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We consider a general class of kinetic equations for real gases with (possibly) multiple
inelastic collisions and chemical reactions. We prove the existence, uniqueness and
positivity of solutions for the Cauchy problem and obtain the conservation relations for
mass, momentum and energy, the H-Theorem as well as the law of the mass action.

1. Introduction

We investigate the mathematical properties of a class of Boltzmann-type kinetic
equations for a model of reacting gas composed of several species of mass points with
well-defined, unique internal energy state and multi-particle (in)elastic collisions (reac-
tions). The number of species and the multiplicity of the collisions may be arbitrary.
The gas particles move freely between coliisions. The gas collisions occur with energy
and momentum conservation according to the laws of the classical mechanics. For the
one-component gas, with elastic binary collisions, the model kinetic equations can be
reduced to the classical Boltzmann equation.

Our interest in this model is due to the following thing. Certain kinetic equations for
the real gas, which are important for applications, but less understood mathematically,
appear to belong to our class of Boltzmann-type kinetic equations, as soon as they are
written in convenient form. The main example refers to the Wang Chang and Uhlenbeck
[1] as well as the Ludwig and Heil [2] equations, describing the real gas with inelastic
collisions and chemical reactions, respectively. The fact that the equations introduced
in Ref.[1, 2] belong to the class examined in this paper is the consequence of the point
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On a class of kinelic equations for reacting gas mixtures

of view, implicitly adopted in Ref. [1, 2] (see also [3, 4]): in certain situations a real gas
particle (molecule, atom, etc.) with internal structure can be considered as a, mechanical
system that differs from a mass point by a succession of internal states; each internal
state has a well-defined value of the energy. It becomes convenient to treat different
- internal states of the gas particle with internal structure, as distinct, structureless
point-objects, belonging to different species, of given mass and unique internal energy
state, and described by different distribution functions. Consequently we can think of
the gas of particles with internal structure as a gas mixture of different mass-points, with
unique internal energy, and re-write the original kinetic equations in a suitable form by
re-labeling the original *distribution functions (each original distribution function,
describing a succession of internal states of a particle with internal structure, is replaced
_ by a sequence of distribution functions associated to each internal state).

The aim of the present paper is to solve the Cauchy problem for the aforementioned
class of reactive Boltzmann-type equations and to prove the basic global conservation
relations, the H-Theorem, as well as the law of the mass action. The analysis reveals
new mathematical difficulties, in comparison with the classical Boltzmann equation and
other rigorous models [5-9]. The difficulties are essentially due to the presence of the
internal energy. They are introduced by the reaction thresholds, and are already visible
in the case of the gas model with three-body collisions (reactions). The situations with
more than three-body collisions (reactions) do not introduce additional conceptual
problems. However, the mathematical difficulties are better understood by investigating
the general model than particular cases that might contain irrelevant details.

The plan of the paper is as tollows. In the next section we introduce the class of
reactive Boltzmann-type kinetic equations. The main result, Theorem [, obtained in
Section 3, proves the existence, uniqueness and positivity of solutions (with small initial
data) for the Cauchy problem associated to this class of equations. The solutions are
global (in time) in the case in which the endo-energetic reactions are not present at the
gas processes. In the case of the simple gas with elastic binary collisions, Theorem 1
reduces to known existence results on the classical Boltzmann equation [10]. The
argument of Theorem 1 follows by fixed point techniques, due to estimations based on
the (local) conservation relations for mass, momentum and energy. The key estimation
is given in Lemma 1. In Section 4 we prove the bulk conservation relations for mass,
momentum and energy as well as the H-Theorem.

Finally, the following fact should be remarked. The probablllty of multiparticle
collisions is zero, in some sense ([11]), in the dynamics of the classical hard sphere gas
with elastic collisions (which plays an essential role in the validation of the classical
Boltzmann equation). The situation seems being different in the case of the reacting gas:
reaction processes producing more that two particles could be important to the gas
evolution.

Some of the results presented here, have been announced in [12].
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2. The frame

Consider a model of reacting gas without external tields, composed of N > 1, distinct
species of mass-points, with one-state internal energy. Each species of gas constituents

will be l1abeled by some simple index k = 1, ... , N. The gas particles have a free classical
motion, in the whole space, between (injelastic, instant collisions. By hypothesis, at

most, M > 2 identical partners may participate in some in (out) collision (reaction)
channel. During the gas processes, the particies may change their chemical nature (in
particular, mass and internal energy) and velocity. It is supposed that the collisions occur
with the conservation of mass, momentum and energy, respectively, according to the
laws of classical mechanics. The particles internal energies enter in the energy balance.

Let M :={v=(1,), <,<n!¥, € {0, 1, ..., M}} be a multi-index set. A certain
gas collision (reaction) process can be specified by a couple (a , B) € M x 4. Here
a = (e, ..., oty ) is the "in" channel. It designates the precollision configuration, with
a«, €{0,1,...,M} nparticipants of the species n, 1<n<N. Further,
B= ([31, ..+ » By ) denotes the "out” channel. It refers to the post-collision configuration,
with B € {0, 1,..., M} participants of the species n, 1 <n < N. For some y € M,

N
the total numbers of the particles in channel v is {y | := Z ¥, - The family of those

n=1
species present in the channel ye A/ can be identified by
AN@):={n|1<n<N, ¥, 2 1}. Consequently, if y & M, with | y | 2 1, for each A (y),
there are exactly v, identical particles of the species n, participating iny. Their velocities

. ’ 3 _
will be deroted by Wy gree s W, ) € R~ Also set w = ((w

: n,i)lﬁiSY")ne.'M(y)’
understanding thatw € R 3, Bym, > Oand E, e R, denote the mass and the internal

energy, respectively of a mass-point of the species n=1, ... , N.
Let VY (w) and WY (w) be the classical mass center velocity and the total energy,

respectively, for the particles in channel v, i.e.,

N Yn
Vy(w):::(zynmn)'.'l Z Zmnwn,i’

n=1 ne Ay i=1

Yn
. -1 2
Wy(w) = Z Z Q mnwn‘i+En).
ne @) i=1
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According to the previous conservation assumptions we are interested in those gas
processes (a , B) € M x M, where

