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We consider the system of retarded quasilinear partial differential equations which arises
in aeroelasticity. The evolution operator is constructed. The existence of the compact global
attractor of finite fractal dimension is proved. We study the properties of solutions on the
attractor and prove the existence of the fractal exponential attractor.

_ In study’ng nonlinear oscillations of an elastic plate in the Berger approach the
“following equation arises [1]:

ii+slu+A2u~fI}Vu(x,t)lz Au=p(x,t),xe§2,t>0 (b
Q

with the boundary conditions

ulgo=2ulyq=0 R : (2

. . ) ' . Gu )
Here Q is a bounded domain in Rz, X = (xl, xz), g > O1s aconstant, u=—, A 1s the

Laplace operator. Assumptions on the scalar function f(s) are glven below (m (1] f(s)is
a linear function). . :

For the given initial conditions and for the given wctemal load p(x, ) the existence and
uniqueness theorem of solutions of (1), (2) have been obtained in [2]. Long-time behavior
of solutions of one — dimensional space version of this problem have been investigated
by various authors (see, e.g. [3, 4] and the literature cited there). A similar problem in
abstract setting is studied in [5].

This paper deals with oscillations of a plate in a potential supersonic flow, which is
moving along the x| axis. The influence of the flow is taken into account on the basis of

linearized theory. The analysis, which is carried out in [6, 7], shows that the interaction
between the ﬂow of gas and the plate can be described by the term
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Global attractors for a class of retarded quasilinear partial differential equations

plx, ) =pylx) - 82{ u+v fg} +q(u; x, ,)} ’ ' ‘ 3
- where
o
0.2 7
g(u; x, t)~——jd§]d8 aG :’bc +by o, ) u}
—
X~
x(, x, g cos 6,1-xg(x; - &),
and |
a, = vvsTS?n-—el by = ka(;fnee , Ky (&)= k2 = (v - sin ).

Here ¥ (x) is the extention of W(x) by zero from Q to Rz, the parameter v > ] has the -

meaning of gas velocity, & = Nv? — 1. The parameter €, > 0 is defined by the intensivity

of the interaction between the flow and the plate.
So we have a quasilinear partial differential equation with time retardation

t,=iv-1) ! where /is the size of © along the x, the axis. Therefore initial conditions

(cf. [8]) must be chosen n the form

ul =u,  ul

=@ (x,1). A C))

t=0 " Ho- ”11:()+ 1 te(~1,0)"

For some reason (see below) we do not suppose the continuity of the function ¢ (x, f) with
respect to 7. Therefore we give up compatibility between u,(x), u,(x) and ¢ (x, §).

This paper is devoted to the investigation of long-time behavior of solution of the
problem (1)-(4). 1t 1s well known that this behavior can be studied on the basis of the
concept of global attractor (see, ¢.g., [4, 9, 10, 11]) and the references therein). We treat
problem (1)-(4) as an infinite-dimensional dynamical system and prove that the corre-
sponding evolution operator has a global attractor of finite fractal dimension, when v is
sufficiently large. In particular, this means that a nonlmear flutter (nonregular oscillations)
of a plate in potential supersonic flow is finite-dimensional phenomenon (for information
on the flutter problem see, e.g., [12]). We also prove a finiteness of number of determining
modes and the existence of a fractal exponential attractor (inertial set) for the system under
consideration.

In this paper we use certain ideas presented in [7], where the existence of a global
attractor is proved for a version of von Karman shell with the retarded term of the form
(3). However, in contrast to {71, we need to study in details a retarded linear problem
stmilar to (1)-(4). This studying relies on some ideas borrowed from [7, 8].
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1. Notations and preliminary considerations

- Suppose { ¢, } fz  is the orthonormal basis in LZ(Q) consisting of the eigenfunctions
of thé operator A with the Dirichlet conditions of 8 Q:
| Ae+Xie,=0; e()=0if xe 0Q, 0<A <A <.

We will use the following scale of the spaces:

. A= u:AZukek:'lléH Zv l
o e

We denote by || . || and ( ) the norm and the inner product in &(’) = Lz(Q). It is easy to

seethat 7 = H(Q) N O(Q) and || u |] )= || Au H. Here and below H“(Q) is the Sobolev
space of order s.
If H is aBanach space and —co <a <b < + oo, then 12 (a, b; H) is the space of(classes
of) I? functions from (a, b) into H which is Hilbert for the norm
12

_ 2
i firz

In a similar manner one defines the space L*(a, b; H). We also denote by C (a, b; H) the
Banach space of continuous functions from [a, 4] into A with the norm

*flc(%b;H):suP{l)f(f)“q:fe [a, 0] }.

