Математическая физика, анализ, геометрия 1995, т. 2, № 3/4, с. 356–362

УДК 517.968.2+517.956

The solvability of the second main mixed problem of the theory of elasticity in a complete scale of Sobolev spaces

I.Yu. Chudinovich

Department of Mathematics and Mechanics, Kharkov State University, 4, Svobody sq., 310077, Kharkov, Ukraine

Received March 14, 1994

The unique solvability of the second main problem of the dynamic elasticity theory is proved in a complete scale of Sobolev spaces which include the spaces with negative norm.

In this article we continue the investigations made in [1] concerning the mixed problems of the elastisity theory. All the notations and definitions from [1] are valid here.

1. The formulation of the problem

We look for a vector function u(X), $X \in G_T^{\pm}$ satisfying the motion equation

$$\partial_t^2 u(X) + (Au)(X) = q(X), \quad X \in G_T^{\pm}$$
⁽¹⁾

and the homogeneous initial conditions

$$u(x, +0) = (\partial_{+} u)(x, +0) = 0, \quad x \in \Omega^{\pm}$$
(2)

where A is the matrix differential operator of the anisotropic elasticity theory [1]. The boundary conditions in the problems II_r^{\pm} (internal or external) have the form $(T_v u)^{\pm} (X) = g(X), X \in \Sigma_T$, where T_v is the normal boundary stress operation acting by

$$(T_{\nu} u)_i (X) = \sigma_{ii} (u) \nu_i (x)_i$$

 $\sigma_{ij}(u)$ are the components of the stress tensor of the medium and $v(x) = (v_1(x), \dots, v_d(x))$ is an outward unit normal to S.

A vector function $u \in H_{r; 1, 0}(G_T^{\pm})$ will be called the generalized solution of the problems $\prod_{r=1}^{\pm}$ if it satisfies the variational equation

$$\left(\sigma_{ij}(u), \varepsilon_{ij}(\eta)\right)_{0, T} - \left(\partial_{t} u, \partial_{t} \eta\right)_{0, T} = (q, \eta)_{0, T} \pm \langle g, \eta \rangle_{0, T}$$

for any element $\eta \in H_{a; 1, 0}(G_T^{\pm})$. The "advanced" problems \prod_a^{\pm} are formulated quite similarly. The only difference from the problems \prod_r^{\pm} is that the initial conditions

$$u(x, T-0) = (\partial_{t} u)(x, T-0) = 0, \quad x \in \Omega^{\pm}$$

© I.Yu. Chudinovich, 1995

are given instead of (2). Let us consider the case q = 0. It was shown in [2] that the solving operators $\mathring{R}_{2, r}^{\pm}$, $\mathring{R}_{2, a}^{\pm}$ of the problems II_{r}^{\pm} , II_{a}^{\pm} which set the correspondence between the boundary value g and the solutions of these problems in this case perform the maps

$$\overset{\tilde{R}_{2,r}^{\pm}:H_{r;m,k}(\Sigma_{T}) \to H_{r;m+3/2,k-1}(G_{T}^{\pm}), \\
\overset{\tilde{R}_{2,a}^{\pm}:H_{a;m,k}(\Sigma_{T}) \to H_{a;m+3/2,k-1}(G_{T}^{\pm}),$$
(3)

which were continuous for all $m \ge -1/2$, $k \in \mathbb{R}$.

2. Normal boundary stress operators

Considering case q = 0 let us introduce the operators N_r^{\pm} and N_a^{\pm} setting correspondence between displacements u(X) of boundary points of the medium and the normal boundary stresses. Now we give the correct definition for these operators. Let $f \in H_{r; 1/2, 1/2}(\Sigma_T)$ and $u = \mathring{R}_{1, r}^{\pm} f \in H_{r; 1, 0}(G_T^{\pm})$ be the solution of the problems I_r^{\pm} with the boundary value f [1]. Further, let v be an arbitrary element of the space $H_{a; 1, 0}(G_T^{\pm}), \gamma_a^{\pm} v = z \in H_{a; 1/2, 0}(\Sigma_T)$. We define operators N_r^{\pm} on the element f by the equalities

$$\pm \langle N_r^{\pm} f, z \rangle_{0, T} = \left(\sigma_{ij}(u), \varepsilon_{ij}(v) \right)_{0, T} - \left(\partial_t u, \partial_t v \right)_{0, T}.$$
(4)

