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The paper deals with propertics of k-variate (k = 2) Linnik’s distribution defined by the
characteristic function )

o (O =1/(1+ |11, 0<a<2, rerk
where | t | denotes Euclidean norm of vector ¢ € R*. This distribution is absolutely continuous

with respect to the Lebesgue measure in R Expansions of the density of the distribution into
asymptotic and convergent series in powers of [ 7], |7 ]" are obtained. The forms of these
expansions depend suhstintiatly oo the arithmetical nature of the paramater «.

1. Introduction

In 1953, Ju.V. Linnik had proved [1 ] that the function
N S
1+ |t]*°
is a characteristic function of an absolutely continuous distribution. Recently, this
distributien attracted attention of a number of researchers who discovered some its

interesting probabilistic properties and applications [2-9]. Analytic and asymptotic
properties of the density p, (x) of Linnik’s distribution have been studied in {10]. The

P, ()= 0<a<2, =—ow<f<oo,

results of [10 ] show that the asymptotic expansion of P, (x) as x = « is similar, to some
extent, to those of stable densities. However, the expansion of the density P, (x) into

convergent series is quite different from that of the stable one. It depends substantially on
the arithmetic nature of the parameter a.

This paper is devoted to multivariate generalizations of the results of {10]. The
multivariate Linnik’s distribution was introduced by D.N. Anderson [5 ] who proved that
the function

1

f)=—————>, 0<a<2, re€R

where X is a positive £ X k matrix, is a characteristic function of a k-variate probability
distribution which he called the k-variate Linnik distribution. Itis evident that without loss
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Analytic and asymptotic properties of multivariate Linnik’s distribution

of generality we can restrict our attention to the case when the matrix X coincides with the
identity matrix /. We set

- S S k
‘pak](t)—wak(t)—l+ltla, 0<a<2, t€R", (1.D

where | t| denotes the Euclidean norm of the vector ¢t € R¥. We shall show that the
distribution defined by characteristic function (1.1) is absolutely continuous with respect
to k-dimensional Lebesgue measure. The corresponding density will be denoted by

Py (X), x € RE. It possesses spherical symmetry since ¢, (#) does. Therefore we can set

Poi (x) = qak(l x|), x€ R
where g, (r) is a function defined on the half-axis 0 < r < . Our aim is a description of

analytic and asymptotic properties of the function 9ok (r) and its representations by

integrals and series.
The method of this work seems to be much simpler than that of [10]. It is based on the
representation of g ke () by the contour integral (see Theorem 3 below). In the case

k = 1this representation has been obtained in [10 ] by the method based on the propertlc,s
of Cauchy type integrals. Though that method is of interest by its own since it establishes
connections between Linnik’s distributions and the Riemann—Hilbert boundary problem
of the Theory of Analytic Functions, it seems to be impossible to use it when investigating
the case k£ = 2. In this work, we prove the above mentioned representation directly and
then use it to investigate ¢, (r) forany a € (0, 2) and any & = 1. In [10], the partial case
k = 1 of thatrepresentation was derived from the expansions of ¢ ,, (r) forrational a’s and
then was used tostudy of ¢, (r) inthe case of irrational a. Thus, the method of the present

paper seems to be more straightforward than that of [10] and, moreover, we do not use
any result of {10 ]. Newertheless, it should be mentioned that the present paper does not
contain any new result concerning the case k = 1.

2. Statement of results. We start with absolute continuity of multivariate Linnik’s
distribution and integral representations of its density.

Theorem 1. The function (1.1) is the characteristic function of a k-variate absolutely
continuous spherically symmetfric distribution whose density p, k (x) can be represented by

the formula

Puu ) =q,(lx|)=

. Tx ©
STy Ku-1Ux 1w utD* gy k
, x€R",
|(k/2)— 1 f

T k) =1 ki) + 1 | x ) | 1+ a2 |2
2.1

where K, (2) is the Bessel function of the third kind (the Macdonald function).
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The definition of the function K (z) can be found in |11}, p. 78. Note that ({11],
p. 79, Eq. (8, p. 80, Eq. (13)) '

7,
K~1/2(Z): -236 :

Thercfore, if k = 1, formula (2.1) coincides with Linnik’s formula {1]

X oo

sin leu u:
2 du 1 "
P (9= fm,, g PSR a2

which plays the basic role in {10]. The role of formula (2.1) in the present paper is more
modcst. We use it only to prove the following theorem, which concerns the function
4, (r) connected with p_, (x) by the equation p_, (x) = ¢, (xD.