Below we will use the following spaces:

"

WS’T—:{u(x, 0 e Ls~t,, T, F,): u(x, 1) € LXs, T:F, )} T>s,

A=

2+26x‘720xl‘2( 1 O‘;ZZ+20) Z/JS/

We denote by P,; the orthoprojector inz onto the subspace spanned by { ¢,...., e, } and
set Q) =1~ P, . Let T)N be the orthoprojector in /Z_ onto the subspace

5 . -
Py 2 o X Py Fas X I~ 1,,0,PyF, o) and Oy =1-Py

The next property of the retarded term is of importance for our considerations.

Lemma 1.1. Ifu(r) e L*( - te Ts 5 o) then
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Global attractors for a class of retarded quasilinear partial differential equations

t

HQWJH@G$ijHMﬂH}”Gﬂ 0<c<4, (L.1)
t—t

*

and the mapping u — q(u, t) is a linear continuous operator from LA~ t,,T; 72 +25)
into L*(0, T; 7).

Pro o f The estimate (1.1) with o =0 is proved in {7]. For > 0 the proof is
completely similar. The continuity of the operator u — g(u, f) follows from (1.1).
Now we consider an auxiliary linear problem: '

U+y U+ A% u - b(O)AU + e + €,q(u, 1) = h(1), (1.2)

ul =@ (x, f;s). (1.3)

t=s+0 %0> u|t=s+0:u1 > ulte (s=t,5)

Here y=¢, +¢&, and s € R, and g(u, 1) is determined as in (3). The auxiliary parameter

p >0 will be chosen below. It is assumed that

b(t) € Clfs, w), sup {|b(t) | +] b)) <b, (1.4

tzs

Definition 1. 1. A4 weak solution of the problem (1.2), (1.3) on an interval

[s, 11 is a vector-function u(f) € W . satisfying (1.2) in the sence of distributions and

such that the initial conditions (1.3) hold. R4
' 2

24200 U €T PEL(-1,0; ‘72+20) _

h(x, ) e L™(s, T, 720 Yforany T>0and for 0 <o < ;1; Then for any interval [s, T| the

Theorem 1.1. Assume uoef"

problem (1.2), (1.3) has a weak solution. This solution is unique and satisfies the propertjz

u)e Cl6, 127, ), i) e C(s.T: %), s

The proof of the theorem follows an usual plan and is based on the principle of
compactness [13] and the results concerning retarded finite-dimensional system [8]. We
give the principal steps of the proof. ’

Following the Galerkin method, we define for each m an-approximate solution ,of

| (1.2), (1.3):

u (e, 0= g, (e,

k=1
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(iz'm +yu, + A? w, —b(Odu, +pu, +eyqu, 1) = h(o). ek) =0, (1.6)

(u, (s +0),e)) = (g, e), (u,(s+0),e)=(u.e) and (u (s+1).¢)=(p(1),e)
(L7
for te[—1.0] Here k=1...m. and g (1€ Cl(s, +: R). such that gk(t) 1S an
absolutely continuous function.
The local existence theorem can be pros ad ifwe rewnite the corresponding retarded system
for g A(l) n the integral form and usc the idea of the proof of Theorem 2.2.1 fron x4
The possibility of extention of these solutions to any witeeval |y, 77 foliows trom the
a priorn cstimate:
Lie (112l (05 0=yl (s +0) 112+ fu (s+0)]2
W\ s m 2+20 = S M0 20 v UmY 2420
(1.8)
J]| u, (1) |] 5 420 91 +J. | A(7) H e c/r) exp { Cy(1 - 5) }

s—1,

where C, and C, are positive numbers. It is obtained by multiplying (1.6) by A gk(t)
and summing these relations for £ = 1,..., m. In this case it is easy to see that

d .

1 E0 DS CEy (O+19a) |5, + 1015, . ¢ >0
where EO’ SO =l zlm(t) I ic +lu, ()| % +2¢- Thanks to (1.1) we hgve , '

t

d,
£ By ()= CiEy J< c:J Ey (@ du+ A0 I3
t—-t

*

Therefore as in [7] the Gronwall lemma gives (1.8).

Estimate (1.8) implies the *-weak compactness of the family (um(t); jlm(t)) in the space
L%, T, Z ) 426 % “720)‘ Therefore there exist u(f) € W . and ‘the subsequence
{ um ()} such that (u, (9); Ikm (t)) *-weakly converges to (u(f);u(f)) in

k k

L%s, T Z.

existence of the weak solution. Lemma 1.1 gives the possibility to pass to the *-weak
limit in the retarded term and prove that g(x, , f) converges to g(u, 1) weakly in the space
k

2 +26 % 2cr). Hence, by using standard method [13, 14], we can prove the

2 .
130, T, 7, ).
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Global attractors for a class of retarded quasilinear partial differential equations

