy Upseeos uj_.l , with the coefficients that are equal to integrals of bilinear
combinations of the same functions.

For the last term in the expansion we have a more complicated nonlinear problem:

1
itk n’ui ()2 - aj,k) f Re(uj(x)zl_,;(x))dx] =

piu, + kzun(x) —a<p2[
i+j+k=zn i

=2kl , _ ((X)p —u, _ ()p' 1+ y)"un_ L) =2, _ (X))t i, _,(x)+
+elp'u, () =2, _(x)+ep i, _ (x)— 2ike (u (x)p — u,(x)p")] +

+ ¢? lp"u,(x) = 2p'u (x) + ¢ it,(x)] (16)

where

The conditions at x = = 1 take the form

p (B = k), (~ D=l (= D+ei (= DI=u (- D¢’ =u,_ (= D'~ ,_ (= Dp,
¢ 1B — iy (1) +u () +ei (D1=eu, ()@’ = u, _ () p'~i , _ (). (17

In order to prove that the expansion obtained is the asymptotic one we must study one
by one all the problems from (13) to (16)-(17).

Problem (13) coincides with that considered for the statxonary case and has a
corresponding solution depending on T = et as a parameter. The solution and its
derivatives with respect to x and to T = ¢f remain smooth while there is no singularity. It
appears when the derivative auol dt vanishes. Since the problem depends upon t only via

the terma goz, and ¢ is smooth, the singularity appears at the point where auO/ da =0. As
we assume that k£ = k(a, §) = const, this is the case when 9k/d¢ = 0 (at the points of local
extrema of the curve k(§)), see fig. 1.

Problem (14) depends upon 7 via the known parameter ¢, ui()'c, 7), and functions in the

r.h.s. composed of u,(x, ) with i <j. All of them are smooth and bounded (recall that we

suppose log ¢ to be a smooth function). Problem (14) is linear (over the real numbers)
and has a smooth solution while the respective homogeneous problem has only zero
solution. The solution of the homogeneous problem can be expressed explicitly via &, §,
a ¢>2, and B (cf. Section 1). It is non zero only for a single value of ¢. So at least for ¢ less
than a certain value of order 1 (not depending on ¢) it is smooth.

To obtain the estimate for the last term let us note that the sum

n—1

U, (x, 1) = p(x, el)e” ikt kzoek u,(x, €t)
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Fig. 1. The relation between & and {.The picture shows graphs of functions & = £(§) = VE() for 8 =2 and
o = 0 (the straightline), 1, 4, 8, 16, 20, 24 and 28. On the horizontal axis § varies from 0 to 3.2 ~ 10.052, while
on the vertical one & varies from 0 to 15. The singularities at the points & = nx/2 are clearly visible as peaks. The

larger is.« the higher is the curve showing £(§) = V E(§). The ovals in the left lower corner correspond to the case
b) withreal z = § = 4, 8, 16, 20, 24, 28.

satisfies the equation

1
. ., 2 <
U, (x0=U"(x1)—al,/(x 1) f | U,(x, 1) | dx + e"F(x, 1) . (1;5)
. v : -1 Sl
where F is a known smooth function. . : o
On the other hand, simple considerations following the scheme of the proof of the

existence of the solution of a hyperbolic system (see [3]) show that the initial scattering
problem (1)-(3) has a solution that we shall now denote by U*.

* After this paper was completed G. Jona-Lasinio has kindly shown the authors his preprint [4] where the same

kind of statement was proved for a more general case.
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Subtracting (18) from the equation for the exact solution U, we get the equation for the
differenced = U - U,;

1
8(x, 1) =8"(x, ) — a/2[ 8(x, t)f <| U, (%, 1) I2 + I U(x, t) 12)¢1x+

-1

1
+ (U, (x, 1) + U(x, 1) f Re ((U,(x, 1) + U(x, D) 3(x, D)dx] — €"F(x, 1).
-1

Using the conventional energy estimates and taking into account that § vanishes for
t = 0 and the boundary conditions, one can prove that d has the order nin e.

We see that if the incident wave starts from the stationary one and then changes its
amplitude slowly enough, the solution follows closely the sequence of corresponding
stationary solutions while the amplitude does not reach the first minimum of the curve
k = k(§). Meanwhile the transition coefficient may oscillate and so oscillates the amplitude
of the transferred wave.