Theorem 2. The function g, (r) is completely mbn()tonicbn the half-axis [0, ) that
is it can be extended analytically to the half-plane { r : Re r >0} and, for anyr >0 and any
n=20,1,2,.., wehave ( — 1)"q(")(r)>0

The base of the rest of results of our paper is a representation of 4, (r) by a contour

integral. To write down that representation, we need the following function of a complex
variable :

. i TP a3
L Ry 7 R S Py mzp ozl ozkk=1,
i es T ()T ()

This is a meromorphic function. The sei of its poles lying in the half-plane
{z:Rez= —k+ 1} coincides with the union

{qa—k+1}q_1U{27+l}q__

The set of its poles lying in the half-plane {z:Re z < — k£ + | }is in general an infinite
part of the sequence

{— qa-k+1}q_l,
itcan coincide with the whole sequence if €.g. « is an irrational number. Note that the point
z=—k+ lisnotapoleoff (2) . This function is analytic in the strip

{z:—k+1—-a<Rez<—k+1+d}, J=min(l,a).

Using the well-known formula T(w)I'(1 — w) = 7/sin 7w, we can rewrite formula (2.3)in
the form :

- 1-
X 271 ()

J @)= =73 - = — = 2.4

2

The Stirling formula shows that in any fixed strip of the form: {z: | Re z | <H } the
following asymptotic formula is valid
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. 44
log /(=) f=— (Ja-i— o(l)) | Imz|, z- o, (2.5
and hence f,_, (z) decreases exponentially aiong vertical lines.
Theosrem 3. The following formula is valid
-+ iw
N 2= 17 2.8
Yok (r) = f fak (2)r SCES .
¢ —i®
where
—k+1l—a<c<—k+1+3d, d=min(l,a). @D

The integral in (2.6) converges absolutely and uniformly with respect to r on any compact
subset of {0, =}

Note that in virtue of the properties of f_, (z) mentioned above, the integrai in (2.6)

does nct depend on ¢ under restriction (2.7).

The rest of the results of this paper (except Theorem 7) follows from representation
(2.6) by the evaluation of the integral in the right hand side by the Cauchy Residue
Theorem. In the case r—» o« we use closed increasing contours (more precisely, the

. s 1
boundaries of therectangles {z: —k+ 1 — (I + 5)a<Rez<c, {Imz | <R}, R >,

& N)lyingiotheleft of the linc of integration in (2.6). The poles of f (z) in the half-plane

z:Re z< ¢} are simpic and ferm a part or an arithmetical progression, therefore we do
not meet any difficulties. In the case when ris bounded, we have to use the simiiar contour
but lying to the right of the line of integration in (2.6). The situation with the poles of
F{z) lying ia the half-planc {z:Rez<c¢} is more complicated and depends on the
arithmetic nature of the parameter a. The following cases are possible: the poles are simple
and separated (i.c. the infimum of distances between any of two poles is positive) ; the poles
are simple but not separated; infinitely many of the poles are double. This situation
generates the dependence of the erpansions of 9ok (r) into convergent series on the

arithmetic nature of . -
We start with the theorem dealing with the asymptotic behaviour of g, (7} a3 r = .

fea)

The arithmetic nature of o does not nlay any role here.

Theorem 4. The asymptotic behaviour of g () asr—>o can be described by the
foliowing asympiotic (divergert) series

SIS S U DIV DY ) /- EUDN RN - 1:) py
g~ OO ‘(—- ) 3 ( +2>sm 5 fr = o,

2.8)
Coroliary. The following asymptotic formula is valid
[ 2@ 'k +ay a. . na —a—k
(Yk(r in’-Z-rlr( 2 >F<1+7)Sln“2_}r ’ » I
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Now we shall consider representations of ¢, (r) by convergent series. As meniionsd

above the forms of such representations depend substantially on ihe arithmetic nature of
the parameter «. In general, the form is more complicated for rational «. Therctore we
start with the thcorem dealing with all irrational «’s and with a few of rational vucs only,
Hewever, the series in this theorem is convergent in a rather special sense.