If we consider u(¥) as a solution of the linear problem

*i2+~yiz+A2u:h(t);u|6Q=Au|aQ=O; ultzozuo,idt:():ul (19
with " ’ ) SN

B(6) = e, ) = b(t)Au — o~ £,9(u; 1) + KDY '€ L (0, T, 7, ),

we can show (see [13,14]) that the vector-function (u(?); u(?)), is strong—contmudus in the
space A, o X o

Let u (t) be a weak solution of (1.2), (1. 3) with mmzﬂ conditions {ug;u,, 6, } and
with a right side A, (£), where i = 1, 2. Then u(f) = u,(f) —u(f) isa solutxon of (1.9) with

U=U

0= Mo~ Uop s Uy =1y ~ Uy and )
h(t) == b()A(u, = 145) = p(t) ~ 1y) = £1q(y = 14y, 1) +hy (1) = hy(0).

Therefore combining the energy equality (see, €.g., [14]) for the probllem (1.9):
1 - 1/, - ‘
2 {10136+ 1w 13 5o} =5 (146 + O 13, +us +0) 135 5 ) +

t ' ‘ (1.10)
i 12, « G o

S
and the estimate

t

17() 1 35:< € (10 13120+ f 14 113 42 42+ 10 = (O113;) o<
< t-1 " ;

*

P

we obtain that

t

N W + B 13, 5 ey 115+ 1l ||§+20+0f1|h1<r>—h2<r> |35 ot +

N

*CI @) 113 426+ 14 Illu(§)||2+2(,d§ dr.

T,

This inequality implies

. . 2 2 2
iy =iy 13+ 1100 =50 13 4 5% (Il =15 1 + gy =10 134 5+
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+J‘H hy(7) —hz(‘c) i %G d‘t+_‘. | u,(2) —uy(7) ||%+2cy d‘r)C exp{a(t-s)}. (11D

5 s—t
*

In particular, the estimate (1.11) implies uniqueness of weak solutions of (1.2), (1.3). The
proof of Theorem 1.1 is complete.

Theorem 1.1 gives the possibility to define the family of strong continuous mappings
w — Ult, s; h, w) in the spaces Z_ by the formula

U, s; h, w) = (u(t), u(t); u(t + 7)), 1€ (-¢,,0), t=s.
Here u(¢) is the solution qf (1.2), (1.3) with the initial conditions w = (u, u |, ¢ (1)). Using
(1.11), we easily obtain

2

< C(lwl ~-w, |é,+j||h](§)—h2(g) I %cdg)ea(t-s)_ R e)

Here w, € 7, h € LX(s, 0, 7, ). If h(t) =0, we write U(t, s)w = U(t, s; h, w). Evi-
dently the mapping U(z, 5) is linear in H o and satisfies the semigroup properties

Uty Uty ) = Ulty, 1), 128,21, Ut =1.

Additional properties of the evolution family U(t, s; h,-) are contained in the following
theorem.

Theorem 1.2. There exist constants p and v such that for vzv the family

U(t, s; h,") has the propertieS'

lIU(ts)wI  SCoe T

leﬁ,ac>0,0.<__c<%. (1.13)

t
2. UL, s, b, w) = UL, s)w +J. U, %) h (1) dr. (1.14)

s

Here h (7) = (0; A(t); 0) and the integral is regarded in the strong sense.
.

_at
je 2 |[A(7) || 55 dt (1.15)
N+lg

at

3.| QU O hw)| , <Ce 2

Wiy +

Jor h(e) € L* (0, w0; Z, ) and w € .
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Global attractors for a class of retarded quasilinear partial differential equations

4.If | h(0) | 5 < Cis valid for all T 2 0 and for some o belonging 1o the interval (0, -:I)’

then there exists a compact set K in % such that for anyw € %

distﬂ(U(t, s, h,w), K) < Cexp {—-% (t—s)}[w | 5»a>0. (1.16)

Proof Forthe sake of simplicity we assume that s = (). Consider the function

1, . 1 1,
VIO = iy 13+ 5 113 425 +5 8O N1, 17 4 56+ 111, 156+

m
+32"{(i4,,,, U +% 24, 136 } =3 ATV,
k=1

m

where u_ (1) = Z g De, is the Galerkin approximation of the solution of (L.2), (1.3)
k=1 .
with s =0, # =0 and

1.
V,()=322+30g2 4 b(r)xkgk+ug,,+§{gkgk %gi}
From (1.4), (1.6) one easily obtains that there exists p, such that for p > Mo
a, (g HO+g 2O AD) S V() Say@ X0 +g 3 AD),
dv (i ( )
— L4 BYOSC (g (u,, 1), ) | 2220,
Here positive constants o 1> %y s B, C do not depend on k and m. Using (1.1) we have

oty (11,0 13 4 56 + 12, () nic) <V o (0 <ay (1,0 15420+ 11,0 | 56), (L17)
t

V('”)(f) +B V(m)(t) <Cyt, J- V(1) dr.

