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The solvability of the second main mixed problem
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The unique solvability of the second main problem of the dynamic elasticity theory is proved
in a complete scale of Sobolev spaces which include the spaces with negative norm. .

-

In this article we continue the investigations made in [1] concerning the mixed
problems of the elastisity theory. All the notations and definitions from [1 ] are valid here.

1. The formulation of the problem

We look for a vector function u{X), X € G; satisfying the motion equation

2 u(X) + (Au)(X) = o(X), XEGE @
and the homogeneous initial conditions
u(x, +0) = (3,u)(x, +0) =0, x€Q* )

where A is the matrix differential operator of the anisotropic elasticity theory [1]. The
boundary conditions in the problems IIf (internal or external) have the form

(T, W* (X)=gX), X € 2, , where T, is the normal boundary stress operation acting by
(T,, u)i x)= O’ij (W) Vj (%),

g (u) are the components of the stress tensor of the medium and

v (x) = (v, (x),...,¥4 (%)) is an outward unit normal to S.

A vector function u€H_ . (G‘Tt) will be called the generalize& solution of the
problems 11¥ if it satisfies the variational equation

(aij (w), &; (77)) ~ (a.t u, 0 77) - =@My r* (&7 )0, T

0,7 0,
for any elementy € H | (G? ). The "advanced” problems II: are. formulated quite

similarly. The only difference from the problems II:‘ is that the initial conditions

ux, T—0)=(@,u)(x, T=0)=0, x€EQF
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The solvability of the second main mixed problem of the theory of elasticity

are giveninstead of (2). Let us consider the case ¢ = 0. It was shown in {2 ] that the solving
operators R2i .o R; a of the problems IIrt, II;t which set the correspondence between the
boundary value g and the solutions of these problems in this case perform the maps

pE . +
R2, re Hr; m, k G- Hr; m+32, k~1 (Gr)s

5+ . +
RZ, a’ Ha; m, k (ET) = Ha; m+¥2, k—1 (GT)’ ' 3

which were continuous forallm = ~ 1/2, k € R.

2. Normal boundary stress operators

Considering case ¢ =0 let us introduce the operators Nf and N;" setting

correspondence between displacements u(X) of boundary points of the medium and the
normal boundary stresses. Now we give the correct definition for these operators. Let

f€H, 1,1, Ep)andu= 15;" JEH (G;) be the solution of the problems [f with
‘the boundary value f [l]. Further, let v be an arbitrary element of the space

H,1o (G;), yf v=z&€H, ,, (7). We define operators Nf on the element f by the

equalities

£(N>f,z Yo, 7= (al.j W), ¢ (u))

Jo.r <a’ “ 6‘U> @

0,7
The operators N;‘ are defined in the same way. It was shown in [2, 3 ] that the normal

boundary stress operators for all m = — 1/2, k € R perform the continuous maps
: Hr; m+l,k (ZT) = Hr; mk (ZT)’

+. .
Nq +H ;mtl, k (ET) e Ha; m, k (ET) ) )

+

N
a

Lemma 1. For all f,€ C7 (ET), EC (:Y_T) the equalities
<Nr)'—rfr’fa)O.T=<‘fr’N§fa>0.T ©®
are valid.
Proof. Letuswrite (4) forf=/,,z= fyov= Jio’f o/, - Writing equalities
+ <Na—fa’fr>0, r= <al.j (v), & (u))o . - <atu, 3, u) o7
and taking into account the symmetry properties of the form
(Uij (w), & (v)) o = @ <6k u, 9, Uj) N T~

[4 1 we obtain (6).
The formula (6) makes it possible to define the operators N, N> on spaces

a
H, ,,C)H,, ,E)form< 1/2, k€ Rby

a r

NE = (N5, NE= (N5 M
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The validity of the next statement follows from (§), (7) immediately.

Lemma 2. The operators Nri, Nf perform the maps (5) which are continuous for all
"m,kER.

3. The properties of bperators generated by elastic dynamic potentials

Elastic retarded and advanced double-layer potentials w1th d-component densities
B, (X), B, (X) defined on Z,. are introduced by

(Wrﬂr)(X) =2ST ((Tv (y) d);)(X - Y)’ ﬂr(y)) ef dSY

(Wa)(0 = § (T, ) 9K = 1.5, (Y))e ds,

where T, b ) is the normal boundary stress operation acting with respect to the variable y.

