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The quantum cohomology algebra of a projective manifold X is the cohomology

H *(X, Q) endowed with a different algebra structure, which takes into account the geometry
of rational curves in X. We show that this algebra takes a remarkably simple form for
complete intersections when the dimension is large enough with respect to the degree. As
a consequence we get a number of enumerative formulas relating lines, conics and twisted
cubics on X. :

Introduction

The guantum cohomology algebra of a projective manifold X is the cohomology of
X endowed with a different algebra structure, which takes into account the geometry of
rational curves in X. This structure has been first defined heuristically by the mathe-
matical physicists [1, 2]; a rigorous construction (and proof of the associativity, which
is highly non trivial) has been achieved recently by Ruan and Tian {3].

When computed e.g. for surfaces, the quantum cohomology looks rather complicated
[4]. The aim of this note is to show that the situation improves considerably when the
dimension becomes high with respect to the degree. Our main result is:

Theorem. Let X c P *7 be a smooth complete intersection of degree @,,....d, )
and dimensionn 2 3, withn2 2y (d;- 1) - 1. Letd=d, ...d_and 8=y, (d,- 1).

The quantum cohomology algebra H *(X, Q) is the algebra generated by the hyperplane
class H and the primitive cohomology H"(X, Q) , with the relations:

H**1=gh . a%H®, H-a=0,
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Quantum cohomology of complete intersections

a-B:(a]B)'}?(H"——d‘:i...d‘:rHS"'l),

fore, Bz H® (X, Q), -
The method applies more generally to a large class of Fano manifolds (see
Pmpcsmson 1 below). It is actually a stralghrforward consequence of the definitions,

except for the exact value of the coefficient d 1 d 4 , which requires some standard

computations in the cohomology of the Grassmanm:m. Still I believe that the simplicity
of the result is worth noticing.

As the referee pointed out, we get actually more than an abstract presantanon of the
guantum cohomology algebra by generators and relations. The point is that the powers
of the generator H have a simple geometric interpretation: denoting by

H’p cHY? (X, Z) the class of a codimension p linear section, one has for p <n

k-p k-p
= = ’ —k
HP=H +( 3 £)H, _,, H=HP-(% [HHP™K,
i=0 i=0

wherek=n+r+ 1."2 d;and d/; is the number of lines in X meeting two general linear

spaces of codimension n—i and k + i — 1 respectively (formula (1.7) and Remark 1
betow). This allows to write down explicitely the quantum product in the basis (Hp ).

We get from this a number of enumerative formulas: for instance we find that the nnmber
of conics passing through 2 general points in a hypersurface of degree d and dimension

-3 s —% d!(d - 1)!, while the number of twisted cubics through 3 general points in

a hypersurface of degree d and dimension 3d - 6 is d'((d — 1)!)2.

1 would like to thank A. Bruno, R. Donagi, G. Ellingsrud and Peng Lu for their useful comments.
During the preparation of this paper I had long and vivid discussions with Claude Jtzykson, while his health
was declining very rapidly — till he died on May 22. 1 would like to dedicate this paper to his memory.

1. Quantum cohomology of Fano manifolds

I am considering in this paper Fano manifolds with b, = 1, i.e. smooth compact

complex manifolds X such that H 27(X, Z) is generated by an ample class H and the
canonical class Ky is — kH for some positive integer &. Iwill use the following properties

of the quantum cohomology product on H *(X, Z) or H *(X, Q) (proved in [3]):
(1.1) it is invariant under smooth deformations;
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{1.2) it is associative, compatible with the grading mod. 2, and anticommutative. It is
compatible with the intersection form (| ) on K *(X, Z), i.e. one has {x | yz) = (xy | 2)
forx,y,z in H*(X,Z). Theelement 1 € H O(X, Z) is still a unit. '
(1.3) the product x -y of two homogeneous elements is defined by

X y=x-Y+E-y+.. +(x-y)j+ e s

where (x - y), is the ordinary cohomology product, and (x - y)j is a class of degree
deg (x) + deg (y) - 2kj.

