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Let Q be a domain formed by removing n radial segments connecting the circles
{z:|z|=rg}tand{z:|z|=1}from the unit disk D. Let Q, be a domain of the same type
which is invariant with respect 1o rotation by the angle 2/ n. If w(z) and w (2) are the harmonic
measures of the unit circle with respect to these domains, then the inequality

w(0) = wj (0)
holds, and the equality is possible only if the domain Q coincides with Qo up to rotation. This

proposition is known as the Gonchar problem which has been proved by Dubinin. The aim of this
paper is to give a more simple proof of this theorem.

In 1984 Dubinin [2 ] proved the following theorem:

Theorem 1. Let D be the unit disk {z: | z| <1} and let

n o
Q@=D\U7e%, A,€10,21), I=1lry,1],
k=1 - '

def
where 1§ = {Ez:z€ 1} and let QO be a domain of the same type with Ak = 2rk/n. Let
w(z) and w, () be the harmonic measures of the unit circle with respect to these domains
respectively. Then

w(0) = w, 0y,

and the equality is possible only if the domain Q coincides with Qo up to rotation.

Dubinin’s proof attracted attention of many analysts and a series of papers related to
this proof appeared, see, for example, papers [2-5]. This proof was based on
Desymmetrization Principle for Dirichlet integrals and on a generalization of a Polya
theorem on decreasing of Dirichlet integrals after a circular symmetrization. The genera-
lization of the Polya theorem and its application is sufficiently complicated and here we
give the new proof of Dubinin’s theorem which does not use any circular symmetrization
and uses Desymmetrization Principle only.

Lemma 1 in our paper is a convenient form of Desymmetrization Principle invented by
Dubinin [2], Lemmas 3 and 4 are its application to special functions. Lemma 2 establishes
the existence of special mappings which is necessary for proving Lemmas 3 and 4. Lemma
S is trivial, but very essential for proving the main Theorem.
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Let us begin with some definitions. Let u(z) be a continuous function defined in a
domain B of the complex plain C and smooth in this domain except some finite set L of
smooth Jordan arcs. Denote by D(«, B) the Dirichlet integral of this function in this
-domain: .

D(u, B) = f f | Grad u(z) |* dm.(z),
B

where m., is the plane Lebesgue measure and the integral is taken over all the domain B

except the finite set of those Jordan arcs where Grad u(z) is not defined. If the domain B
coincides with the whole complex plane C, we will denote the corresponding Dirichlet
integral by D(u). So called Minimum Principle (see, for example, [6]) for the Dirichlet
integrals is well known: let B, be a subdomain of B, if a continuous function v(z) coincides

with u(z) on B\ B, and is harmonic inside B, , then

D(v, B) < D(u, B)
and the equality is possible only if u(z) is harmonic inside B, (in other words,
ifv(z) = u(z) on B)). ‘
Let K, and K| be two closed sets in the closure of B. Consider all the continuous

functions smooth on the B except maybe some finite set of Jordan arcs and take the
infimum of Dirichlet integrals over all such functions which are cqual to I on K, and 10 0

on K. Denote this infimum by C(Ko, K,, B) and call it the capacity of the capacitor
(KO, K,) with respect to the domain B. If B coincides with the whole complex plane, we
denote the capacity of the corresponding capacitor by C(K, K ). If the domain B and the
sets K, and K| are sufficiently "good” (for example, when the boundary of the domain
B\ (KO U Kl) consists of smooth Jordan arcs), then according to Minimum Principle the
capacity C(KO, K,) may be evaluated as the Dirichlet integral of a potential function v(z)
of this capacitor:
‘ C(K,, K,, B) = D(v, B),

wherev(z) is a solution of the Laplace equation of the mixed Dirichlet-Neumann boundary
problem:

vi@é) =1, §EK1»
W =0, tek,,

d
—%§l§l=0, E€B\ (K UK)),

(see, for example, [6]).

In what follows, the main role will be played by 2n-fold mappings of the complex plane
that are continuous and analytic except maybe some finite set of smooth Jordan arcs. Since
the Dirichlet integral is conformally invariant, then it is expected that such mappings will
preserve Dirichlet integrals in some sense.