Theorem 5. Suppose, one of the following conditions is satisfied:
(i) a is an irrational number:;
Gi) the dimension k is odd, a is a rational number of the form a = m; n where m, r are
relatively prime integers and m is even.
Then the following formula is valid
0

N | $ (=D /™ ,

ak(r) hm (k/2)-lz (g — k + 1 ga—k+2. P

S ELCRL B e ST

2 : (‘)f(’/z)qaﬂc }
T 2

29 + k N
sin 2D rg 4 (g + %)}

152q+1<-—k+i+(s+%)

The limit is uniform with respect to r on any bounded subset of [0, ).

The question arises if it is possible to take separate limits of two sums staying in the
right hand side of (2.9). It turns out that this is the case for almost ail values of
a € (0, 2) in the sense of the Lebesgue measure but not for all ones. To describe the
situation more precisely, we need the Liouville numbers. ‘

Recall that an irrational number g is called a Liouville number if, for any » = 2, 3,...,
there is a pair of integers (p, ¢) (¢ = 2) such that

. 1
#-al<7

Itis well-¥newn (see e.g.[12]) that the Liouville numbers are transcendent and form
an evervwhere dense set of cardinality continuum and zero Lebesgue measure.

Theorem 6. If the number a € (0, 2) satisfies the hypotheses of Theorem 5 and is not a
Liouville number then the following formula is valid

( Y

L1 1 (- )4t /)%
q(x/.(r) =% k/2) -1 2 - - +
k3 &/2) = COSJz(qa 2k+1)r(qa 2k+2) (»2_‘4”\
2 i (=D /M *E 210
k/2) — 1 20 + k ’ -4
«n nﬂ({“——lr(qﬁ-l)I‘(g-{*%)

where both of the series in the right hand side converge absolutely and uniformly with respect
to r on every bounded subset of 10, «).
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Corollary. If the number a € (0, 2) satisfies the hypotheses of Theorem S and is not a
Liouville number, then the following reprmc’n tation is valid

4y (1) = k(fa)+Nk(f h

where A i (2 and N ok (2) are entire functions of the orders 1/a and 112 respectively.

Theorem 7. The values of «, such that both of the series in the right hand side of (2.10)
diverge, form a dense set in (0,2) of cardinality continuum.

Now we shall consider the case when the parameter o does not satisfy the hypotheses
of Theorem 5. In this case « is rational and can be represented in the form o = m/n, where
m, n are relatively prime integers. Taking into account that the case, when the dimension
kis odd but m is even, is covered by Theorem 6, it remains to consider the following cases:
(i) kis odd, m is odd;

- (ii) kis even, m is odd;
(iii) k is even, m is even.
It is easy to verify, by standard methods, that in these cases the Diophantine equation
‘ pm = (2g + k)n (2.1D

has infinitely many solutions (p, ¢). Denote by D_, the set of all solutions (p, ¢) and put

Puk ={p:(p,g) E D, ,.p= 13, (2.12)

Qak {g:(p. q)"‘—u ,qz0}). - 2.13

<y

1t is possible to describe the scts P D, man cxp!icit form (see Seetion 8 below), they
both are infinite.

Theorem 8. Ifa € (0, 2) is arational number satisfying one of conditions (1) -(iii), then
the following formula is valid

D Y N N (=D (/2P
qak(r)—rk ][(k/z)_l pgl Cosff(pa“k"'l)F(])a—k"'Z)r/_[iq_) +
: EP, 2 2 (2
2 (=hie>rh
(k/z) sin LB B g 4 DI (g +%)
q¢-Q
2 (=12 P 2tk | pgery D04 12()“
* =7 k877 T N
T 4€0, T(g+ 1T (g+7) (g +35)

where p and q in the third sum are connected by equation (2.11y. All three wories in the right
hand side of (2.14) converge absolumly and uniformly with rc'spm to r oi every bounded
subset of [0, »).
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Corollary. If a € (0, 2) is a rational number satisfying one of conditions (i}~ (iii}, then
the following representation is valid

9 (D 1A (r )+1‘/J (r )log2+N (r)

AN AP k] . & %3 . 3 P jt‘:-g 3 . P
where b, (2), M, (2), N, (2} are entire funcligns of the ordeif.s Ve, 1/2, 1/ 2 respeciively.