N

Yom (e, =B)=0, VW=V, W, wm=W,w, O

n=1
with w=((wn‘i)1$i$a )n'e%fa) and u=((un,i)15isﬁ )REN(B) defining the

velocities of the particles in the channels a and B3, respectively.
Suppose that one knows the transition law ({1, 2]) K, B of each reaction process

(o, B). Following the standard Boltzmann procedure, we can formally write equations
similar to those introduced in [1, 2]

0L+ V-V =P (f)~S (), 1<k<N. ~ )

The unknowns are the functions jj( R, xR 3«R?P R, , [ sk<N. where
R, =10, ). Here fk :fk (¢, v, x) (¢t — time, v — velocity, x — position) is the distribu-
tion function for species k of mass-points and f:= (f,, ... . f ). The collision processes

are described by the nonlinear terms P, (f) and Sk ()

Pk (./)(t7 v, X) = Z ak I fh (’, u, X) Kﬁ o (U, W) x
o o peM RIBI g3

X B(Wk, a, - V) B(Vﬁ (u) - Va W) S(Wﬁ (w) - “lu whdu®dw, (3

S (), v, x) = Z o j o (W, x) K 8 (w, u) x

afeM o, gial

x 8w, — 8(Vyy (u) = V,, (w)) 8(Wp (0) = W, (W) du®dw, )

for all 120, v. xe R3; 1sk<N. Here, (Ka ﬁ)(a ﬁ)eM’xMiS the family of

transition functions K, B RAaIR3IBI, R , o, B e Mand

Yo )
L 6w, x) = I_[ Hf" tw, , X).
ne Ny i=1

We introduce the following general assumptions:
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DK, g=0if[a|<Tor|BI<1.

‘ N N
b) If for some o, B € 4, Zanmn¢ZBnm

n=1 n=1

then K, =0.

n?’

o, p

¢) For each w, uand n € A/ (a) fixed, K, B (w, u) is invariant at the interchange of

components w . W of w; a similar statement is true with respect to the

n 12" n, an
interchange of the components of u.

d)Foreacha e R 3, define the map w —T (a)w by setting (T@w), ,=w, .+a,
for alvl n, i; then Ka, B (w, u) EKa, 8 (T(ayw, u) = Ka’ B {(w, T{(a)u), foralla e R3,
(w, u) € R« R3”5_|anda, BeM

_ Assumption a) excludes the "spontaneous decay” (| o | < 1) and the "total fusion"

{| B | < 1). Condition b) states the mass conservation during the gas processes. Moreover,
¢) expresses the "indistinguishability" of identical collision partners. Finally, d) claims
absence of external fields.

The presence of the Dirac 8-"functions” in (3) and (4) expresses the conservation of
the total energy and momentum, respectively, during collisions.

It can be easily seen that the kinetic equations introduced in [1, 2] can be written in
the form (2), by redefining the distribution functions according to the remarks in the
previous section.

For some channel y € 47, let

N
, (W) =W (W) - 2”(27 m OV, W =3 v, E, . we R,

n=1 n=1
be the corresponding mass center kinetic energy. Obviously, W (w) 2 0.
We suppose that, Vo, B € 4, the transition law K, B is continuous on the set
fww e RTRIPw w >0 w >0l
We introduce the following hypothesis, extending a class of cut-off conditions for

elastic binary collisions [10].

Assumption. There are some constants C > 0, 0 < q < l such that for all a, B,
weRI* ye RBHBI we have
/2 /2
1+ Wr, CINEES W, 8 (u)?

W (w)§3| al-5/2 W, W@ Bl-9/2"

Ka, B (w,wy<C )]
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In the rest of this section we give a meaning to (3), (4). Let C_ (R 3xR3 ) denote

the space of continuous functions with compact support on R ¥ % R>. For each t 2 0,
n=1,..., N, fixed, let C . g DE the closure of C. (R 3xR 3) — real in the norm

|h|m=sup{exp [rmn(x2+v2)]|h(v,x)|:v,xeR3}, he CC(R3><R3)‘

SetC = I Cn,1 ,withnorm | A | = max |h, | ., forh=(hy,....hy) e C.

1<n<N 1<n<N

Let 5,:R—>R,_, € >0, be an even mollifier with supp 8. =[-¢,¢€] (e
5. () =1¢e" 1J (t/¢), for some even function J e CC (R;R ), with supp J = - 1, 1)
and [|J ||, = 1). Set 87 (y) :=8_ (¥, )8, (,)8, (y3), withy= (¥}, ¥, ¥3) € R,
For some t > O and f=(f,,....fy) € C ., define

Pkﬁn(f)(v’ X) = Z o j. du®d ‘;{(k) [fﬁ (u, x) x

apeM  p3pl, pIai-3

Ky, o (0 W) 52 (V (0) = V,, 09) 8, (W (0) = W, ), ©

=v?

Rien( ), %) = > o j du®dv~v(;c)[fa,k(w,x)x

o,BeM LB, pIal-3

{X a, p W u) & (Vg (W) =V, (W) & (Wg (w) - W, (W))] —y> M

for all v, x e R3, 1 =k < N. Here by definition, the terms with ak:O, vanish

identically, d v~v(k") is the Euclidean element of area induced by dw on the hyperplane

{weR3|°‘l:wka =v }, while
'k

BII
Lux= 1 TIfQ, .,

ne AP i=1

fa,k(w’x)z I—[ Hf(wnt’x) ka(
neﬂ[(a)\{k} i=1

Matematiueckas huanka, aHanus, reomerpus, 1995, 1. 2, Ne 3 /4 413



C.P. Griinfeld and E. (ieorgescu

Proposition 1. Lert > Qand f e C1 .

a) For each 'k = 1,..., N, there exist the limits

PLAv. %) = lim  Tim P (f)(v, %)

n->0e—0

and

R(f)v,x) = lim lim R (f)v, %),

n—=>0e—->0 )
Y(v,x) € R3xR3. Aiso, Pk(f)eCkp(R3xR3) for all pel0,7), while
sup {1 +v2) Y2 R(HHV. %) |} < .

v, X

b)Lethe C(R3) withsup (1 +v3) ™ 1| h(v)| < ». Then, Vx € R,
A\ 4 .