(1.4) Assume that the moduli space M of maps f: P! - X of degree j (i.e. such
that deg f*H =j ) has the expected dimension n + & j; choose any smooth compactifi-
cation W] of ﬂ/xg such that the evaluation maps e, : .’M’J’ > X(0<i<2) defined by
e, () =f(D extend to .’MJ . Then the "instanton correction” (x - y)j is defined by

(x,y,z>j:=( y)lz) feox ey y ez
ﬁ/é

(1.5) Ifx,y,z € H*(X, Z) are classes of subvarieties 4, B, C of X which are in general
position, it follows easily from (1.4) that the triple product { x, , z)j is the number of

curves of degree j meeting A, B and C (counted with multiplicity abc if the curve meets
A, resp. B, resp. Cin a, resp. b, resp. ¢ distinct points).

To avoid confusion I will denote by H_ e HY(X,Z) for 0<p<n the p-th
power. of H in the ordinary cohomology, and reserve the notations x-y or
"x,ye H *(X, Q)) exclusively for the quantum product. One has Hy=1, Hl = H,
and H_is d timesthe class of a point, where d is (by definition) the degree of X.
The following result is a direct consequence of Property (1.3):

Proposition 1. Let X be a prOJectzve manifold, of dimension n=2, of degree d.
Assume: :

(i) The ordinary cohomology algebra H X, Q) is spanned by Hand H"(X, Q)
(ii) One has Ky=- kHwith k > 2

(i) If n=2k-1, H"(X, Q) is nonzero.
(V) If n=2k-2, dim H"(X, Q,* L
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Quantum cohomology of complete intersections

There exists an integer (X ) such that the quantum cohomology algebra H "X, Q)
is the algebra generated by H and H "(X, Q) , with the relations:

v Hn+1=u(X)H"+1—k, H,azo, a.B:(alﬁ)(—lI(Hﬂ_u(X)Hn—k) (R)

foro, Be HX, Q).
(Recall that the primitive’ cohomology H "(X, Q), is by definition equal to
H™X, Q) if n is odd, and to the orthogonal of Hn if n is even.)
- o o 2

- _: Let p be ,anbihteger, with —k < p < % . According to (1.3), one has

. - , 1.6
‘H Hk+p_1—Hk+P+§,Hp, _ ' (1.6)

“for some number 6} € Q (which is zero for p < 0). Intersecfing both sides with

. 1 '
Hh—p gives l‘;;:E<H’Hn—p’Hk+p—l>(Somat§)=[n—k+l—p)'
-~ From (1.6) one obtains inductively, for -k < p < 11_’ |
k+ 4 ‘ |
H ,,=HY P— (Y. L)HP. : )

z=_0
If n<2k-2,wecan appiy this with p=n-k+1;since H, =0 we obtain

H"“:p(x)‘H"“-k with p(X) =n+fkfi. (1.8)
} o o i=0 v

If n=2k-2, the product H-H_ belongs to H "X, Q). We will see below
~ that under the hypothesis (iv) one has for all o € H " (X, Q, H-a =0, hence
e | (H-H |o)=H -a|H )=0. Therefore, H - H, is proportional to H_;_ , wich means
that (1.6) and (1.7) still hold for p =k - 1, yielding again (1.8).

. I n=2-1,onefinds H-H =/, H*+m for some integer m. If m is nonzero

H isinvertible in H '(X, Q);sinceH - H "(X, Q) is zero for degree reasons, this implies
H "X, Q) = 0. Therefore, under the hypothesis (iii) we obtain again (1.8).
Let a € H"(X, Q) ; letus prove' that H - o is zero. If n# 2k — 2 this is clear for

degree reasons. Assume n = 2k -2; then H - o belongs to H O(X, Q). If a #0, there
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~ -exists by -hypothesis (iv) an element B in H"(X Q)0 not propomonai to «; the »

v equalnty (H-o)B= (H- B) o leads mdeed to H-o=0. .
Let o, B e H"(X, Q)0 By (1 3) and (1 7), there exists anumher q € Q suc*h t_hat_ o