dt
-t
As in [7] one easily obtains the inequality
v <C V™0 exp {-ayt}; a, >0, 21, (1.18)

when ¢, = (v - 1)‘1 is chosen such that C ¢,e P, B. Owing to the fact of *-weak

convergence (,,(£); 4, (1)) to (i(z); u(f)) in the space L™(0, T e X5 42 ) and using
(1.17), (1.18), we obtain (1.13).
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Let us prove (1.14). 1t is sufficient to prove (1.14) forw = 0. Let u:u(t) be a solution
of (1.6), (1.7) for the initial conditions uy =u, =0, ¢ (§) = 0.

Passing in a standard way from (1.6) to the corresponding system of first order in timc,
we can obtain, see [8, Th. 6.2.1]:

t .l ’
1" (f) v (1) : )
‘r;t :J- m )dr, : o (119).
um(t) s (7, Vm“’ t) : o

/

where v (1, 7) 1s a solution of (1.6), (1.7) for the initial corditions at the moment s = 1.
(1) = (uo =0; u) = h(1); ¢ (§) = 0). Using the compactness of the Galerkin approxima-
“tions, we can pass to the limit m — 0 in (1.19) and finish the proofof {1.14) forw = 0.
Let us prove (1.15) and (1.16). From (1.13) it follows
t

t
a .
| f U(t, t, 0, (1)) dt |, < (ij 2 Y 1 A(2) || 5, df1. (1.20)
s 5 o

. . ‘ - |
Using the obvious inequality | O, w IJ/O <

N+i
(1.20) we obtain (1.15). From (1.20) it also follows. that the integral term in (1. 14) belongs
to the set

iwi . from (1.13), (1.14) and

(e}

K={<u0; s @) g 3, g0 + 1 13, +ess sup (Jp ) 13,0+ @s) 12) <A }
sef[~1.0]
(121

for some 4 > 0, when || A(?) || 9e S C, 1> 0. Since the set K is compact in A (see, eg.,
[13]) (1.14) and (1.13) imply (1.16).

2. The construction of the evolution operator

In this section we prove the theorem on the existence and uniqueness of weak solutions
of the problem (1)-(4) and construct the corresponding evolution operator.

Definition 2.1. A weak solution of the problem (1)-(4) on the interval [0, T} is a
vector-function u(f) € Wy, . satisfying (1) and (3) in the sence of distributions and such
that the initial conditions (4) hold. A
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Theorem 2.1. Letuy € 7, u € 7, ¢ € (- t,, 0;55), py € A, . Assume (i) the
function f (s) is a loeal Lipschitz one i.e. for anyvA > 0 there exists a constant L , such that

Joranys, s, €{0,4]
G = f) €Ly 15y -5, | @D -
and (11) £ (s) satisfies the property

S
If('r) dtz- CO — QLS (2.2)
0

where 0 <o <A, A, is the first eigenvalue of — Aand C is a constant. Then the problem
€1)-(4) has a weat solution on any interval [0. 1} The solution is unigue and satisfies the
property

ui) e (0, T 72), u(t) € C0, 7. A). (2.3)

Besides the energy equality

Eu(t); u(r)) = Ly, uy) + j (=il @) ~p e , bj ~&,(qw), ) + (py, 1)) dt (2.4)
0 L™

holds. Here Y=g, +e,, p = 5,v and

B iy = (1212 + 1 & | 2+ B vl ) ), o = J £(s)ds. @5)
0

Proof We follow the line of argument given in the proof of Theorem 1.1. Define-
an approximate solution of (1)-(4)

m
u, (x.1)= Z g, De,.
k=1

b

“u

b+ g+ 8t = F U Vit 1) Bt 4 2 0,0 = Py ¢0) <0, Q26)

(,(0,), e) = (g, €, (i, (C Q,‘_e,):(ul,ek) and ( (1), e)=(p(0).¢). @7

for t € [-1t,, 0], where k= 1,.., m and glne c! (0, ., R) such that g_,{(t) is an abso-
lutely continuous function.
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The local existence theorem can be proved if we rewrite the corresponding retarded
system for g 40 in the integral form and use the idea of the proof of Theorem 2.2.1 from

[8].
Multiplying (2.6) by g () and summing these relations for k = 1,..., m, we obtain

1dy,. )
EZ{”um ||2+ i Bu,, H2+F(|| Vu,, [|2)}+yl| U, I 24
N aum . .
+ 82 (q(um)’ um) + p g} > um = (po’ um).
M . CO 1 a . 2 2
From (2.2) it follows that E(u; u) > - 5 + 3 (1- 1—)(” i |2 + || Au || ?). Hence
1