Ih(v) Pk(f)(v, X)dv=lim lim fh(v) Pken(f)(v, x)dv,
RS

n—>0e—->0
R3

LAY £, (0,0 RO, 0y d v = lim  lim [1) 709 R (P, 0%,
23

n—=0e-0
3 R3

foreachk=1...., N.

N
Poroof Set Tp(w=W (w - > B E, . We associate Jacobi coordinates

. n=1
(V.8 e R®xRIPI™3 1o the form Ty () on RI P, with & = &, ..., g5, ),
£ € R3i= I, ..., | B} -1 (see (A.2) Appendix A). Consider a representation of € in
spherical coordinates on RIPI '3, € =rn, with (r, n) € [0, ) x Qal Bl-dq- where

Q3l B|-a is the unit sphere in R3IPBI 3 In (6) and (7) we choose ( V, r, n) as new

integration variables such that u=wu (¥, r, n). Then the limits of Prop.1 follow by
repeated application of Lebesgue’s dominated convergence theorem, using the properties

of K o« B 82 and Sn - The continuity of P,(f) and R,(f) is a consequence of the
continuity of K, B O ,
The proof of Prop.1 provides the limits (6), (7) in explicit form. Define
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( N 1/2 N
[era(w)+2(an—ﬁn)En] it W, W)+Y @,-B,)E,20,
£y (W) = n=lo n=1
B
G, otherwise.
CIf
) ‘ N
W o W+ (o, ~B,)E, 20, ®
n=1
then set
U W =0V, oy e ®

For the sake of simplicity, Ug, will replace the notation g, (w, ﬁ). Define -
Ppy (w,n):=2"1 A‘3 "ty (w)3I Bl-5 KB. o (“ﬁa’ w), ' (10)

P W, m) =271 Ag g WIS K o (w, ug), (1

where the constant AB is introduced by the Jacobian of w —» ( V, r, n). With the
definitions (6), (7), we can write v

P (f)(v,x)=
= Z ak J. d ‘;(k) ® d n [ppa (wa n)fB (u‘}aa X)];vk « =v? (12)
BeM al- > Tk
a,fe R¥! 3\)(013”3]_4
R, %) =
= Z o, J. d;v(k) ®dn [ra(lt (w, n)fa’k (w, x)]wk a -y (13
a,pe R31a|—3x93|m_4 %

For f as in Prop. 1, we define Sk (v, %) =, (v, ) R, (f)V, X) with R, (f) given
by (13). '

We point out the following simple relations resulting from the definition of Ug, »
" provided that, condition (8), is fulfilled:

-
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Vi (g, ) =V, (W), Wy (0g,) = W, (W),

N. | (14)
Wr, ﬂ(uﬁa)z Wr,a(w)-i_z,(an_ﬂn)En :

By (5) and (14), there exists some constant X > 0 such that if condition (8) is
fulfilled, then (for g € [0,1] introduced in (5)),

Ppo WM SK[L+W, W), ry o W<K[1+W, W] (9

R em ar k: In the definitions of Ppy and T » the presence of g exhibits the
contributions of the reaction thresholds.

3. Existence theory

In this paper we are interested to solve Eq.2) in C o (the space of continuous
distribution functions, vanishing at infinity in the velocity and position variables). With
the notations of Prop.1, for some T > 0 fixed, set P (f)=(P(f), ..., Py(f)) and

SCEY=(S,(f)s oo Sy (SN, Vfe C €. Thenf— P (f)andf— S(f), consid-
ered as maps in C o » have extensions (also denoted P and §) to their natural domains

inC 0
The Cauchy problem for Eq. (2) formulated in € 0 is

df=Af+P(F)-S(f), fE=0=f,, (16)
with A the infinitesimal generator of the positivity préserving, continuous group
{U'}, . g of isometries of C , given by its C a0 components, 1 <n<N,

U'F), 0.0 =U f, (v, =f, (v, x=1V), ¢,v,x) e RxR>xR%. (7

We call fe C(0,T; C,) a mild solution, on [0, T], of Eq. (16) (in C ) if
S P(f),S(f)eCO,T,C,),and f satisties
’ t t
: f(t)=U‘f0+J.U’“’P(f(s))ds—j.U"sS(f(s))ds, Sy
0 0 :
(the integral being in C ;, in the sense of Riemann),

416 v MatemaTtnueckas dusnka, aHanus, reometpus, 1995, 1.2, Ne 3/4
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Our main result states the existence, uniqueness and positivity of mild solutions, for
initial data close to the vacuum state. These solutions are (time) global in the case of the
gas with purely exo-energetic reactions and/or elastic (multiple) collisions.

For T > 0 fixed, consider C(0,7; C ) with the usual sup norm, denoted
Noll,. If g=(g;,....8y) € C(O, T,C.)and re€[0,T), by g (t,v,x), de
note the value of g, (e C, ., 1<n<N, at (v,x) e R*R> Let C}:=
={g=(g - 8y)€C, 18,20, V (v,x)eR>xR>; n=1,... N}

Finally, for some R > 0, put #, (R)={h|he C(0, T, C7), || k|l <R }.

Theorem 1. Lett > Oand fye C7 .
a) ForeachT > 0, 3R, R; > Osuchthatif | fy |, < Ry, then Eq. (16) in Cohas
a unique mild solution f on [0, T, satisfying U™’ f € #_ (R}.). The map fy— f is

continuous from { h e C : |h|. <SR} CO, T, C,).

N
b) Assume that K . =0 for each couple (o, B) that yields » (. -B YE <0
a, B n n’ “n

n=1
(exo-energetic reactions). In this case, 3 R, R* > 0 such that if | fol SR, then for
each T > 0, Eq. (16) in Co , has a unique mild solution f, on [0, T, satisfying

U—’fe}z’T(R*). The map fy—> f is continuous from { h e C:: |h|.<R.} to
CO,T; C,).