Let us consider in details some of these mappings.
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Let s(?) be a continuous 27-periodic function with the following properties:

a) the range of s(2) is the interval [0, n/n];

b) the equation s(¢) = a has exactly 2x solutions on any period as a € (0, n/n);

) | s'(f) | = 1everywhere, except some finite set of points on any period of the function
s(h).

With every such function we associate a 2n-fold mapping S(z) of the complex plane C
onto the sector 4, = {z:arg z € [0, /n]} defined as

S(z) = | z |e 5B, §))
This mapping is 2n-fold in the following sense: if we identify therays {z:argz=0}
and {z:arg z =n/n}, then the preimage of any point z € A  contains exactly 2 points.

The mappings of the type described above preserve Dirichlet integrals in the following
sense:

Lemma 1. Let u(z) be a continuous function defined on the angle A " and smooth

everywhere on this angle except maybe some finite set of smooth Jordan arcs. Let
D(u, A”v) be its Dirichlet integral. Then the equality

1
D(u, A,) = 75— D(ue S) : 2
holds, where D(u o S) is the Dirichlet integral of the function
. uoS(z) =u(S(z)), z€C,

over the whole complex plane.

Proof. Divide the angle An into a finite number of the angles An ; whose interiors do

not contain the critical rays of the mapping S(z) (those rays whose arguments are the
critical points of the function s(#). The preimage of any 4 ; is a union of 2n angles of the

same opening and with nonintersecting interiors. The restriction of the mapping S(z) on
any angle Anjis a superposition of a rotation and a mirror reflection which do not change

the value of the Dirickiet integral. So relation (2) follows from additivity of the Dirichlet
integral. The lemma is proved. O

The following our step is to construct the mappings of S-type possessing some special
properties. Since the mapping S is completely defined by the function s(¢) with propertics
a) —0), we restrict ourselves to constructing the functions s(£). The following lemma is very
useful for our further applications.

Lemma 2. Let L be a 2r-periodic set containing exactly n closed intervals on a period
with nonintersecting inicriors (some of these intervals may be one-point sets and some of
them may have common endpoints ). Let | L | be the total length of these intervals evaluated
on u period. Then there exists a function s(t) possessing properties a) = ¢) and such that

sTHI0, | L|/@2n))= L. 3

Proof. Letf(¢) bea continuous 2x-periodic function such that | /'(2) | = 1 except

some finite set of points on a period. Let the range of this function contain the scgment
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[0, ] L |/(2n)). Let I be the range of all the critical points of the function f (#). The points
of I will be called critical levels. The preimage of any critical level is a set which consists
of a finite number of minimum and maximum points of the function f () on a period. If the
-number of the minimum points coincides with that of the maximum points for some critical
level, then this level is called complete. Otherwise, the level is called incomplete. Let / be
a critical level of a function f (f) possessing properties a) and ). Introduce the deficiency
of the level [ as ’

d(f, ) = #max(l) - #min UR
where # () and # . (]) are the numbers of the maxima and the minima of the function

f(Hona penod Wthh correspond to the level L It is not very difficult to note that for
checking whether a function f (¢) satisfying conditions a) and c) satisfies condition b) as
well, we have to verify that any its critical level of the interval (0, #/n) is complete or, in
other words, d(f, {) = 0 forany ! € (0, n/n). Indeed, if so, then the number #(r, a) of the
solutions of the equation
f(H=a, a€(0,n/n),

on a period does not depend on a. This number is even smce thefunction f (t) is 27: perlodxc
and continuous. Since | f'(f) | =1

mes (f 7 Y(E) N 10, 2t ]) = #(f, a) mes (E) = #(f) mes (E)
for any open set E € (0, «t/n). This implies immediately that #(f ) = #(f, @) = 2n.

Fig. 1

Let us denote by L . the 2x-periodic set consisting of n closed intervals on a period that

are complementary to the intervals of the set L (this set has the same structure as the set

L, it may contain one-point sets and some of its intervals may have common endpoints).
Consider the function
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| L]
2n

Let 7 be the set of the critical levels of this function. It is not difficult to note that the
deficiencies of the levels greater than | L |/(2n) are nonnegative and the dcficiencies of
the levels less than | L {/(2n) arc nonpositive. The deficiency of the level | L |/(2n) may
have an arbitrary sign, this depends on the number of common endpoints of the intervals
forming the set L and on the number of intervals consisting of a single point.