- B (alﬂ)gﬂ” qﬁ" -«

: Multlplymg by H and usmg (1 8) ynelds q == (a | B) H——(-“ wh;ch glveq the last' o
relation (R).. ‘ S ~ . ,
Finally, we Just ‘have to remark that the Q—algebra spanne,d by H and H "X, Q)o w1th v

the relations (R) has the same d1mens1on as H (X Q), so that all relatmns follow from
R). ®m ' '

Rem arks. 1) Assume moreover that-the variety of lines contained in X has the .
expected dimension z + k — 3, and that H is very ample, i.e. is the class of a hyperplane
section of X < P". Then according to (1.5) dL; is the number of lines in X meeting

two general linear spaces of codimension n — p and k + p - 1 respectively. For instance,
f is the number of lines passing through a point in a general linear section of codimension

k—2of X.

2) If n is equal to 2k — 2 or 2k — 1, the result of Prop. 1 does not necessarily hold
if one assumes only (i) and (ii). ("onsuier for instance a general linear section of

codimension 3 of the Grassmannian G(2, 5). This is a Fano threefold of index k =2, .
degree d = 5, which satisfies the hypotheses (i) and (i) of the Pronosition (but not iii)).

‘For such a threefold one has by (L. 3)H H,={H,+c, w:thc-d(H H:Qz'
 FromH?=H, +h andH3 H,+ (4 +[)H (1.7) we deduce

H*=Qf+H +c- /2.

Easy geometric computations give 4 =3, 4= 5 c=10, hence ¢~ /2 =10,

| Now, let X be a,gehcral linear section of codimension 20f G(2, 5). Thisis a Fanb '
fourfold of index k= 3, which satisfies (i) and (ii). Let ¢, and c, be the classes in

-"H '(X, Q) of the traces of the special Schubert cyclé‘s in G(2, ‘5) {see § 2 b'elo‘w’for the
HnOtation) One has H = ¢, - A simple computation (using (1.4)) gives H - H =5c,,

" from which one can construct a class oE H (X Q)0 w1th H-a=z0.

388 : . . . ’Ma_\Tevmamuquaﬂ thuamxa, auénua, recjmeTpm','wQS., lT. 2, Ne '3/4
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3) Condition (iv) in its current form has been shown to me by A. Bruno. In an earlier
version I used a weaker condition (for n = 2k - 2):
(iv)" the cohomology class of the subvariety of X spanned by the lines passing
through a general point is proportional to Hy .
9

Using (1.4) one shows that this cohomology class is equal to é

is essentially equivalent to the result of Prop. 1 (in particular, (iv) implies (iv)’ ).

H-H, , 5o that (iv)

2. Complete intersections

Let X be a smooth complete intersection in P" ™" of degree (d,, ..., d,) and

dimension n> 3, with n>2 Z (di — 1) — 1. To prove the theorem, we can assume in

view of (1.1) that X is general; then the variety of lines (resp. conics, resp. twisted
cubics) contained in X has the expected dimension: see for instance [S], where the proof
(given for the case of twisted cubics) adapts immediately to the easier cases of lines and
conics. Let us check that the hypotheses of Prop. | are satisfied. Condition (i) holds by

the weak Lefschetz theorem. One has Ky=- kH, withk=n+1- Z (di — 1); there-
fore, the inequality on n ensures that (ii) holds. The space H "(X, Q) is nonzero except
for odd-dimensional quadrics [6], so condition (iii) holds as well. Finally, if
H"(X, Q) is of dimension 2 for n even, it is of type (% , ;j ; by [6], this is possible
only for even-dimensional quadrics, which gives (iv).

Therefore, the quantum cohomology of X is given by Prop. 1; to achieve the proof
of the Theorem it remains to compute the number (X ) = Z [P . Recall that d[p is the
number of lines in X meeting two general linear spaces of codimension n—p and

k + p — 1 respectively (Remark 1). This number had been computed by Libgober [7]; I
will give here a different proot.