¢) In each situation, U™ " fe C1 (0, T € 0)-

Remark. Inthe case of the simple gas, with binary elastic collisions, the statements
of Theorem 1.b) reduce to known results on the classical Boltzmann equation.

The proof of Theorem 1 will be given in several steps. We would like to apply the
Banach fixed point theorem to Eq. (18) in C (0, T; C'o ). This is not, directly, possible
since, P and § may be unbounded. However, writing Eq. (18) more conveniently, the

smothering properties of the time integrals appear to play a compensating role. The
argument uses the following key estimation, extending certain energetic inequalities,

obtained for the classical Boltzmann equation in [10]. For some y € 4, define
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Y"
) a
(D-; (t, W, X, V) = Z Zmn{ X ~1(w, =V + w;,i}, (19)
neX(y) i=1 :

forallwe R x ve R 1> 0. Also set
I"M (t, v,x) := ¥, €Xp [t m, (v + x2 )] x
t

X J a'v~v(k)J.ds [(1+Wm (w)q’/z)exp(—tfby(s, w, X, v)):iw

—~vs (20
iy =V (20)
Rivi-3 0 &
forallv.x e R*, 1 > 0: g € [0, 1].
Lemma 1. a) Under conditions (1),
AI
Op (fux, V) =@ (Lw, x. V) +2L+17) Y (o, ~B,)E, . @n
n=1
b) max sup{I"ky(t,v,x)l(z‘.v,x)ER+><R3><R3}=const<oo.

ye M. 1<k<N

The proof is given in Appendix B.
Let 7, t > 0 and f; & C';L . With the substitution g(r) := U’ £(?), Eq.(18) be-

comes,
! 13

£ .
HOES S _[ P (g)(s) ds J S¥(os)ds, 0<I<T 22
0 0

Here P* and § # are considered as operators in C (0, T: € 0 ), defined on their natural

domains D(P* ) and D(S # ), respectively, by
P (e)0y:= U™ PU' g, S* ()0 := U™ ' SU" g(0).
It follows that, we can prove Theorem 1, by looking for those g € C (0, T; € ) solving

Eq. (22)in C . Since U ‘leaves C (0, T: C ) invariant, we may equivalently look for
those g = (g, , ..., &y) € DPTYN DS YN C@O. T Cy ). solving the system

8 (v, x)=1 (g) (1, v.x), k=1,.... N, @3

418 MaTematuueckan husnka, aHanus, reometpus, 1995, 1. 2, Ne 3 /4
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(v, x) € [0, TIx R*xR> Here I (g) € C([0. T} xR~ » R is given hy

1 () (s, v. x)= fﬂ\ LAvoxyexp ]~ jR ”' (2, v, X ) dA] +

(%]

1
+ j exp [ - j- RY(a)(h, v, x y ] P # {ois, v, X ) ds, (24)
0 s

with R # (g)(t v.x):=U_ ! R, (U7 »(0)v.x). k=1,..., N (the integrals being in

the cld&su al sense). Obviously, the system (23) represents a weak form ot Eq.(22). Due
to the assumptions on f, . it will aprear that B (23) has soiutions given by elements of

C0,7; (,; ). Let I(g) = (z"§ (g3, ... ,JV 2. We show that ¢ —» I(g) tulfills the

conditions for applying the Banach tixed pomnt theorem in /’{T (R), for R small enough,

Proposition 2. a) if g = Ci0, T'; C* o then also Bgy = C0, T C: ).
b) For each T > 0, there exist R, K‘, > {1, with t” >0, av Ry 0, such that if

- -~ { oy Foy . s £ * M T e 2oy i —_
Ifo ls € Ry then g — Hg) leaves # (R invariant. Morcover, if KB. o = 0, whenever
N
. . 5 # . . . *
Z (a,—B,E, <O, ther there exist R, R™ > 0, independent of T, with R~ — 0,

n=1

as R - 0, such that if lfo I, < Ry, then g — i(g) leaves .h’r (R* ) invariant.

Proof. a)First, remark that C(0. 7. C Lo k=1,..., N, can be identified

with the set of those h € C(J0, T1x R” » R?) frealy with the property

sup {exp o, XV A v, X) [ >0 as >0, (25)
x| +1v] =

unitormly in¢ & [0, 7). We verity 25). If g e C(0. 72 C 1), v € 47 denote

¥

=

}

v # E 2 ‘ , . ) b v )
G (r,w, x, v)= n I U (w, ;= v)exp [t (DY (1, w, x, v)] .
ne Ay i=1 ’
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Using the definitions of P # and P, as well as Rel.(15) and Lemma l.a), we estimate
(24): since R Z (g)(t, v, x) 20, 1 < k< N, the exponents are negative in (24); moreover,

Pﬁ (2)(, v, x) 2 0; then, with the notations of Rel. (12), (13), for some constant
K>0,

0<1I (), v,x) <

ka,o(t,v,x)-&-K z o, J d\;'(k)®dn[(1+Wr’a(w)q/2)x

a, Be M 3of-3
R XQSIBI—4

-t

X v(ds ABa G g (s, Ugy s X, vyexp [-1® (s, w, X, V)] ]wk

=y ? (26)
0 %
for all (¢, v, x) € ([0, T'] xR3xR3. Here,
N
exp [=21(1+1%) Y (@, ~B,)E, ), if Kz . # 0,
_ n=1
Amw_] . o 27
0, if KB,aEO'

Since ge C(0,T;CY), by (25), (14), there exists r>=0 such that
Gg (t,u,x,v)<el gll ITﬁ |- L provided that (DB (¢, u, v, x) 2 r. Observe that

m, (x2 + vz) <O, @, w, v, x) | w =y Consequently, by Lemma l.a), for each

k.
%

g > 0, there exists 7o > 0 (possibly depending on 7T') such that if (x2 +v2 y=r,, then

0SGh(sup X, M,y selgltPi-t,
k. o
uniformly in the rest of variables. We introduce the last inequality in (26). There exist
two constants Kl > 0 and r> 0, such that, if X+ v2 2> r then