Starting with the function f(¢) satisfying conditions a) and ¢}, we will modify it tosatisfy
condition b).

We make all the modification on the set {f<|L|[/(2n)} (on the set
{f= | L\|/(2n)} they may be donc in the same way). The scheme will be the following:
first we describe the single step of the modification that allows us either to get rid of one
of the intervals where the function f(f) is negative (greater than x/n in the case
{f=|L|/(2n)} orto getrid of all the critical levels with the negative deficiencies (with |
the positive ones in the case {f= | L |/(2n) }.

Consider the set of the critical levels [j=/ =...2/, le 0, | L1 (2n)),

Sty =dist (1, L) = dist (¢, L) +

l, = | L (2n), and take an interval where f(#) < 0. To modify the function /(1) replace its
graph with the line which is the path of the ray ejected from the left endpoint of the interval
in the direction of the vector (1, 1) and making mirror reflection between the lines
{y= IO} and {y = 0} consequently. The deficiency of the level { y = l, } is enlarged by

1 after any such reflection in the line {y = lo} (the initial deficiency of this level is
negative) We proceed with such reflections between thelines {y = 10 }and { y = 0 } while
either the path of the ray meets the graph of the function f(7) or the level 10 gets complete.

In the latter case we proceed with the reflections between the line { y = 0 } and the next
critical level {y = 2 }, ctc. This process have to be stopped either if the path meets the

graph of the function f(7) or if we get rid of the critical levels {{., {,,..., [, } at all (in the
071 k

latter case we prolongate the path of the ray without any reflection up to meeting the graph
of the function f).

Denote now the modified function by f(#). If this function has at least one critical level
of negative deficiency and an interval of negativity simultaneously, then proceed the
modification in the same way. (The possibilities which we get after two such steps are
shown in Fig. 1. The initial function f(¢) on Figure 1 has two critical levels with the
deficiencies d(f, /j) = — 1 and d(/, [|) = — 3. Position K| in Figure 1 corresponds to the

case when we meet the graph of the function f(7) at some point where f(f) = 0, position
K, presents the case when we get rid of all the critical levels { ZO, 11 veen U}

So after a finite number of steps of modification of the function f(7) we get a new one
which either has no intervals of negativity or has no critical levels on the interval
(0, | L ]/(2n)] with the negative deficiencies (i.e. all the critical levels of the interval
(0, | L |/(2n)) are complete and only the level | L |/(2n) may be incomplete but with a
positive deficiency).

Let us show that in the first case the function f (¢) has no critical levels on the interval
(0, | L |/(2n)).Indeed, let/_be a critical level of the function f(f). By construction, all the
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deficiencies of the function f(f) on this interval have nonnegative deficiencies, so the
equation

=1 1€, |L]/(2n),

has not more than 2n solutions (the number of the solutions does not increase when [
decreases). Since for /< [_the number of the solutions is less than 24, it follows from the

relation | f'(¢) | = 1 that
mes {77, | L|/2n)} N [0,2n]}<| L]

The latier inequality implies that the function f(¢) in this case must be negative on some
interval, but this contradicis to the hypothesis f(#) = 0. Hence, the function f(#) has no
incomplete critical levels on the interval (0, | L |/(2n)).

Making the same modification of the function f(f) on the set { /() = | L |/(2n)}
(ejecting the rays in the direction of the vector (1, — 1) from the left endpoints of the
intervals where f(f) >z/n and using the lines {y=s/n} and {y =1 j} with the critical

levelsiyz= 1, 2... 21 ,l€[| L|/(2n),n/n),{; =2 | L|/(2n), for thereflections) we get

the new function with all its critical levels of the interval (0, 7/n) being complete.
According to the remark made at the very beginning of the proof, this function satisfies all
the conditions of the lemma. The proof is completed. O

The following two lemmas form the frame of the proof of the main theorem.