Itis evident that both the potentials with densities §, € C° (Z,), 8 LECY (ET) satisfy the

homogeneous equation (1) and the homogeneous initial conditions for t=0or t =T,
respectively. Moreover, it was shown in [2 ] that both the potentials with the densities from
the classes presented above (and much wider ones) could be repesented in the form

W,B)X) = (V, . N F£) (0, .
Xe G; .
(W, B0 = (v N} ﬂa) (X),
Let us introduce operators Wr - W . setting correspondence between densities ﬁr ,

B, and the values of the corresponding potentials (W.B)X), ( Waﬂq)(X), Xe Gi. From

the equalities Wr’i = Vr, N r:' , Wa’ .= Va,: N ;f and from the statements of Lemma 2
and Theorem 3 [1 ] the continuity of the maps

Wr,i-: k(ZT) r m+ 172, k—-I(GT)

w ‘H

a, £ a,m, k (ET) e Hu; m+ V2, k-1 (("T) (8)‘

follows for all m, kK € R. .
Now we introduce the operators of limit values of double-layer potentials by the
equalities
* _ T + T
Wr—VrNrT’ Wa'“VaN;' ’ .
The well-known formulae for jumps of elastic potentials [5 }in our no_tatiqns take the form ’v
+ -\ — NNy 1t
(NF =NV, =1, (NI =NV, =1, | o
Wi-W =-1, W ~-W =-1 B e
r r a a . ) .
where [ is the unit operator.

Lastly, let us define double-layer potential normal boundary stress operators by the - -
equalities
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The solvability of the second main mixed problem of the theory of elasticity

vt t — N vt wt — N
F=N_W =NW_, Fa—NaWa—NuWa

It is evident that the correctness of these definitions follows from the jumps formulac
(9. In [2, 3] the continuity of the maps

-1,
Fr 'Hr;m,k(ZT)_’Hr; m+1,k—-1 (ZT)’

—1, > : 10)
Fa * Ha; m, k (ZT) Ha; m+1,k—1 (ZT) ¢

was proved foranym = — 1/2, k € R.

Lemma 3. The operators Fr_ 1, F; 1 perform the maps ( 10) which are continuous for all
m, k€ R.

P roof. From the equalities Fr = N+ VrNr F, = N v, N+ (7) and from the fact that
the operators V_, Va are adjoint [1] it follows that the operators F . F , are adjoint too:
F, =F_, F, =F,.These statements and the continuity of the maps (10) form = — 1/2,

k € R prove the statements of the Lemma.
Now let us get down to the properties of the retarded and the advanced volume potential

operators  introduced in  [1].  Supposing that ¢,, ¢ ,€C” ( R‘;J' ! ) ,
supp g, C Qix(O T, supp q, c Q*x 10, T), ¢, and g, are finite in the casc of domain
Q7 — we define operators D D on elements g, , g, by

(Prs ) = (nUe) 0,
(a" )(X) (T"U“qa)t(x)’ v XEEp.

Lemma 4. For all 8, € C (ZT) B, € C (Z pandq,, q, from the classes presented
above the equalities

(W +‘ﬁr’ q )0 T=<ﬂr’ Da.,,q )0 T
W, ﬁa,q)OT (ﬁa’D,.,.CI)OT o an

are valid.

Proof.

W uBdo =54, (XS (Tv(y) ) X = VB, (1) ds dX =
='2STﬂr, I(Y)C';S (Tv()’) d)r) (.X —- 9 9, i(X) dX dSY ’
It follows from the definition of the operation T, that

; d
(Tv(y) q)/r) X - V)= ay (X Nv.()= a,jkhb;;@fh(y-)() v; 9)-
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Therefore,

a N
(W, B 40, 1 =ZST/3r, I(X)ég:aljkhé}; X =Ny, i()? v, (x)dYdsy =
T < , '
- 5 )
=ES/3', (% aljkhé}; ((;S*(D?h X=N4,, "(Y)> Vi () dsy = (B, Da,:: 9 )0. T
T T .

The second equality in (11) is checked similarly.

The results of Lemma 4 give us an opportunity to extend the operators D 2D, , by

continuity onto spaces H o,k (GT), Ha, ek (GT), respectively, by
=w = W’ 12)

, D
r,x a,x a,*
From (12) and from the continuity of the maps (8) the vahdlty of the next statements
follows immediately.
The operators Dr’ +D a’ + perform the maps

G +
Dr.r 'Hr; m,k(GT)aﬂr;m+l/2,k—l (ET)’ ’ ‘

Da,t : Ha: m, k (G;—:) *.Ha; m+ W2, k-1 (ET) a3

At

which are continuous for all m, k € R.
In conclusion of this section let us introduce operators Drif+, -D:;, by the formulas