IR

) V&

Fig. 2. The relation between the reflection coefficient | R | and the amplitude of the incident wave for k = 100,
B = 2.The valuesof | R | from 0 to 1 are depicted along the vertical axis while that of V& ( = amplitude) along the
horizontat one (growing from 0 at the left end to V28 = 5.29 at the right one). The resonant transparancies are
clearly visible as the graph touches the bottom. The multistability proclaims itself through the existence of several
values of | R | corresponding to the same amplitude.
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3. Discussion

The multistability (bistability, see [5]) is the phenomenon appearing when the wave
is transmitted through nonlinear media. It consists of the non-uniqueness of the trans-
mission and reflection coefficients for given parameters (the momentum and the ampli-
tude) of the incident wave. It is studied in several papers ([7 |, also see the listin [6 ].

It is of no wonder that a nonlinear equation in general may have multiple solutions.
What’s interesting in this simple case is the physical mecaning of the behaviour exhibited
and the possibility to get the rigorous and explicit solutions that allow one to study the
genesis and behaviour of multistability for different values of parameters.

The close study of the results exposed above leads to the following conclusions:

For weak nonlinearity (for small « or &) there is no multistability.

There are obviously as many different stationary solutions of the scattering problem
with the same incident wave e~ i(E= k%) 45 the number of interscctions of the curve
y = k(&) with the horizontal linc y = E.

For nonlinearity («, the amplitude of the incident wave, is large cnough) there appear
"forbidden" values of the momentum¢ in thearea | x | < 1. Namelyfor | § |2 <a &cannot
be equal to kz/2. Nevertheless, a solution exists for all energies £> 0. As ¢ approaches
these forbidden values (while « remains constant) the reflection coefficient tends t0 0. This
is not a wonder since at these points E tends to infinity.

The dependence of the reflection (or transmission) coefficicnt on the amplitude of the
incident wave is also of some interest. A complicated picturc (Fig. 2) appears that describes
the implicit function R(«) generated by two non-monotonic ones R(¢) and «(§).

The results on the quasi-stationary regimes obtained in the second part of the paper
show that except at some special points of bifurcations this solution behaves properly,
following the sequence of stationary states. But when combined with the function R(a),
they may lead to a complicated behaviour of R as a function of time.

The behaviour at the bifurcation points (that is at the local minima of the function
k(€), see Fig. 1) is unstable and too complicated to get the explicit solution.
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MyJabTHCTAOUIBHOCTD B CTALMOHAPHOI 3a1a4e paccesHUd
1151 HEJIMHEHHOM MOJEAM TUNA CPeaHero nog

A. Byrte ge Mousesn, A.B. Mapuchko, JLLA. Tlactyp

PaccMOTpeHbl CTALMOHAPHAsS 3aaia PAacCesHHsl Ul HCAHHEHHOM MOACAM THNa
Moaemn cpeuHero noja n KBaSMCTaU,MOHaprle peureHns COOTBCTCTBY OULEN) BOJTHOBOIO
YPABHEHMS C HEJIOKABHON HEMHENHOCTBIO. M3y ueHO aBeHMe My abTUCTaOMABHOCTH B

craunouapuoﬁ 3anaye M MNOJydeHO aCHMITTOTHUCCKOC DPAa3JIOKCHHME KBA3UCTALMO-
HAPHbIX PEILICHHU.

My AbTHCTA0LIBHICTD B CTauioHapHii 3aaaui po3cisHHd
AJ1s1 HeNiHIMHOT MOoaeni THNY CepeiHbOoro NoJs

A. Byre ne Mousens, A.B. Mapuenko, JI.A. [Tactyp

PosrnsHyTo crauioHapHa 3azava po3CiaHH$t A HeNiHiIMHOT Mopeni TNy moaesi
CepenHbOro NoJist Ta KBa3iCTaLiOHAPHI PilUEHHS BiINOBIAHOTO XBWJILOBOTO PiBHSIHHS 3
HEJNOKANBHOK HENiHIMHICTIO. BHMBYEHO aBMule MYnbTHMCTAGiMBHOCTI B CTaUiOHAPHIN
3ajaui i OAEpXKAHO aCUMITTOTUUHMI PO3KJIAX KBA3iCTALiOHAPHMX PillleHb.

Maremartuueckas puamnka, aHanus, reometpus, 1995, 1.2, Ne-3/4 305