The operators N_a^{\pm} are defined in the same way. It was shown in [2, 3] that the normal boundary stress operators for all $m \ge -1/2$, $k \in \mathbb{R}$ perform the continuous maps

$$N_{r}^{\pm}: H_{r; m+1, k}(\Sigma_{T}) \rightarrow H_{r; m, k}(\Sigma_{T}),$$

$$N_{a}^{\pm}: H_{a; m+1, k}(\Sigma_{T}) \rightarrow H_{a; m, k}(\Sigma_{T}).$$
(5)

Lemma 1. For all $f_r \in C_r^{\infty}(\overline{\Sigma}_T)$, $f_a \in C_a^{\infty}(\overline{\Sigma}_T)$ the equalities

$$\langle N_r^{\pm} f_r, f_a \rangle_{0, T} = \langle f_r, N_a^{\pm} f_a \rangle_{0, T}$$
(6)

are valid.

Proof. Let us write (4) for $f = f_r$, $z = f_a$, $v = \mathring{R}_{1,a}^{\pm} f_a$. Writing equalities

$$\pm \langle N_a^{\pm} f_a, f_r \rangle_{0, T} = \left(\sigma_{ij}(v), \varepsilon_{ij}(u) \right)_{0, T} - \left(\partial_t v, \partial_t u \right)_{0, T}$$

and taking into account the symmetry properties of the form

$$\left(\sigma_{ij}\left(u\right),\varepsilon_{ij}\left(v\right)\right)_{0,T}^{*}=a_{ijkh}\left(\partial_{k}u_{h},\partial_{i}v_{j}\right)_{0,T}$$

[4] we obtain (6).

The formula (6) makes it possible to define the operators N_r^{\pm} , N_a^{\pm} on spaces $H_{r; m, k}(\Sigma_T)$, $H_{a; m, k}(\Sigma_T)$ for m < 1/2, $k \in \mathbb{R}$ by

$$N_r^{\pm} = (N_a^{\pm})^*, \quad N_a^{\pm} = (N_r^{\pm})^*.$$
 (7)

Математическая физика, анализ, геометрия, 1995, т. 2, № 3/4

357

The validity of the next statement follows from (5), (7) immediately.

Lemma 2. The operators N_r^{\pm} , N_a^{\pm} perform the maps (5) which are continuous for all $m, k \in \mathbb{R}$.

3. The properties of operators generated by elastic dynamic potentials

Elastic retarded and advanced double-layer potentials with *d*-component densities $\beta_r(X)$, $\beta_a(X)$ defined on Σ_T are introduced by

$$(W_r \beta_r)(X) = \underset{\Sigma_T}{S} \left((T_{\nu(y)} \Phi_j^r)(X - Y), \beta_r(Y) \right) e_j ds_Y,$$
$$(W_a \beta_a)(X) = \underset{\Sigma_T}{S} \left((T_{\nu(y)} \Phi_j^a)(X - Y), \beta_a(Y) \right) e_j ds_Y$$

where $T_{\nu(y)}$ is the normal boundary stress operation acting with respect to the variable y. It is evident that both the potentials with densities $\beta_r \in C_r^{\infty}(\overline{\Sigma}_T)$, $\beta_a \in C_a^{\infty}(\overline{\Sigma}_T)$ satisfy the homogeneous equation (1) and the homogeneous initial conditions for t = 0 or t = T, respectively. Moreover, it was shown in [2] that both the potentials with the densities from the classes presented above (and much wider ones) could be represented in the form

$$\begin{split} (W_r\beta_r)(X) &= \left(V_{r,\pm} N + \beta_r \right)(X), \\ (W_a\beta_a)(X) &= \left(V_{a,\pm} N + \beta_a \right)(X), \end{split} \qquad \qquad X \in G_T^{\pm} \,. \end{split}$$

Let us introduce operators $W_{r,\pm}$, $W_{a,\pm}$ setting correspondence between densities β_r , β_a and the values of the corresponding potentials $(W_r\beta_r)(X)$, $(W_a\beta_a)(X)$, $X \in G_T^{\pm}$. From the equalities $W_{r,\pm} = V_{r,\pm}N_r^{\pm}$, $W_{a,\pm} = V_{a,\pm}N_a^{\pm}$ and from the statements of Lemma 2 and Theorem 3 [1] the continuity of the maps

$$W_{r,\pm} : H_{r,m,k}(\Sigma_T) \to H_{r,m+1/2,k-1}(G_T^{\pm}),$$

$$W_{a,\pm} : H_{a;m,k}(\Sigma_T) \to H_{a;m+1/2,k-1}(G_T^{\pm})$$
(8)

follows for all $m, k \in \mathbb{R}$.