0<7 (g, x) $fk’ o (V. X) +

+sK2A(T)exp[—'cmk(x2+v2)] > rka(t,",x)”gﬂltm_l, 28
Jla]z22,|Blz2

tor all (r, v, x) € ([0, T] x R3 x R3. Here,
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A(T):= sup [ sup Ag, (@] (29)
. o,BeM 0<t<T

Since f, , is in C ¢ ¢ » it is now sufficient to apply Lemma 1.b) to obtain that (25) is
satisfied. This concludes the proof of a).

b) Since 0 < Gg <llgll ITB '~, the same procedure as before implies

1L @O, <L +EKAT) Y gl P .
IBlz2
for some constant K,, > 0. Now the argument can be easily concluded. (3

Let I denote the map g — /(g), according to Prop. 2.b). Clearly, Eq.(23) can be .
formulated in C (0, 75 C ) as ’

g =Ig). , , (30)

Proposition 3. For each T > O there exist R;., R. > 0, with R — 0, as R, — 0,

such that if | fy| <R
N .
KBa =0, whenever Z (an - Bn )En <0. In this case, there exist R, R® > 0, with

n=1

o then I is a strict contraction on . (R}.). Assume that

R >0, as R—>0, independent of T, such that if |f,| <R, then I is a strict

contraction on R").

Proof. By'(24), for g, h e C(0, T; C ), we can write
L@ v X)L () v, %) | <
<QP @ W, v, )+ QF (g, Wt v, 0+ QF (g, W), v, ), 3D
with
| Q’;(t,v,x) :=fk’0(v,x)><
! ‘ t

"'VX lexp [_IRz(g)()‘@ vax)dkl—exp [_J-Rf(h)()‘% V,X)dx] ‘7
0 . -0
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.
08¢ v,x :=fdsPi(g)(s,v,x) x
0

t ’ !

xlexp‘[~IRz(g-)(x,v,'x)dx1—exp[—_[R,’:(hxx,v,x)dxn,

0t v, x)=

! t .
:=fexp [—JR,’ﬁ(h)(x, v, x)dA ]| P4 ()5, v, x) - P¥ ()s, v, x) | ds,
0 s : .

forall (¢, v,x) € ({0, T] xR3xR3; k=1, ..., N.
First we estimate Q’l: (t,v,%). Since g (t,v,x), h (t,v,x)20, then

Rz ()@, v,x)=20and R z (@, v, x ) = 0, hence we can write

Q% (& W, v, )< fy (v, %) I |R¥ (@M, v, x)=REMM, v, x) | dA,

forall (7, v, x) € [0, T] xR3 x R3,
Using the definitions of R k#’ by arguments similar to those in the proof of Prop. 2,
there exists a constant C, > 0 such that

Qg M, v, %) <

ja|-2 '
<Chio™®lg=hl| 3 ¥ Mgk " k1T, 6 v, 0],

ja|22 n=0

(32)
forall (#, v, x) € [0, T] x R3 xR3. Since

Q7@ v, %)<

t !

< IP,f(g)(s‘,v;x)ds J|R§(g)(x, v,x)-REMmA, v, x)|dr]|, |
0 0

- similar estimations give (for some constant C, > 0) -

422 - Matemartuueckan q)usuka, aHanu3, reometpus, 1995, 1. 2, Ne 3/4



T g, B

On u class of kinetic equations for reacting gas mixtures

0B (g, Wt v.x) <

SCAT)exp [—tm x2+v))lig-hl| X el |x

[Blz2
Ja]=2
x| ¥ T,evoll Y 3 et "2 nitr @0, @3
la|22 Jo|22 n=0

with A (T) defined by (29); (7, v. x) € ([0, T] x R® x R 3.
In the same way, for some constant C3 > 0, we obtain

Q,f(g,h)(t, v, X) S C; A (T) exp [—’ka(x2+v2)]x

ipr-1 (34)

xlg-nll, | Y T ev.oll 3 Zugl”"‘""nhl :

ja|=22 IBlz2n=1

(t,v,%) € ([0, T1xR> x R”. |
By inequalities (32)-(34), applying Lemma 1.b), one can find a constant C, > 0 and

a polynomial p(-) with positive coetficients, such that Yro> 0,
1) =1 ||, <Cyllfyl, +rA (M p) N g-hll,, G5
provided that g, h € Z_(r).
Now, by Prop.2 and Rel. (35), we can choose R, R'T > 0 such that if [ f, [, € R

then J is a strict contraction on ﬂ{T(R*T). By (29), if K ,=0. whenever
N

Z (o, -B,)E, <0, then A(T)=1,VT > 0. Consequentlv there exist R , R* > 0,

n=1

independent of 7, such that if | f, |_ < R, then [ is a strict contraction on Jf’{T (R™). This

concludes the proof of Prop. 3. (J
The existence and uniqueness part in Theorem 1.a) follows by Prop. 2, Prop. 3 and

the Banach fixed point theorem: for R, R* > 0, small enough, Eq.(30), with
|fo | € R, canbe uniquely solved in }{ R, >). To conclude the argument it is sufficient

to remark that }[T (R T) cDPYNDS?ycco. T, Co ). To prove the rest of

Theorem 1.a), namely the continuity of the solution in the initial datum, first remark by
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Prop.2, that, for each g e }'{t (R ;.), tixed, the map f, — I(g) is continuousv from

{he ("'+ : Ih] <R } to €0, T, C ). Then the proof follows by means of the

inequality (35).
Part b) of Theorem 1 can be similarly proved

Part ¢) of Theorem ! is immediate: g € C o, T, C‘T ), by Eq.(22), while the
solution f of Eq. (18) is related to gby f=U " g. 0

4. Conservation relations, H-Theorem and the law of the mass action

In this section we prove the global conservations relations for mass, momentum and
energy and a H-Theoreym analogous to the results obtained in the case of the classical
Boltzmann equation with elastic binary collisions.

Set ‘Po(v)zmk, ‘~I’4(v)=2'1mkv2+E and \I’i(v)=mk . for. all

v=(v v 2 3)eR with v, € R, i=1,2,3;1'<k<N. Thefollowmgresultstatesf ‘

the bulk momentum and energy conservation relations.