(;+'q)(X) (T Ut g )(X) ( )(x)-(r th)(X),XEE where U*,
U = are the operators introduced in [1]. It is evident that forallm> — 1/2, k €R these
operators perform the continuous maps -
_Dr_+ H ok GT) > Ho i o1 B
Dy s i H o kO = Hop 1 k-1 Ep)- 14

4. The solvability of the second main mixed problem

Let us suppose that the right-hand side of the equation (1) g€ c” (G;)V,
supp ¢ C Q* x(0, T and ¢ is finite in the case of domain G;. We also suppose that the
boundary value g € C:° (ET). The solutions of the problems Ilrt can be represented in the
form

wX) = (U, q)(X) + (W, . F; ' (&~ D, , 9))(X), X € Gy
In the case supp g C Q*x (0, T ) we represent the solutions of these problems in the form
= (U* 0)(] ! x * 15
wWX) = (U Q@) + W,  F =D, ), Xxe6r. (9

Let us introduce solving operators of the problems II; R; , which set the correspon-
dence between the pair { ¢, g} and the solutions u(X), X € G; of these probléms. Itis

~
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The solvability of the second main mixed problem of the theory of elasticity

shown below that the operators R; , can be extended by continuity onto products of

Sobolev spaces including spaces with the negative norm.

Theorem 1. For all k € R the operators R2i , perform the continuous maps

v

7 + .
Hr;m,k(GT)XHr;m+1/z,k~1(2T)’ mz -1

: - s
2,r° . . -’Hr;m+2,k—2(GT)'
Hr;fﬂ,k(Gf) ><}{r;m+ Vz,k—l(ZT)’ m<-—1

IA

Proof. Firstwe consider the case m = — 1. From (15) and from the continuity of the
maps (14) and (18) in [1] it follows that

+ + * -
UrQEHr;m+2,k——1(GT)’ g—Dr,tQEHr;m+1/z.k—1(zT)

for any g € I S— (G;), §EH, , (7). The reguired statement in the case

m+ 12, k-
m = — 1 follows immediately from the equalities W, Fr—1 =R ;f , and from the
continuity of the maps (3).

Now let us supposethatm < — 1, g € ﬁr'm.k (G;), gEH

rim + 2k () and write the

solutions of the problems Hf in the form

_ 1, 1
u=Uq+W,, (Fr g-F, Dr’iq).

O -+

*
Noticing that Fr_ lDr L= (Wa . F; 1) Y= (R; a) and using continuity of the second of
the maps (3) we see that

—1 1y + . 16
Fr Dr,t‘Hr;m,k(GT)_)Hr;m+3’2,k—l(ZT) (16)
are continious for all m < —- 1, Kk €R. From (16) and from Lemma 3 it follows that
F, lg— F’ lDry__F 9E€H, 3, k-1 (Zp)- The statement of the theorem for m < — 1

follows from the continuity of the first map in (8).

R e m a r k. Solving operators RZI 2 of the problems II; o are introduced just like the
operators Rf " It is evident that these operators perform the continuous maps

{{a;m,k(G;) XHa;m+l/2,k_.1(2T2) mz= -1
R; . o H

+
° a;m+2,k—2(GT)
+
Ha;m,/c(GT)XHa;m+l/2,k(ZT)v m<-—1

forall k ER, , . o 2
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Pa3pelMMOCTb BTOPOI1 OCHOBHOM CMELLIAHHOM 3aJa44 TEOPUM YIPYrOCTH
B MOJHOM WIKane cCo00NEBCKMX APOCTPAHCTB

N.10. Yyaunosuu
Jloka3aHa OFHO3HAYHAS Pa3PelMMOCTb BTOPOM OCHOBHOM 3a7jauM AMHAMMYECKOR

TEOPMM YNPYrOCTH B MOJHOM ImKaje COGONEBCKMX TNPOCTPAHCTB, BKJIOUYAIOMIEH
l'lpOCTpaHCTBa € HEFATHBHBIMM HODMAMM.

Po3B’a3yBaHICTh APYTOi OCHOBHOI 3MilLIaHOI 3a/1a4i Teopii NPYXHOCTI .
y NOBHIM WKai cO00IEBCHEKMX NPOCTOPIB

[.IO. Yyninosny
JloseneHo ogHO3HAYHY PO3B’I3yBaHICTh APYTol OCHOBHOI 3aAaui AMHaMiuHOI Teopil

OPYXKHOCTI Y MOBHIM WKaJi COGONEBCHKMX MPOCTOPIB, WO MICTUTb NPOCTOPH 3 HETa-
THUBHHUMH HODMaMH.
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