Now we introduce the operators of limit values of double-layer potentials by the equalities

$$W_r^{\pm} = V_r N_r^{\pm}, \quad W_a^{\pm} = V_a N_a^{\pm}$$

The well-known formulae for jumps of elastic potentials [5] in our notations take the form

$$(N_r^+ - N_r^-)V_r = I, \qquad (N_a^+ - N_a^-)V_a = I,$$

$$W_r^+ - W_r^- = -I, \qquad W_a^+ - W_a^- = -I$$
(9)

where I is the unit operator.

Lastly, let us define double-layer potential normal boundary stress operators by the equalities

$$F_r = N_r^+ W_r^+ = N_r^- W_r^-$$
, $F_a = N_a^+ W_a^+ = N_a^- W_a^-$

It is evident that the correctness of these definitions follows from the jumps formulae (9). In [2, 3] the continuity of the maps

$$F_{r}^{-1}: H_{r; m, k}(\Sigma_{T}) \to H_{r; m+1, k-1}(\Sigma_{T}),$$

$$F_{a}^{-1}: H_{a; m, k}(\Sigma_{T}) \to H_{a; m+1, k-1}(\Sigma_{T})$$
(10)

was proved for any $m \ge -1/2$, $k \in \mathbb{R}$.

Lemma 3. The operators F_r^{-1} , F_a^{-1} perform the maps (10) which are continuous for all $m, k \in \mathbb{R}$.

Proof. From the equalities $F_r = N_r^+ V_r N_r^-$, $F_a = N_a^- V_a N_a^+$, (7) and from the fact that the operators V_r , V_a are adjoint [1] it follows that the operators F_r , F_a are adjoint too: $F_r^* = F_a$, $F_a^* = F_r$. These statements and the continuity of the maps (10) for $m \ge -1/2$, $k \in \mathbf{R}$ prove the statements of the Lemma.

Now let us get down to the properties of the retarded and the advanced volume potential operators introduced in [1]. Supposing that q_r , $q_a \in C^{\infty}(\overline{\mathbf{R}_T^{d+1}})$, supp $q_r \subset \Omega^{\pm} \times (0, T]$, supp $q_a \subset \Omega^{\pm} \times [0, T)$, q_r and q_a are finite in the case of domain Ω^- —we define operators $D_{r,+}$, $D_{a,\pm}$ on elements q_r , q_a by

$$\begin{pmatrix} D_{r,\pm} q_r \end{pmatrix}(X) = \begin{pmatrix} T_{\nu} U_r q_r \end{pmatrix}^{\pm}(X), \\ \begin{pmatrix} D_{a,\pm} q_a \end{pmatrix}(X) = \begin{pmatrix} T_{\nu} U_a q_a \end{pmatrix}^{\pm}(X), \qquad X \in \Sigma_T \,.$$

Lemma 4. For all $\beta_r \in C_r^{\infty}(\overline{\Sigma}_T)$, $\beta_a \in C_a^{\infty}(\overline{\Sigma}_T)$ and q_r , q_a from the classes presented above the equalities

$$(W_{r,\pm}\beta_r, q_a)_{0,T} = \langle \beta_r, D_{a,\pm} q_a \rangle_{0,T}, (W_{a,\pm}\beta_a, q_r)_{0,T} = \langle \beta_a, D_{r,\pm} q_r \rangle_{0,T}$$
 (11)

are valid.

Proof.

$$(W_{r,\pm}\beta_{r}, q_{a})_{0,T} = \underset{G_{T}^{\pm}}{\overset{S}{S}} q_{a,i}(X) \underset{\Sigma_{T}}{\overset{S}{S}} \left(T_{\nu(y)} \Phi_{i}^{r}\right)_{l} (X - Y) \beta_{r,l}(Y) ds_{y} dX =$$
$$= \underset{\Sigma_{T}}{\overset{S}{S}} \beta_{r,l}(Y) \underset{G_{T}^{\pm}}{\overset{S}{S}} \left(T_{\nu(y)} \Phi_{i}^{r}\right)_{l} (X - Y) q_{a,i}(X) dX ds_{Y},$$

It follows from the definition of the operation T_{ν} that

$$\left(T_{\nu(y)} \Phi_{j}^{r}\right)_{l} (X - Y) = a_{ljkh} \frac{\partial}{\partial y_{k}} \Phi_{hi}^{r} (X - Y) \nu_{j}(y) = a_{ljkh} \frac{\partial}{\partial y_{k}} \Phi_{ih}^{a} (Y - X) \nu_{j}(y)$$