>

Theorem 2. a) Let v > Oandfe CT 7henfo‘riv= 0, 1, e 4

_[‘P WP, (v, x) =~ S, ), x)) dv=0,

k-lR

VxeR3
b) If fo and f are as in Theorem 1, then Joreachte [0, T},

N' N
Yy j YiWf v, x)dv®dx= j‘ ‘P};(v)_ﬁc’o(v,x)dv®dx_
k=1R3xR3 'k=1R3XR3

Proof. a)We give the argument for ¥ 4 , the other cases being similar. By
Prop.1.b),

_[\y WP, (f)V, x)dv =

k=1Rp3

=lim lm ) Y Z f Q7 'mow? 4 E)x

n-—»Os—»Oa BeMke?\[(a)t—l R3IBI, g3
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<y 00Ky (u, ) 83 (Vg () =V (W) 8 | (W, (0) = W, (w)) d® dw =

: : B,
= lim lim Y > ¥ J. @7 'moug rE )

| nﬁogﬁoa.ﬂeﬂ{kéﬂ[(ﬁ)f"*'lR”f”xR”“'
xf, (W, ")Ka,ﬁ (w, u) 8 Z (Vﬁ (W-V, (w)3 0 (Wﬁ (u) = W_ (W) du® dw,

where the last equality results by interchanging o and w with 3 and u respectively, and

using the symmetry of & 2 .and & N respectively as well as the invariance of Kﬁ‘ o at

permutations. Then it is sufficient to remark that

N
> f WL WP ()Y, %) = S, (Y, X)) dv =

k=1R3

= lim . lim ), J (Wy () = W, (W) x
“—’OS*Oa,Beﬂ/RMBIstaaI

X foo (W, 0K, 5 (W, 1) 82 (Vg (W) =V, (W) 8 | (W, (u) = W, (W) du® dw = 0.

b) Let £ be as in Theorem 1. Note that for each ¢ fixed, U » introduced in Rel.

(17) is a positivity preserving, linear isometry on L (R3 ><R3,dv®d.\');

k=1, ..., N. Further, by Theorem 1.c), g = U~ f is of class C ! and verifies Eq. (22).
Then for eachi=1, ..., 4, '

N ‘
:%Z j l}l;‘c(")fk(f,V,)()dv@dxz

k=1 R3XR3

N
=Ediz J‘ Wz(v)gk([’v’x)d‘,@dx___

k=1 p3,R?

N
= I WL P v, x) = SE (@) v, %) dv @ dx =
k=1R3.R3

B N )
= z j v lk (v)(Pk (), v, x) - Sk(f)(t, v, X)) dv®dx =0,
k=1 g3y R?
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using again the L'-properties of U 2 and Part a). This concludes the proof. (J

LetC,, ..., Cy > Obe constants and C “ := C‘OLl x...x C N o e M Inthe rest
of this section, we suppose the following detailed balance condition

CBKQ,B(W, W=C%K, ,(uw), ¥V w, u a, B (36)

First remark that if f=(f,...,fy)eCT, ©>0, with £ >0, then
flogf, € L (R3 X R3, dv ® dx), for all n=1, ..., N. The argument is standard
([10]): let log+(log') denote the positive (negative) part of the function log; clearly
t, log” /€ L!; it is sufficient to prove the same for f, log™ f, ; to this end, in the

inequality § log " §<n-~&logn, valid for £ > 0 and 0 < <1 ([10]), we take
E=f,(v,x)andm=exp (- v 2 _x?), obtaining

(f, log™ f, )v, x) < exp (—vz—x2)+(v2+x2)fn(v, X). G
Therefore we can define the H-function
. ,
- H(f) = Z J. S (v, 0 log (C, f, (v, x)) - 1] dv ® dx. (38)
k =1 R 3 X R 3

Proposition 4. a) Ler 1> 0, f=(f,....fy) € CT, such that f, > 0 and

sup (1+x2+v2)“1|10gfn(v,x)l < wforaln=1,..,N Then

- N
D(f):= Z _" (P, (), %) = 8, (f Xy, ¥) log (C, f, (v, X)) dv @ dx < 0.
k=1 g3, R?

Moreover D(f) = 0 iff for each couple (o, B ) such that K o, B # 0, it follows that
s w0 =CP A, ), (39)

Vxe R3, provided that w, u satisfy (1).
b) Let f, and f be as in Theorem 1. In addition, suppose that S, 0> 0 and

sup(l+x2+v2)—l!logfn’o(v,x)l <oforalln=1,..,N Thent— H(f) is
of class C and ’
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L HF)0) = DO ).

Proof a)lnour case, D(f) is well defined. Then, by Prop.l.b), taking
h=logf, andf=(f, ... .fy) € C¥ withf, >0, foralln=1,...,N,

. o
) kam(v, X) log (G £, (v, X)) dv =

k=1R3

= lm lm Y. _[ Fy @, 3) x

""oe"oa,ﬁeﬂkalm 3a

xR
x log (C*f, (W, X))Kp , (u, W) 82 (V () - V,, (W)
xﬁn(WB(u)—Wa(w)) du® dw =
= lim lim Y, : _[ fa(w,x)log(CBfﬁ(u, X)) x
N20e=00 gepsipr, gsial
XKy g (W, 0) 83 (Vg (w) = Vo, (W) 8 (W () - W, (W)) du®dw (O

where the last equality results by interchanging o and w with B and u respectively, and
using the symmetry of & g , and Sn , respectively as well as the invariance of KB o at

permutations.
Similarly

N
D3 _[Sk (), %) log (C £, ¥, X)) dv =

.k=1R3

= lim lim I £, (W, %) x
nw}os*o“fBEMRﬂme“a]

x log (C*f, (W, X)K, 5 (W, 1) 83 (V, (w) - V,, (w)) x

><fSn(W[5 (w) - W, (w)).du®‘dw.=
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— H ‘ , l 4 ﬁ \

nlino Slino ZM j fo (0, %) log (CF /g (1, X)) x
o PpeMpsipl, g3lal .