2 E (0 (0) S L (1, 01, i) + 11 g, 124y 5 €, €20

As above (see (1.8)), we have

0
ity ()12 1 8y, 12 < Cy (1, (0) I+ | B2, (0) I +f | Au (s) | 2ds +
-t
+ | V2, (0) )+ Dexp { Bt }; C;, p>0. eX)

This estimate allows us to choose a weak convergentfsubsequence {u, (0)} and to
k

pass to the limit in the same way as in Sect. 1. The Lipschitz property of f and the
compactness of the embedding W,  into Lz((), T, 7 1) make it possible to pass to the

limit in the nonlinear term.
The proof of the properties (2.3) is also similar to the linear case, if we consider the
solution of (1)-(4) as a solution of (1.9) with

RO =101 V1% Bu=p 2 =5, gl + g
1

The law of conservation of energy (2.4) is obtained from (1.10) for o = 0. Here we also
use the equality

t
-2 f (701 V(@) |12) Au(a), i) de = F (| V() 1) - F (| Vu(0) || )
. |
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which is correct for u € WO, r» T>t It follows from a similar equality for
ue CYO,T: ,) and from denseness of the space CX(0, T ) in W,

Let us prove uniqueness of solutions. Let #; and u, be solutions of (1)-(4). Then
u=u, - u, is asolution of (1.2), (1.3) for b(f) = 0 and |

HO=1( V| )Au (1 Vit 1) By - p[ ‘—-—2-]+u(ul-u2).

From (2.1) and (2.3) it follows that || () || S Cp || Au(f) || for ¢ € [0, Tj, where the
constant C,.. also depends on || Au,(f) || and || Au, (1) || ' ‘
Therefore from (1.11) and the Gronwall lemma we obtain

iy (& = e p0) ) 2+ 1l Ay (B - uz(r)) I 2<
(2.9)
<Cr(lin(© =0 I 2+ Ay (0) - uy(0)) || 2 IllA(ul(r) uz(r» I 2 )

~1,

for any t € [0, 7]. The estimate (2.9) implies uniqueness of solutionSA

The proof of Theorem 2.1 is complete.

Relying on the Theorem 2.1 we are now in a posmon to construct the evolutlon
operator S, in the space

. TH= Fyx Fyx L (~1,,0,.7)
by the formula .
S (g 1y @ (8)) = (u(t); i(t); u(t +5)), s € (~1,,0), 120, (2.10)

where u(t) is the weak solution of the problem (1)-(4).
The operator S, has properties:

a)SSw S wfort‘t>0andSOw w; _
b) S is strong continuous with respect to f forany w € 59” (see (2 3))

¢) Sy depends onwe % contmuouﬂly (see (2.9)) and there exists a constant CT
such that : : ‘ '

"‘Styl Sty2| "CTRU'] Nl

foranyte [0,7] and y, ,y, € & possessing the property | y,| . < R
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Thus we have constructed the infinite — dimensional dynamical system (S, %)

corresponding to the problem (1)-(4). Its asymptotical properties are studied in the next
section.

3. Long-time behavior

This section deals with the investigation of the long-time behavior of the evolution
semigroup St . Aswe know (see, e.g. [3,4,9,10] and the references given there), in studying

such questions an important role is played by attractors, whose investigation allows us to
answer the question of possible limit regimes of the system under consideration. In this
section we prove our main theorem on the existence of a global attractor of finite fractal

dimension for the dynamical system (S, %) associated with the problem (1)-(4). We

also prove the existence of finite number of determining modes (for definition see, e.g.,
[10,15]) and the existence of a fractal exponential attractor. The notion of exponential
attractors (inertial sets) was introduced in [16]. They are compact positive invariant sets
with finite fractal dimension which attract exponentially trajectories of the system. In this

section the assumptions on the function f(s) are stronger than those in Sect. 2.

Definition 3.1. 4 bounded closed set W in % is said to be a global attractor
of the semigroup S, if it is strictly invoriant (S, W= for any t20) and
lim h(S, B, 2A) for any bounded set B in 7. Here

t— o0
(B, A)=sup { dist , (v,4) | y € B} ' G.D)

QOur main result is

Theorem 3.1. Assume that px) e F andf(s) Cl(R | ) satisfies the properties

. 4
sf(s)—a If(t) di>2-C . (3.2)
0
for some o.>0and C>0
, p2
lim inff(s)>—, . 3-3)
s> 40 Y

»

where p=g,v and Y=¢€ +¢&,. Then there exists Vv, such that Jor any v>v, the

semigroup S, has a compact global attractor A in . The attractor M is of finite
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fractal dimension (for the definition, see., e.g., [10]) and consists of elements
w = (0(0); V(0); V(E)), & € [ - 1,, 0], where v(E) belongs to the space
il . .
6’G=»c (=1, 0, F)NC (1,07 ), 0o <. G4
The proof uses the results on existence of attractors for abstract asymptotically
compact dynamical system [4,10] and the Ladyzhenskaya theorem on finite dxmensmn-

o ality of invariant sets. We also rely on the following lemmas.