Lemma 3. Let u(z) and u(z) be two continuous functions on the closed unit disc, equal
to —log | z | on the boundaries and harmonic inside the domains Q and Q, respectively.
Then the inequality

D(u) = D(ug)

holds and the equality is possible only if these domains coincide up to rotation.

Proof. Without loss of generality we can suppose that one of the slits of the domain
QO lies on the positive ray. By Lemma 2 there exists a mapping S(z) that transfers the

radial slits of the domain €2 onto the segment [r,, r| ]. So the function u; - S has the same
boundary values on € as the function u. Since the function u(z) is invariant with respect

to rotation by the angle 2/n and the mirror reflection in the real axis, then by Lemma 1
and Minimum Principle we have

D(uy) = 2nD(uy, A)) = D(uy0 S) = D(w). ©))
The equality in (4) is possible only in the case if the function u o § is harmonic inside Q.
Since 9 uo(reig)/ a6>0asre€(0,1),6 € (0,x/n), (which is not difficult to verify), then
to provide the smoothness of the function u - § inside €2 the mapping S(z) must have no

critical ray the image of which lies inside A, . The latter is possible only if the function
s(¢) by means of which we have constructed the mapping S(z), has the form

s =dist (4, {2w/n+h}7__ )
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for some real 4. Hence, the domain © must coincide with QO up to rotation.The lemma is
proved. O

Lemma 4. Let L be a set consisting of at most n arcs of the unit circle and let a set L
consist exactly of n arcs on the unit circle and be invariant with respect to rotation by the

angle 2n/n. Let us suppose that the sets L and L have the same total lengths and let
R={t<]|z] <t—l}\LandR0= {t<| z]| <t_1}\Zf0rsometE(O, 1).
Iffunctionsuz‘)(z) and v (z) are continuous in the closure R, harmonic inside R and R,

respectively, both vanishing on the circles { |z =1 ! } and equal to 1 on the sets L and
L respectively, then

D(v) = D(v).
. Proof. The proof is similar to that of the previous lemma. Without loss of generality

we will suppose that the set L contains the arc {eio :0€(—|L{/(2n), | L|/2n))},

where | L | = | L | is the total length of the intervals forming the set L. We will assume
that the set L is a union of # arcs with nonintersecting interiors (some of which may have
common endpoints). By Lemma 2 there exists a mapping S(z) such that

sThLNay=L
Hence, .
D(vy) =2nD(v, A)) = D(v, o S) = D(v). - &)
The lemma is proved. O
Since the functions vy(2) and v(z) in Lemma 4 are potential functions of the capacitors

(L, {|z] <t})and (L, {| z | <t}) withrespect to the unitdiscD = {z: | z | <1}, then
the latter Lemma yields the relation for their capacities:
Corollary 1.

C(L, D, D) < C(L, D, D).

The following lemma is simple but very useful.

Lemma 5. Let R be an annulus {z: |zl €@ 1)} and let R_ be the set formed by

removing some set of radial segments from this annulus. Consider the capacitor formed by
the pair of circumferences K, = {z:]z] =1} and K = {z:]z]| = t}. The capacity of

this capacitor does not depend on whether we evaluate it with respect to R or do this with
respectto R, . In other words,

C(Ky K, B,) = C(K,, K|, B).

Proof. Inthe both cases the potential functions of these capacitors are the same and
coincide with log | z | /log . The lemma is proved. O

Proof of the main theorem. Letf(z) and fO(O) be conformal mappings of the
domains Q and Q, onto the unit disk D = { | z | <1} such that f(0) = £,(0) = 0. Denote
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the images of the unit circle under these mappings by L and L, respectively. Let the
domains © and Q, do not coincide up to rotation. If | L | and | L | are the total lengths
- of the sets Land L, , then the assertion of the theorem is equivalent to the following:
FL1>1Ly]. (6)
Let us prove this.
Note that
| £10) | <1740 . @
Indced, Ict u(z) and w(2) be functions continuous on the closed unit disc and harmonic
inside Q and € with the boun.isry - lues  log |z |onoQ andon BQOrespectively.The

functions w(z) and u,iz) may b cons:dered as superharmonic ones on the unit disc D.

o'
Denote theirRiesz measures by u and u 0 respectively. Since these measures are supported

by the boundaries of Q and  respectively, then by the Green formula we have

=u(O)=f(" log | z |) du(z) =

z€D

log | /'(0) | = log !Jigl

fz=0

=fG(z, 0) dp(z)=fu(z) dy(z)=ffG(z, &) du(&) du(z) = D(w) ,
z€D z€D E,zED

where G(- , -)is the Green function of the unit disc. This relation together with the similar
one for the function uy(2) and Lemma 3 imply (7).