Ky  (n,w)5) (Vg (= V, W) 8 (W (W)= W, (W) du® dw. @1 \

Then a few algebraic manipulations involving Rel. (40), (41) imply that

D(f)zZ‘I'[dx lim lim ) I Hy (W, 8, %) x
R3 n—)og_)oaaﬁe—MR“B‘XR“ul
xsg(VB (W) =V, W) 5 (W (w) - W, (W) du® dw, 42)
with
Ha’ B (w, u, x) =

Cof, (W, %)
ch }% (u, x) '

=K o (. W) fy (0,0 = K, 5 (W, 0) £, (W,

Assuming that condition (36) is fulfilled, it follows that

AN LAY C% fy (w, %)
Ha B (W, u, X) == Kﬁ o (Ua w)fﬁ (U, X) ERree—— ]0 T D
| | CPfy w0 CPfyux

hence D ( f) < 0. Rel.(39) is now obvious.
b) Since U;{ , 1<k<N, is a positivity preserving isometry on
L'R3xR3 dv®dx), using Rel.(38), we obtain H{f(0) = H(g()). But

g(®) = U~ " f(2) is the unique solution of Eq.(22) and g = U ™' f is of class C ! From
the definition of / and the fact that f, satisfies the conditions of Prop. 4. a) it follows

that V ¢t € [0, T, f(2) satisfies the conditions of Prop. 4. a), so that D( f (1)) is well
defined. Moreover, using again the Ll-properties of U;(

j dv® dx (P ¥ ()(t, v, ) = ¥ (9)(2, v, ) log (C, g, (1, v, %)) =
k=1R3«R® |

_Z j dv ® dx (P, (f)(t, v, %) - S(f)(tvx))longk(tvx).
k'1R3xR3
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Putting all these together and then using part a), it follows that
L H(£)0) =2 H(g)\®) = D(f)(®) <0, concluding the proof. 7

The main result of this section follows from Prop. 4 using techniques similar to those
of [10]. '

Theorem 3. Let f;, = (fl, o ’fN, olandf=(f, ..., fy)beasinTheorem ] with
f, 0> 0, 1sn<N. Then under condition (36), H(f(z, )) < H(f(t1 ) for all L2t .

Proof. Define the sequence fg) = (f(il )0’ ,f%)o ), 1=1,2, .. bysetting for
eachk=1, ..., N,
( ! 1
£ ke |

FO (v, %) = max ifk' o (V. %) 7 o0 (- (v 2ex
J

T +viex
Let (1) and fbe the mild solutions ot Eq.(16), provided by Theorem 1, for initial data
f 8’) and f,, respectively. Obviously, H(f(¢)) and H( f ¢) (1)) are well defined. Clearly
Ifg) —fol, =0, as [ — oo. Then Ilf(’) -fll o >0, as [ — oo, by the continuity in
initial datum, stated in Theorem 1. Moreover, for each r € [0, T], the sequence
(U”’ £ @ )le N is bounded in C_. Using (37), it follows that for each ¢, the
sequence (f @) ) log f @) ), N i bounded by some function in

L' (R xR3, dv ® dx), hence H(f(’) (1) > H(f(r)), as ] - oo, by the dominated
convergence theorem. By (24), and the definition of f 5{1 )0 , the conditions of Prop. 4.b)
are fulfilled byfl(f) )0 , for each /. Then the function r — H(f(” () is non decreasing.
Consequently, the same is true for H( f), concluding the proot. (J

R emark. Rel. (39) is satistied by local maxwellians ([10]) and it provides a
generalization of the law of the mass action. '

Indeed, under condition (36), let the local maxwellians solving Eq. (2) be given by
© =0 (q ,u T)=q(m/2nkT Y ?exp [-m_ (v—u) 2/2kT], 43)

for all n=1, ..., N. Here qn=qn(t, x) is the concentration of species n, while

u=u(t, x) and T = T (¢, x) are the notations for the gas bulk velocity and the equilibrium
temperature, respectively (k denotes the Boltzmann constant).
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Corollary 1. The concentrations q, , n=1, ... . N, satisfy non trivially the law of

the mass action, . (,'.,ﬁ)r all o, B.

N ' :
Z (a,- [3" ) l<w n,/2mkT) +log (C q, ) +E, /kT} =0. (34

n=1

P roof. The result is immediate from (39), by the mass conservation condition,

namely K, o =0 when > (o, B, m, =0.0)

n

5. Final remarks

Theorem 1 is applicable to the reactive, expanding gas. Our global existence results
do not cover the case wn which endo-energetic chemical reactions (collisions) are present
in the gas processes. fu the latter case, one should avoid possible pathologies, introduced
by the particles which may loose completely their relative kinetic energy during the
endo-energetic reactions.

The balance conditions (36) play no role in Theorems 1. 2, but it is essential for the
validity of the results stated in Theorem 3. :

Theorem 1 can be analogousty proved considering instead ot C o the space of those

=(f,....fy) with f el (R3><R3;dv®dx). equipped with the norm
1 IN n {uipp

max !fk | e In the latter case, the continuity condition on Ka pp can be replaced
1<k<N - o

by measurability. Then C . (with © > 0) need be replaced by a space of measurable

tunctions (e.g. C . ¢ can  be replaced by the space of those

i ,

hel® (R3 dv dx), with ess sup exp [t (x +mkv ) AV, X) | < ).
Some of the results of this paper have been announced in [12], (where the main

recram is actually valid for 1= 0, since { U’ }{ c g I8 nota continuous group of

isometries on C _ for t > 0).
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Appendix A

Let n be non-negative integer and a, ..., g, > 0, constants. Consider a positive

n
quadratic form 7T := T(v1 s Z V) ZonR¥ r r € RB, 1 €£i<n. Consider

the transformation

R™> (v,,...v)>(V,{)e R3xR™ 7, (A1)
defined by
n n
L4 =(Zai)_lzawi
i=1 i=1

€:=(§19"'7cn_1),

i i
N -1 - _
Ci.—le—(Zaj) Zajvj,z—l,...,n 1.