Математическая физика, анализ, геометрия, 1995, т. 2, № 3/4

Therefore,

$$(W_{r,\pm}\beta_r, q_a)_{0,T} = \underset{\Sigma_T}{S}\beta_{r,l}(X) \underset{G_T^{\pm}}{S} a_{ljkh} \frac{\partial}{\partial x_k} \Phi^a_{ih}(X - Y) q_{a,l}(Y) \nu_j(x) dY ds_X =$$

= $\underset{\Sigma_T}{S}\beta_{r,l}(X) a_{ljkh} \frac{\partial}{\partial x_k} \left(\underset{G_T^{\pm}}{S} \Phi^a_{ih}(X - Y) q_{a,l}(Y) \right) \nu_j(x) ds_X = \langle \beta_r, \tilde{D}_{a,\pm} q_a \rangle_{0,T}$

The second equality in (11) is checked similarly.

The results of Lemma 4 give us an opportunity to extend the operators $D_{r,\pm}$, $D_{a,\pm}$ by continuity onto spaces $\mathring{H}_{r,m,k}(G_T^{\pm})$, $\mathring{H}_{a;m,k}(G_T^{\pm})$, respectively, by

$$D_{r,\pm} = W_{a,\pm}^*, \quad D_{a,\pm} = W_{r,\pm}^*$$
(12)

From (12) and from the continuity of the maps (8) the validity of the next statements follows immediately.

The operators $D_{r,\pm}$, $D_{a,\pm}$ perform the maps

$$D_{r,\pm}: \mathring{H}_{r;\ m,\ k}(G_T^{\pm}) \to H_{r;\ m+1/2,\ k-1}(\Sigma_T),$$

$$D_{a,\pm}: \mathring{H}_{a;\ m,\ k}(G_T^{\pm}) \to H_{a;\ m+1/2,\ k-1}(\Sigma_T)$$
(13)

which are continuous for all $m, k \in \mathbb{R}$.

In conclusion of this section let us introduce operators $D_{r,\pm}^{\pm}$, $D_{a,\pm}^{\pm}$ by the formulas $\left(D_{r,\pm}^{\pm},q_{r}\right)(X) = \left(T_{\nu}U_{r}^{\pm}q_{r}\right)(X), \quad \left(D_{a,\pm}^{\pm}q_{a}\right)(X) = \left(T_{\nu}U_{a}^{\pm}q_{a}\right)(X), \quad X \in \Sigma_{T} \text{ where } U_{r}^{\pm}, \\ U_{a}^{\pm} \text{ are the operators introduced in [1]. It is evident that for all <math>m > -1/2, k \in \mathbb{R}$ these operators perform the continuous maps

$$D_{r,\pm}^{\pm} : H_{r;m,k} (G_T^{\pm}) \to H_{r;m+1/2,k-1} (\Sigma_T),$$

$$D_{a,\pm}^{\pm} : H_{a;m,k} (G_T^{\pm}) \to H_{a;m+1/2,k-1} (\Sigma_T).$$
(14)

4. The solvability of the second main mixed problem

Let us suppose that the right-hand side of the equation (1) $q \in C^{\infty}(\overline{G_T^{\pm}})$, supp $q \in \Omega^{\pm} \times (0, T]$ and q is finite in the case of domain $\overline{G_T}$. We also suppose that the boundary value $g \in C_r^{\infty}(\overline{\Sigma}_T)$. The solutions of the problems \prod_r^{\pm} can be represented in the form

$$u(X) = (U_r q)(X) + (W_{r,\pm} F_r^{-1} (g - D_{r,\pm} q))(X), \ X \in G_T^{\pm}.$$

In the case supp $q \in \Omega^{\pm} \times (0, T]$ we represent the solutions of these problems in the form

$$u(X) = (U_r^{\pm} q)(X) + (W_{r,\pm} F_r^{-1} (g - D_{r,\pm}^{\pm} q))(X), \ X \in G_T^{\pm}.$$
 (15)

Let us introduce solving operators of the problems $\prod_{r=1}^{\pm} R_{2,r}^{\pm}$, which set the correspondence between the pair $\{q, g\}$ and the solutions $u(X), X \in G_T^{\pm}$ of these problems. It is

shown below that the operators $R_{2,r}^{\pm}$ can be extended by continuity onto products of Sobolev spaces including spaces with the negative norm.