Lemma 3.1. There exists v such that for any v > v the semigroup S, is dissipative,,
i.e. there exisis R>0 such that | S,h| , <R for any h € B, t21,(B). Here B is any
bounded set in 4

Proof. The arguments presented below have a formal character. They can be made
rigorous if the Galerkin approximation is considered.

- Let u(¢) be a weak solution of the problem (1)-(4). We define the function

V() =E0+3 90

where E(f) is given by (2.5) and

@ ()= (D), u®) + L | u() | %

Since
d a2 2 2 3 )
d o) =|lul “(M,A u=f(l Vul|)au+p o, +&, q(u) - p,y

ou
du,—/)=0 h
and (%, Oxl) we have

L@ <=2 1Ml - Va2 VD +g@) 12+C 6
Using (2.4) we obtain

2
L py<- (-0, -0y |li] >+ L= ’

4 |

“30 9171717 G0

‘a"x:i

forany o, ,0,>0.Ifweseto, = 1 Kyandco 4 (l K)y, where 0 <k < 1, then (3.5)

2
and (3.6) imply the estimate

d 1 .
SVOs-rA=0lal? -ty

- 376 MaremaTtuueckas cuanka, aHanus, reometpus, 1995, 1. 2, Ne3/4 -



1.D. Chueshov and A.V. Rezounenko

, ) |
+ 2IVu 2 AUVl +E5) +C e 112+ €,

Ky

From (3.3) it follows that there exists k, 0 <k <1, suchthat _ -
2
V() |12 (= (| Ve | D+ 25 < C.
, p
Therefore, using (3.2), we have
d 1 02 Y 2_ Y 2
= < = - - — -
VO <-3rA=0 2= a2 -Ta-0F (Ve +

+Cp 9@ |* +G,

2
~Since (3.3) implies that F(s) 2 };7 s— C, it is easy to see that
d N ) * .
2 VO E)+C g, )P +Cy. o >0,
V(0 z a,E(0) - Cy, a,>0.

Therefore, using (1.1), for o = 0 we can conclude that
' t

d
pr i+ Ve < Cye, I Mrydr+C,
t-t,
for some B>0. As in [7] (see also Sect. 1) it implies the required assertion, when

t,=Iv-1)" Uis chosen such that ¢, t*eBz* <B.

Lemma 3.2. If|Sw,| , <R i=1,2 for any t >0, then there exist positive constants

Cpand & such that

E t
[S,w =Syl < Cpe™ Twy=w, | 3.7

Proof. Letu, and u, be two solutions of (1)-(4). Then the function U (f) is a solution
of (1.2), (1.3) for b(f) =0 and

Ou. ‘
- 2 I P
hj O=£( Vuj.][ )Auj+p or, +py j= i, 2.
It is obvious that if || U ()1l ys R, then || A (6) - hy () | < Cpllu) —u, |l ,. Using the
Gronwall lemma and (1.11), we obtain (3.7).
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Let us consider the solution #(¢) of (1)-(4) as a solution of linear problem (1.2), (1.3)
with 6(¢) =/ (| Vu() |,

1

+pul) +p,.

One can easily verify that 5(f) has the property (1.4) when the solution u(f) belongs to the
ball of dissipation (see Lemma 3.1). The constant b, depends on R. Since

HZG(Q) = H%U(Q) = ?20 for o <% we have that || A(f) || ,, < Cg , when || Au(@) || <R

ando < % That is why we can use the results of Theorem 1.2 and obtain that the compact
set K defined by (1.21) for some constant 4 = A(R) satisfies the property
h(StB,K)SCBexp{—at}, a>0 (3.8)

for any bounded set B in % Here h(A4, B) is defined by (3.1). In particular (3.8) means
that the semigroup S, is asymptotically compact in the space A Therefore (see, e.g..

[4,10] the semigroup S, possesses a global attractor A .
It is clear that any element lying in 2f has a form (v(0), O(0), v(t)), where

u(t) € O’forc<%.

Let us prove that the attractor 2f has a finite dimension in _% Let { 5 };0: o be

the trigonometric basis in L2(~ Lo O R): @y(s) =1/ \ft: ;
NOE ‘\l—tz— sin 2 ’;—ks, k=1,2,5 @)= \/tz cos 2 ’:—k s, k=1,2,.
* * * *

We consider in % the finite — dimensional subspace:
ﬁ/N,M:PNyz x Py, 7 = Lin { ® ()e,(x) | k=1,.,N;j=0,.,M}.

Denote by %, , , the orthoprojector in % on this subspace.