Let V be a complex vector space, of dimension N ; let us denote by G = G(2,V) the
Grassmannian of lines in the projective space P (V )T. On G we have a tautological exact
sequence

0—>S—+OG®CV—)Q—>O,

where the sub- and quotient bundles S and Q are of rank 2 and N — 2 respectively.
The Chern classes Cps»n s Cy_o Of Q arerepresented by the special Schubert

cycles:

We use the naive convention, i.e. P (V) is the variety of lines in V.
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cpzcl{[é GI[me+1¢ﬂ I8

where Hp .1 is afixed linear subspace of P (V') of codimension p + 1. In particular,
the subvariety of lines in G meeting two general linear spaces of codimension p + 1 and
g + 1 has cohomology class ¢_ €y

LetfeS W* bea homogeneouns polynomial of degree d on P (V). It defines by

restriction a global section f of S 4$* wich vanishes exactly at the points of G where

the corresponding line is contained in the hypersurface f= 0. In other words, the
subvariety of lines contained in this hypersurface is the zero locus of

feH 0(G, sig” ). If f is general enough, it has the expected codimension d + 1,
and therefore its cohomology class is the top Chern class Cd;& (5 dg* ). Hence the

cohomology class of the variety of lines contained in our complete intersection X is

d 1 x
Cle(S ‘S‘)...cdrﬂ(s(’S ). Therefore, we find

1 Lk . d ox
[p:aJ‘cle(S S B S A
G

(recall thatk=n+r+1- d.).
pASS I |

We will compute this number using the Chern classes x = cl(S ),y = CQ(S "), or

rather the virtual classes o, 8 such that x = a + B, y = aff. The Schubert cycles ¢, are

then given by

1+cl+...+CN__2:(1~x+y)"1=(1~0t)“1(1*’3)‘1:

_ (e B
Ca-Bll-a 1-8)

hence

d
the Chern class ¢, , (S dg* ) is equal to H (Ja+(d-j)B). To integrate we use

i=0
the following lemma:
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Lemma. Let Pe Cla, B be a symmetric homogeneous polynomial of degree
2(N - 2) (so that P (a, B ) is a polynomial of maximum degree in the Chern classes x

and y). Thenjl’(a,ﬁ)isthe coefficient of o™~ 1 BY L in —%(a—B)zP (a, B ).
G

This is probably well-known; let me give a quick proof for the sake of completeness.

p+l_np+l
Put ¢, = —a—————g—* for all p. The (usual!) cohomology algebra of G is the algebra
(1 —

of symmetric polynomials in «, B, modulo the ideal generated by c,,_, and c,, [8].

Consider the linear form which associates to a symmetric polynomial P («, B ) the

coefficient of a1 B N=1 45 - % (a-B )2P (o, B). It vanishes on the ideal

(c _' , C»,) and on the polynomials of degree < 2N — 4, hence factors through a linear
N-P "N .

form/: H*N ™ 4(G, Q) — Q, necessarily proportional to _[ . Let us evaluate these two
G

forms on the polynomial ¢ 12\,_ , - One has (o - B )°c 2N 5= (CLN" . BN_ 1)2 , hence
) c %v-—z) = 1; on the other hand, J c %v— 2 is the number of lines in P (V') through 2

G
points, that is 1. This proves the lemma.