j=1 i=1
By transformation (A.1), the form T becomes

n-1

T=T(V,()= (Za)V2+Zuf;‘ ,

i=1 i=1
with
1
11+(Zaj)’1, i=1,...,n-1.
Jj=1

The system of coordinates on R 3n resulting from (A.1) will be called a Jacobi system
of coordinates associated to ’I‘(v1 e V) ). Moreover, the same term will designate
the system of coordinates obtained by the transformation

R¥> (v,,..,v,)>(V,E)e R*xR¥ 3, (A2)

where &:=(& ,..,E ) and & :=pl"?¢

i ’

with V and C.,, as in (A.l);

n
1<i<n—1 Obviously, by (A.2), T=T(¥,&)=(Y a) Y2 +E2
i=1
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Appendix B

Part a) of Lemma 1 is straightforward. To prove b), we first consider | v | = 2 (with
Ve 2 1). Then, by (15) clearly, there exist two non-negative constants ¢, and ¢ such that

I"ky ¢ v,x)=

t
scofdy(l+iy—v14)em(—cy2)fdsexp{-c[x»(y—v)sﬁ} ®.1)
R? _ 0
forall#20,x,ve R3 gei0,1].
By (B.1), the sup estimation on I“ky (¢, v, x) reduces to known inequalities of Lemma
2.5 in [10]. Briefly, in this case, for each ¢ >0,

t
Ly, v, %) :=j-dsexp {—c[x—(y—v_)s]z}s
' )

t
sfdsexp{—cnxa—ly—vfslz}sw—vr‘. (8.2)
0

Introducing (B.2) in the right side of (B.1), and integrating with respect to the reference
frame with the y, axis oriented in the direction of v, we get

1+[p2+(y,-v) 21972

[p2+(,-n21"?

+ 00 )
F,;,(t,v,X)deyﬁxp(_cy%)_{p exp[-cp?ldp<

~ 0

+ oo Q
sConstjdy?,exp(—-cy%) j‘(1+pq)exp[ucpz]dpSconst.

o - 0 :

The case |y | > 2 (with Y, 2 1) can be reduced to [y |=2 as follows. With the

N
notations of (20), consider the form T, (w,, ) := W, (w) - > v,E, -2 lmk w i Y,
n=1
representing the kinetic energy of | y | — 1 particles in the channel y (more precisely, the

kinetic energy of all the particles in channel vy, except the particle with velocity
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Wiy ). To T‘Y ('W(k) ). we associate  a Jacobi system of  coordinates
Y,

RIM-35 W S(v.eye R <RI oftype (A.2) in Appendix A. Then,

y
n
. . ' -1 A . _ ,
in the new variables, m Z Z MWW Y, ) =V. and
ne Aty) i=1
N
T. (w =M y2iewithm = Z A few simple manipulations show
*{(w(k))AZ-— g with m = )y, m, = my ew simple manipulations she

n=1
that on { w € R3Wl w =v },both ©_, given by (19), and the rélative energ
1 k, -Yk 'Y ) y

Wr v of all the particles in channel y (see Section 2), can be written in terms of

’

(V.,&)e R3x R3MYI=D 4

v o) ) &)
Sy =M (X TV Ty mY T

(DY (r, w, x, V)Iwk ]

‘k
21 +17)E +mx— (V=i (B.3)
and
W (w) =427 m v em )T (v v)? (B.4)
ry iwk =v k - ) ’

v
-

Then we choose ( V, £ ) as new integration variables for the integral upon d \-v(“ in (20)
and we introduce (B.3) and (B.4) in (20). One obtains that there exist two constants o

and c¢ such that

Fky(t’ vV, X) S ¢, J.dyexp(—cyz) I diexp(~c&‘,2)x

R? R 3072
!
x %1 FIEZ+(V-v) R de exp [ - ¢x—(V-v)s], (B.5)
0

120.v,xeR> ¢ el0, 1]
Since for some constant ¢, > 0,

LHIE (Vv 2 < - ([ 10)(L+ ] Y= vI7), (B.6)

we introduce (B.6) in (B.S ) and integrating with respect to § we obtain
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T, Y(r, v, X) <

<c2jdV(1+lV w7 exp (- c¥ )‘{dsexp c[x (Y-ws1,
R’ . 0

with ¢, , ¢, > 0, constants. This is exactly (B.I), concluding the proof. (3
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O KkJacce KHHETHYECKHX ypaBHeHHit I8 pPearupyiolliuX cMecel ra3on )

PaccMaTpuBaeTICs IMHDOKMHA KAACC KMHETHYECKUX YDAaBHEHMM. AAI
PEaABHBIX Fa30B C, BO3MOXHO, MHOTOKDATHLIMY HEYTIDYTUMH B3aUMOAEH-
CTBUSAMM ¥ XMMHYECKUMH peakHusMU. MBI AOKa3bIBaeM Cyl[eCTBOBAHEE,

eAMHCTBEHHOCTD M IIOACKHTEABHOCTE pelieHuit 3apavun Ko » ncmyq‘a—'
€M 3aKOHEI COXpaHeHMs MacChl, MOMEHTa U 3Hepmn H-TEOpeMY, a Takxe
33KOH ACHCTBYIOH(HX MACC. . .
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On d class of kinetic equations for reacting gas mixtures

IIpo kaac KiHETHYHUX PIBHAHD ANA pearyloyHx cyMilleif rasin

PO3rAsHyTO BEAMKHH KAAC KIHETHYHHUX PIBHAHb AASL AIMCHHX Fa3iB 3,
MOXXAMBO, 0araTOpa3OBHMH HENPYXHHUMHM B3AEMOAISMH Ta XiMIYHUMH
peaxuisiMi. Mu AOBOAMMO ICHYBaHHA, €AHICTL Ta INO3MTHBHICTL DO-
3B'43KiB 3apaui Ko Ta 0AepKyEMO 3aKOHM 30epe)XeHHs MacH, MOMEHTY
Ta eHeprii, H-reopeMy, a TakOX 3aKOH AIIOYHX MacC.

Matematuueckas cmsnka, aHanus, reometpus, 1995, 1. 2, Ne 3/4 435