Lemma 3.3. Letw,,w,e K, =) StKwhere K is the same as in (3.8). Then

t20
| (A= a0y =S |, <
_a A (3.9
1 N :
2 _ bt gt _
${Cle (1+ ?\/ 1e )+C2M+le }|wl Wyl o
+
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Proof. LetSw, = (u/0), ﬂl(t), uft+1)),1=1,2. Evidently

- ﬁN’M) St w,= {QNul(t)a QNuI(t), QNul(t +5)+

+Z I(pj("c)PNul(tJr'r)dupj(s)}
J=M+1 -1,

and
| a —'PN,M)(Stwl —Swy) | 2zf= | QN (S =S, w)) | i’/+
0 2 (3.10)

[ 2]

N N
IR I%ﬁﬂﬁ+ﬂﬂ%Hﬂ&9ﬁ
k=1 j=M+1|_4

where @Nis defined as in Sect. 1. Denote the last item Zl . Taking into account that

. C
1 (9 _ 1, &) + K@y 8)%) <
j= 1\24:+1((p~ g)L2(~' 0 (M+1) kz(%l)/{z #ot e }
(M 1)2 dr,

we have

Zl<(M+l)2 _‘-” u(t+7) - u(t+‘c)||2d‘t<(M 1)2 J.l t+1: St«-‘l:v'}2|22’d‘r

Since K, c {w e % |w lZ,SR}forsomeR>0,Lemma3.‘2irﬁplies

<C P8 W, —w :
2, WH) M=l

In the same way as this is done in the proof of (3.8) one can easily verify that

2

G.11)

|Swl| 5 <R forweKandc<%. Cons,equentlyv
- c . :

(3.‘12)

[S—

|Sw|$,<R ,weK',c<
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We now consider the function ul(t)-uz(t) as a solution of (1.2), (1.3) with
b(t)=£ (Il Vu; || *) and |

() = ity = 15) + p o (=) = (£ Vo 1) =71 Dty 1) By
1 .

It is clear from (3.12) that b(f) possesses the property (1.4) and

1
1A N 56 < Cr I Auy~up) |, <7 (3.13)

Since S, w, — S, w, = U(t, 0; b, w, —w,) it follows from (1.15), (3.7) and (3.13) that

: at
~ _a 1
| Oy S, wy=S,w) 1 3, <Cre 2[ 1+ —— "\ lw -w, | .
N+1
Combining this with (3.10) and (3.11), we obtain (3.9).
; If we choose f and N and M such that

at

- A '
Ce 2(1+K1‘5+1 ebt0)<% and C21\_,1_i!—fe§10<% for a given 0<8 <1,

then Lemma 3.3 implies

| (l‘ﬁN,M)(Stowl”Stowz) | <8 w —w,y| (3.14})

forallw, ,w, e K, . Since the global attractor 2 lies in K, the properties (3.7) and (3.14)

allow us to apply the Ladyzhenskaya theorem (see, €.g., [3,15]) on finite dimensionality
of invariant sets.
The proof of Theorem 3.1 is complete.

Remark 3.1. The assertion similar to Lemma 3.3 can be also obtained for the
modified von Karman system. Therefore the method presented above allows us to prove
the finite dimensionality of the global attractor constructed in [7] for the problem of
nonlinear oscillations of an elastic shell in potential supersonic flow.

We also note that Theorems 2.1 and 3.1 can be applied for the investigation of the
problem (1)~(4) in more smooth spaces. In particular, Theorem 2.1 gives the possibility

to define the evolution operator S, of the problem (1)-(4) in the Banach space U= O,
defined by (3.4) and endowed with the norm ‘ '

|yl =max || y(0) |, +max |[y(7)]
' [-¢,.0]

(-1,
by the formula [3‘ V(@) =u(t+1), 1€ -1, 0], where u(f) is the solution of the problem
(1)-(4) for initial conditions u, = y(0), Uy = W(0), @ (1) = y(t). Theorem 1.2 and 2.1 and
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Lemma 3.1 allow us to obtain the properties of dissipativity and strong continuity of S,

in the space 7. Theotem 3.1 implies the following assertion.

N
Corollary 3.1. The dynamical system (S, () has a global attractor N o Whichisa

bounded set in the spaces C_ defined by (3.4), o <:11' - The attractor A, has a finite

. . 2 .
fractal dimension as a compact subset of the space L*(--t,, 0, \72).

Proof By virtue of Theorem 3.1 it suffices to prove that the set
A =) (w0); W(0); w(x) = w e A
possesses the following property of attraction

N
= lim sup{distG(Sty,QIG):yeB}=O
for any bounded set B in (#’. We can obtain it from the attraction property of 2 in %~
and the estimate (3.7).

Using the method a, plied in [3,4] we can also prove the following assertion on
finiteness of number of essential mode.