Let us apply the lemma to the polynomial F(«, B )e, _ -

» ck_2+p , Where
e-1 . .
F(o,B)= Z a; a/B®7/ is a symmetric homogeneous polynomial of degree
L J=1

e :=Z (dl.+ 1). One has
@=B) e, |, gy, =@ TP =BT gk
:an+k—1+’3n+k~1_an—ka—1+p_ak—l+an~p

Since N=n+r+1, the coetficient of alN-1 BN’ 1 in

(a—B)zF(a,ﬁ)cn_l_pck"HP is 2ar_k+1—2a ; if moreover F (o, B) is

r+p
divisible by (o, B )", the first coefficient is zero (recall that k > % = 1). Applying this
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. d d %
to the polynomlalF(a,ﬁ)-—-cle(S xs‘)...cdrﬂ(s ST weget[=a, |,
that is
n+l1-k ) d
) [a””ﬁ"_' ”=3H H (Ja+-j)B). @1
p:(] . i=1 '= )

r
Taking =B =1 gives pu(X )= Z §)= H d?i , which achieves the proof of the
i=1
Theorem. Note that Libgober’s formula (2.1) gives explicit expressions for the z; ’s for

instance
. ,
6=114" . ' (2.2)
i=1
r di‘j, .
[1 = di,! ( T )s _ 2.3
i=1 1<igr .
1<j <d
and so on.

3. Application I: enumerative formulas

Let X be a smooth projective manifold satisfying the hypotheses of Proposition 1; it
follows from that Proposition that all the tripie products { H H H ) can be computed
in terms of the mtegers [ . If the variety of lines, conics or tw15ted cubics in X has the
expected dimension, thls gives some nice enumerative formulas which we are going to

escribe.

Let p, g, r be positive integers < n such that p + g +r=n+4& ; we arrange them
so that p < g <r. Since 2k > n by hypothesis this implies p < kand k<p+¢4 < 2k
(hence g 2 k). Therefore,

-k
H,-H =HP (H- (qu)Hq £y=(n(X) -3 £)H

i=0 i=0

ptq-k’

hence
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. q-k
(H,H,H)=H, HI|H)=d(n(X)-3 £).
i=0
Using the equalities £ =/ |
find

{ -k ; and the convention £ =0 for i > n+1-k, we

Proposition 2. Assume that the variety of lines contained in X has the expected
dimension n+k~3 . Let p, q, r be positive integers such that p<q<r<n and
p+q+r=n+2k The number of lines in X meeting three general linear spaces of

n-q
codimension p, q and r respectively inP" " is d Z L.
i=0

Actually this could also be obtained by a computation in the Grassmannian as in
§ 2. This is probably also the case for the next results, though the computation would
be much more involved.

Let us look at conics. Let p, q, r be positive integers such that p + g + r=n + 2k;

as above we assume p < g < r < n. Moreover, we will assume k& < n, which excludes
only the trivial case of quadrics [9]. This implies p < k& and therefore

n—q

2k<p+q < 3k.We have as before H - H —(Z[)Hp 97k since HP 97 =
i=0
n-r
=H ,, o+ (X 6)H , _,, weobtain
j=0 ‘
q n-r
(H,,H_ .HY=@H,H/|H)= d(Z!)(Z/)
i=0 j=0 .

Proposition 3. Assume that X is not a quadric, and that the variety of conics
contained in X has the expected dimension n + 2k — 3. Let p, q, r be positive integers
such that p<g<r<nand p+q+r=n+2k The number of conics in X meeting

n+r

three general linear spaces of codimension p, q and r respectively in P is

n-r

ToNAIONAY

i=0 j=0
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This has to be taken with a grain of sali in the case p = 1, g = r = n, because every
hyperpiane meets a conic twice, so the above number must be divided by 2 . Since

is d times the class oi a point we find that the number ot conics in X through 2 general

i (:2
e 4 1 ) G . pS oL M PN 3 M . 5 4] > gt :
POINIs is 7 where £, is the sumber of lines through a general point in the intersection

of Xwitha g &hneral linear space of codimension & — 2. For complete interseciions formula
{2.2) give:

Coroliary, Let X be a smooth complete intersection of degree (d., ... . d ) in

L

PUTT withh =2 S (d. ~ 1) ~ & The number of conics in X passing through 2 general

S — 1\2
poinis is » ﬂ d!)
i=1
Examuplie Let X beacubic threefold, P, { two general points in X, L, M twg

general lings. We find that there are 6 conics in X through P and 0 - a fact that can

easily be checked geometrically (the line (P, ) meets X along a third point R; conics
in X through P and @ ~re in one-to-one correspondence with lines through &), Similarly
from Proposition 3 we find 14 conics theough P meeting L and M.