Theorem 1. For all $k \in \mathbb{R}$ the operators $R_{2,r}^{\pm}$ perform the continuous maps

$$R_{2,r}^{\pm}: \begin{cases} H_{r; m, k}(G_{T}^{\pm}) \times H_{r; m+1/2, k-1}(\Sigma_{T}), m \ge -1 \\ & \Rightarrow H_{r; m+2, k-2}(G_{T}^{\pm}) \\ H_{r; m, k}(G_{T}^{\pm}) \times H_{r; m+1/2, k-1}(\Sigma_{T}), m \le -1 \end{cases}$$

Proof. First we consider the case $m \ge -1$. From (15) and from the continuity of the maps (14) and (18) in [1] it follows that

$$U_r^{\pm} q \in H_{r; m+2, k-1}(G_T^{\pm}), \quad g - D_{r, \pm}^{\pm} q \in H_{r; m+1/2, k-1}(\Sigma_T)$$

for any $q \in H_{r; m, k}(G_T^{\pm})$, $g \in H_{r; m + 1/2, k - 1}(\Sigma_T)$. The reguired statement in the case $m \ge -1$ follows immediately from the equalities $W_{r, \pm} F_r^{-1} = \mathring{R}_{2, r}^{\pm}$ and from the continuity of the maps (3).

Now let us suppose that $m \leq -1$, $q \in \mathring{H}_{r;m,k}(G_T^{\pm})$, $g \in H_{r;m+1/2,k}(\Sigma_T)$ and write the solutions of the problems \prod_r^{\pm} in the form

$$u = U_r q + W_{r,\pm} \left(F_r^{-1} g - F_r^{-1} D_{r,\pm} q \right).$$

Noticing that $F_r^{-1}D_{r,\pm} = \left(W_{a,\pm}F_a^{-1}\right)^* = \left(\mathring{R}_{2,a}^{\pm}\right)^*$ and using continuity of the second of the maps (3) we see that

$$F_{r}^{-1}D_{r,\pm}: \mathring{H}_{r,m,k}(G_{T}^{\pm}) \to H_{r,m+3/2,k-1}(\Sigma_{T})$$
(16)

are continious for all $m \le -1$, $k \in \mathbb{R}$. From (16) and from Lemma 3 it follows that $F_r^{-1}g - F_r^{-1}D_{r,\pm}q \in H_{r;m+32,k-1}(\Sigma_T)$. The statement of the theorem for $m \le -1$ follows from the continuity of the first map in (8).

R e m a r k. Solving operators $R_{2,a}^{\pm}$ of the problems $\prod_{2,a}^{\pm}$ are introduced just like the operators $R_{2,r}^{\pm}$. It is evident that these operators perform the continuous maps

$$R_{2,a}^{\pm}: \begin{cases} H_{a;m,k}(G_T^{\pm}) \times H_{a;m+1/2,k-1}(\Sigma_T), & m \ge -1 \\ & \to H_{a;m+2,k-2}(G_T^{\pm}) \\ \dot{H}_{a;m,k}(G_T^{\pm}) \times H_{a;m+1/2,k}(\Sigma_T), & m \le -1 \end{cases}$$

for all $k \in \mathbf{R}$.

Математическая физика, анализ, геометрия, 1995, т. 2, № 3/4

References

- 1. I. Yu. Chudinovich, The solvability of the first main mixed problem of the theory of elasticity in a complete scale of Sobolev spaces. Math. Physics, Analysis, Geometry (1995), v. 2, N 1, pp. 129–138.
- 2. I.Yu. Chudinovich, The boundary equation method in dynamic problems for elastic media. Kharkov Univ. Publishers, Kharkov (1991), 135 p.
- 3. I.Yu. Chudinovich, Boundary equations in the dynamic problems for elastic media. Dokl. Acad. Nauk UkrSSR, Ser. A (1990), No. 11, pp. 18-21.
- 4. G. Duvaut, J. L. Lions, Les Inequations en Mécanique et en Physique. Dunod, Paris (1972), 384 p.
- 5. A.G. Ugodchikov, N.N. Khutorjansky, The boundary equation method in the mechanics of solids. Kazan Univ. Publishers, Kazan (1986), 295 p.

Разрешимость второй основной смешанной задачи теории упругости в полной шкале соболевских пространств

И.Ю. Чудинович

Доказана однозначная разрешимость второй основной задачи динамической теории упругости в полной шкале соболевских пространств, включающей пространства с негативными нормами.

Розв'язуваність другої основної змішаної задачі теорії пружності у повній шкалі соболєвських просторів

І.Ю. Чудінович

Доведено однозначну розв'язуваність другої основної задачі динамічної теорії пружності у повній шкалі соболевських просторів, що містить простори з негативними нормами.