Theorem 3.2. There exist constants v, and Ny, such that for any v > v, and N> N,

and for any trajectories S,w, and S,w, belonging to the attractor W the following

assertions are true:

LIf Lim ([P Gy (0) = uy(0) | + 1| Py (g (6) = uy(D) Hz}=0,

—
then

m  osup 0T — i+ ) [ (1) — (1) [, =0,
t—so1e[-t 0] '

2. I]‘”}N’]\’,Stw1 =P8, wy for any 1 € R, then S{v‘vl =S w,.

The proof relies on Theorem 1.2 and can be obtained in exactly the same way as in
[3,7]. Similar arguments are also applied in the proof of Lemma 3.3.

Unfortunately, the structure of the global attractor of the problem (1)-(4) is unknown.
We are also unable to estimate the rate of attraction of solution to the attractor. However,
relying on Lemmas 3.2 and 3.3, we can establish the following theorem on the existence
of a fractal exponential attractor (inertial set). This concept was introduced in [16] (see

also [17]) for a class of compact dynamical systems.
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Theorem 3.3. The dynamical system (S,,./7) governed: the problem (1)-(4) and
defined by (2.10) has a fractal exponential attracior, i.e. there exisis a compact positive
invariant set 2 exp " J of finite fractal dimension possessing the property

h (S, B, i’lexp)<C exp( Bo),
for any bounded set B in Zf. Here B is a positive constant, and h(A, B) is defined by (3.1).

Proof. LetK, be as in Lemma 3.3. Since S, K, cK,, we can consider a restriction
(8, ,K,) of the dynamical system (S',Zf)dn the compact K, . Lemmas 3.2 and 3.3 imply
that for any & > 0 there exists an ortoprojector /7 in % of ﬁni_té dimension and a £, >0
such that

l i-7) Stowl'-~ Stow2 | - S81w ~w,| -
and N .
iStwl——Stowzl L>0

SLiw,-w
0 .

x 2l

for any w, and w, lying in K. These estimates allow us to verify the assumptions of
~ the main theorem from [16] and to prove the existenee of'a fractal exponential attractor
A exp for the compact dynamical system (S, K,). Since K, o K estimate (3.8) implies

that 4 (S, B, K,) < Cg exp (- at), a>0. Therefore one can easily verify that 2 exp 1S 2
fractal exponential attractor for the system (S, , 7).
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Fio6anbuble aTTPaKTOPHI LTSl OJHOTO KJAcca KBa3HIHHeHHBIX
an¢depeHtHaNbHBIX YpaBHEHHH B YACTHBIX MPOH3BOJHDIX C
3ana3fAblBaHHeM

HU.A. Yyertos, A.B. Pe3yHeHko

B cTaTee HCCAGAYETCA CHCTeMa KBAa3UAMHEHHRIX AU (heperarbHBIX
YPaBHEHMHM B YACTHHIX IIPOM3BOAHBEIX C 3alla3AbIBAHMEM, BO3HHKAKOLAd
B azpoynpyroctd. CTPOMTCS 3BOAIOLMCHHBIA OnepaTop. AoKa3aHo Cyue-

CTBOBAHUE KOMINAKTHOTO IAO0AABHOrO aTTPakTopa, KOTOPHIA UMeEeT KO-,

HEYHYIO (PpaKTaAbHYIO0 pa3mMepHOCTb. [TOAyYeHBI HEKOTOPHE CBOWCTBa
petesui Ha aTTPAKTOpe, AOKa3aHO CyIeCTBOBaHHEe )pPAKTAABHOIO JKC-
NMOHEHIIMAALHOI'O aTTPaKTOopa.

I'106anbHi aTTPaKTOPH LIS OJHOTO KNACy KBaziliHilttHux
mudepennifiHuX piBHAHD B YACTKOBHMX MOXiJHHX 3 3alli3HIOBAHHAM

LA, Uyemos, O.B. Pe3ynenko

.

AOCAIAKEHO CUCTEMY KBAa3IATHIMHNX AM(epeHIAHHUX PiBHSHL B YacT-
KOBHMX MNOXIAHMX 3 3ali3HIOBAHHAM, KA BUHUKAE B aepOUPYXRHOCTI.
ByayeTbcs CBOAIOUIMHMI OnepaTop. AOBEASHO iCHYBAHHS KOMIAKTHOTO
FAOBAABHOTO ATTPAKTOPA, AKUH MAE CKiHYeHHY ()PAKTAaABHY PO3MIDHICTE,
OTprMaHO AesTKi BAACTUBOCTI pillleHb Ha aTTPAKTOPi Ta AOBEAEHO iCHYBa-
HHSL PPAKTAABHOIO €KCHOHEHIHHOrO aTTPakTopa.
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