The compuiation for twisied cubics is very simular. Let p, g, r be ncmhw; mﬁ:gers

with p<g<r<n and p+g+r=n+% . Since 2k > n this implies p >4 atd-

p+g >k Wehave

.

p -k ) g-k
H -H =(H (S [YHP R (59 (N (YHI "=
('7 q . N i 1- ~ N f] . K
) i=0 j=0
q-k p—k p—k g~k "
— 7, Z x . 4 7z N ] Eny, __r';v »
= (WO - p ) YL aX._}ﬂ,z;-u (Y ENHP T “s
j=6 i=0 i=0 j=0 "
p—k ‘ qg-k ) p+gm—3k
={u{XY-> ) Y- A (S ) ‘ )
(5X) Lt b7 ) (B (X) Z«g)(“{p+q—2k'\ - [;n/‘f{?)-f‘q;%/'
i=0 i=0 m=0
Reasoning as above we get:

Proposition 4. Assume that the variety of twisted cubics contained in X has the
expected dimension n + 3k — 3. Let p, q, r be positive integers such thatp <g<r<n
and p + g + r=n + 3k. The number of twisted cubics in X meeting three generdl linear

spaces of codimension p, q and r respectively in 8" 7 is
354 ‘ . MaTtemaTuueckan chuauka, aHanus, reoMmerpus, 1995, 1.2, Ne 3/4
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n—-r

n-p -
d( 2.4) 26 (Z
i=0  j=0

In particular:

Corollary. Let X be a smooth complete intersection of degree (d |, ... ,d ) in
P"" withn=3% (d .~ 1) = 3. Then the number of twisted cubics in X passing through

3 general points zs H ! ).

Example. Going back to our cubic threefold we find that the number of twisted
cubics through 3 general points is 24; this can be checked geometrically, as shown o
me by S. Verra.

4. Application II: the primitive cohomology

So far we have only considered the subalgebra of H * (X, Z) generated by H. In this
last section I would like to look at the remaining part. Because of the relations (R), the

only interesting triple produpt which appears is ¢ H , a, B >1 fora, B e H" (X, Z),.

Since H, - o= (H* - [)) - o= -, a, we get

<Hk’°"5>=(Hk'alﬁ)=~/(,(alﬁ)- 4.1

* Letus translate this geometrically using (1.4). We suppose given a smooth subvariety
Y of X, of codimension k and degree d,, such that the variety I' of lines in X meeting

Y is smooth, of dimension n — 2. For instance we can take for Y a general linear section
of codimension X in X; if k = n— 1, we can take for Y a line. The correspondence

q.
R > X

pv  with Ri={({,x)eTxX|xel}
r
gives rise to a homomorphism ¢=p, ¢* : H" (X, Z) > H" 2 (I, Z). By definition

this is a2 morphism of Hodge structures, i.e. ., maps HP4(X)ino HP~ 141 (D)

tforp+qg=n.
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'

B [ v{év
Proposition 5. One has (¢ (&) | ¢ (B)} = - _O‘d T (o B) for o, Be H (X, 7).

‘Let us choose a desingularization & of the variety of lines in X; as -above it has the
expected dimension n + & — 3. We denote by U the natural family of lines above I and
by ¢: U — X the natural map. The moduli space .’Ml of degree i maps Py Xhas a
natural smooth compactification, namely Efi =Uxg Uxg U the map e, 5;{1 -» X
(0 <i<2)is obtained by composing the projection p, , , with ¢. The inverse image of
Y under ¢, is then identified with the fibered product R xr"R, in such a2 way that the
evaluationmap e, : R xR = Xis gop, . (1.4) yields

f . .
(Y,o,B) = | ¢ aep.

o

er(?