Relation (7) yields that we can take a ¢ > 0 to provide
fdlzl<ehc{lél<thTry({lzl<e}) ®

for some positive €>0. Let T be the unit circle T={z:|z| =1} and let
eT={z:|z| =e}. ByLemma5thecapacities C(T, e T, Q) and C(T, & T, Q) coincide.

Since any capacity is invariant with respect to conformal mappings, then

C(L, f({eT}. D) =C(Ly, f({e T}, D),
or, accounting for (8),

C(L,tT,D)>C(L,, t T, D).
LetLbe a set of n arcs on the unit circle and invariant with respect to rotation by the angle
2r/n.If | L] = | L], then by Corollary of Lemma 4
C(L, tT,D) = C(L, { T, D) > C(L,, t T, D).

Since both the sets L and L, consist of n arcs and are invariant with respect to rotation by
the angle 27t/ n, we may suppose without loss of generality that either L & Lor L 2 L. The
latter inequality yields that LD Listrueand L # L. So we have

[ Ll=1L]>]Lgl

The theorem is proved. O
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TIpocToe NoKa3aTebCTBO TeopeMbl JlyounuHa

A.E. Opsinros
ITycrs Q — obnacth, KOTOPas 006PAZOBAHA YAANEHHEM 1 PAIUAJIBHBIX CETMEHTOB W3
emquHUuHOro Kpyra D, coepmusiouux okpyxuoctu {z: |z | = rgtu{z:|z | =1}
Hycts Q — 06nacTs TOr0 XKe TMNA, HHBAPUAHTHAS OTHOCUTEILHO BPALUEHNS HA YTO
2e/n. Ecm w(z) w oy (z) — rapMOHMUECKME MEepbl EIMHUUHOM OKPYXHOCTH

OTHOCUTENLHO 3TUX 00JaCTeM, TO BLINONHEHO HEPABEHCTBO
w(0) 2 wq (0),

W PAaBEHCTBO BO3MOXXHO TOMBKO, €CAU obnacts Q cosnanaer ¢ QO C TOYHOCTBLIO 10

BpAIEHMs. DTO NPEANOKEHNE UIBECTHO KaK 3anaua loHvapa, pelieHue KOTepon Gbuio
HaineHo yGunmsbiM. Lean HacTosawei pabotsl — path 60Jiee NPOCTOE NOKA3ATENBCTBO
3TOrO yTBEPXKACHMS.

IIpocTe N0BENEHHS TEOPEMH Hy0Giniza.

O.€. Opunros
Hexait Q — ofaactb, 9Ka yTBOPEHa BMJIy4YEHHSM 1 PajiaJibHUX CErMEHTIB 3
onmumunoro kpyry D, wio 38’sayiots kona {z: |z | =rg}ta {z: |z | =1} Hexai

QO — 00/1aCTb TOrO K TUIY, iHBapiaHTHA BIHOCHO ofepTannsg Ha xyt 27/a.SIKwo

o(z) Ta w((2) € rapMOHiuHi MIPH OJMHMUHOIO KOJa BiHOCHO LMX ofnacted, Toai

BHKOHYETbCS HEPIBHICTh
: w(0) = w (0),

1 piBHICTb MOXAMBA TUIBKM, KOMK 00nacTs 36irae'rbcnv 3 Qo 3 TOUHICTIO 10 ofepTanus.

s npono3uuis Bizoma ax sagaua Fovuapa, pimenus axoi 6yso sHaipeno JyGiHinuM.
Mera po6oT — NPOCTE ROBEAEHHS LbOTO TBEPRXKECHHS.
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