Since R is a P!-bundle over I and the class q*H is transverSal to the fibres, the map
AHTRC,D®OH"(,Z) > H" (R, Z) given by My, 8)=p"y-q H+p & is
an isomorphism, which satisfies p,A (y, 8) = v. Let us write

ga=p ¢()- q*H +pa g B =p @(B)- q*H+p”‘ﬁ’ .
Let m =p o p, = p o p, be the projection of R x- R onto I'. One has

’
H

* * % * *® % *
= = Fo
eoa=pga=n ¢(@)p,qgH+na
and similarly for e; B.

For degree reasons the last terms disappear in the product e? o ez B, and we get

”
Yoo, By=(@lo® | qH pydA,
LxL

where L is a general line intersecting Y. The value of the integral is obviously 1; since

d
the cohomology class of Y is FY H, , the result follows from (4.1) .

E x ample. Letus go back to our favorite example, the cubic threefold, taking for
Y a generic line in X. Then I is a smooth curve; the map ¢ : w (X,Z) > Hl(F,Z) gives
rise to a morphism @ : JX — JT', where JT is the Jacobian of I” and JX the intermediate
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Jacobian of X (see e.g. [10]);v the formula (p(a)| @ (B))=-2(a|B) for a,
BeH 3 (X, Z) given by Proposition 5 means that the principal polarization of JT

- induces twice the principal polarization of JX . One deduces easily from this that the

- intermediate Jacobian JX is isomorphic (as a principally polarized Abelian variety) o
the Prym variety associated to T and the natural involution of T" which maps a line L

- to the.third line cut down on X by the 2-plane spanned by ¥ and L — a fundamental fact
 for the geomelxy of the cubic threefold, due to Mumf()rd»(see Appendix C of [10]).
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KpanTonble KOroMOIOTHY TOJIHBIX NepeceveHni

A. FoBUAAR

Aare0pa KBAHTOBRIX KOFOMOAOTHI ITPOEKTHBHOrC MHOroo6paszus X —

3TO EPOCTPAMCTRO Koromaaoruit H *(X, Q), cuaﬁmeﬂnoelﬁemamvapmoﬁ
CTPYXTYDOH arreQpel, KOTODAsi COACDRUT HH(MODPMALMK) O reOMeTpUH
PaLMOHAALHLEX KPHBRIX Ha X, T10Ka3aHo, 4yTo 3Ta aArefpa npuHMMaeT
3aMEYaTeABHO HPOCTOM BHA B CAyYae, KOTAa X — NOAHOE nepeceyeHue
M PasMepHOCTh X AOCTATOYHO BEAHKA IO CPaBHEHMIO CO CTeneHnio X. B
- KQUeCTBE CAEACTBMS MOAYYEH DAA QOPMYA HCYMCAMTEABHOM reOMeTpHH,
CBA3LIBAIOLIMX IIPSAMEIE, KOHMKH ¥ CKDYYEHHhIe KyOUKM Ha X.
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KBaHTOBi KOroMOJIOTii MOBHHX Nepepi3in

"A. BoBiAaB .

Anrefpa KBaHTOBUX KOTOMOAOTIH npoéxmnﬂoro MHOrOBHAY X — 1€

npocTip koroMoaorii H *(X, Q) 3 HeCTAHAAPTHOK CTPYKTYDPOIO aAreGpH,
gKa MIiCTUTB iH(popMaLil0 NP0 reoMeTpilo paljioHaABLHMX KpUBHMX Ha X,
TMokaszaHo, nio 18 aare6pa HalyBa€ Ay)Xe NPOCTHR BUTASA, Ko X —

~ NOBHMH nepepis i BUMipHicT X AOCTaTHLO BEAHKA MOPIBHAHO 3i CTyne-
HeM X. SIK BUCHOBOK OAePXKaHO psA (hopMyA 064YHCAIOBAABHOI reoMeTpii,
AKi 3B'A3YIOTH IPsAMi, KOHIKK Ta CKpyyYeHi KyGiku Ha X.
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