The asymptotic expansions of ¢, (rj as 7 = w"are immediate consequences of expan-

sions (2.10) and (2.14) if « satisfies either the hypmhescv of Theorem § or of Theoren: 8
since any convergent power series can be considered as an asympiotic one. But i turns out
that if a does not satisfy neither the hypotheses of Theorem & nor of Theorem €, the
asymptotic bebaviuor of ¢, () asr > O is the same as in the statement of Theorem §. The

foliowing theorem covers this case.

Theorem 9. Suppose, the parameter a € (0, 2) satisfies the hypotheses of Theorem 5.
Then formula (2.10) remains true if the both series in its right harid side are considered
as asymplotic ones as i - Q.

3. The First Integral Representation of g, (r). (Proofs of Theorems ! and 2.} To prove
Theorem 1, we define the function p_, (x) by formula (2.1) and shall show that it is &

probability density in ®* and its chala.,temshc function coincides with (1.1},
The formula (see {1173, p. 172, Eq.(8)

/ l A ZNY ™
r {2y il g
v Y2 2 —ze . i ..
K {2) = ) \{_}” éﬂe 2cosh 9 sinn 6 dg (| arg z <~}—§ Rev>=-25) 3D
{{v + ~2~) "’(}
shows that ‘K(’(/"Z‘ _wyz0forv>0,k=1,2,.. (fork= 1 we use the property (Ml 3
KZy -
5. 79, Eq.(8)) K__ {z) = X (z)). The asymptotic behaviour of 1{(&[,2) _
v - o can be described by the formulas
' (o) = O (=l &= 115, 1) - (2.7
K(k./Z) )= O(v log 1, v+t &,
Kiyppi— @) =07, v, 3.3

{the first one is an immediate consequence of Eq.’s (12)-(13) of {11}, p. 80; the second
formula is that of Eq.(1) of {111, p. 202). Therefore, the integral in the right hand side of
{2.1) is convergent and positive.

Using Fubini’s theorem, which allows io change the order of instegration when ihe
integrand is non-negative, we obtain

g

it

2kl e
fpak (x) a'x:—-—»r(k/z) 9 (rr dr
R¥ 0
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o x

sin 7 (KD + gy, X (ri) r k2 4,
2(/(/2) -2, r(/\/2) | |+ 4% ei:m/l I2 (k/2)y =1 V7
0 0

. T
Sin —5—

2 W du k2 o
2(k/2) - 27[ T(k/2) f I 1 + & oiﬂ(z/Z ‘2 f K(fk/z') -1 (v)v dv < oo
0 0

Hence, p_, (x) is summable in Rk

Using Schoenberg’s formula of the Fourier Transform of a spherically symmetric
distribution (see [13], Ch. 5, Thecorem 5.4, Eq. (6)) and then substituting thcee
expression (2.1) of q, (r), we obtain, for 1 € Rk,

’ . 2T k/2 *
P?’k(t) = fpak (6) ) dx = T,LW/LZ%_I fj(k/z) (119, (5) s =
; . / !

r¥

ZSiﬂZ[zg p KD+ gy, ‘
T | e f 1+ g 7/ 12f k/2) - (K gy -y (s0) ‘(1* (3.4)

where J_ (z) is the Bessel function of the first kind. Now we shall use the formula

fK (as) J, (bs)s ds = ﬂ;‘—‘)— (Rev>—1, a>0, b>0), (3.5)

b2

which we obtain from the Weber-Schafheit]in formula ([11], p. 210, Eq. (2)), sctting in
the latter u = —v and using the identity K_, (2) = K, (z) ([11], p. 79, Eq. 8)).

Substituting (3.5) into (3.4), we have

2sin X 2 /‘ -
(D= s1 D) f u(k/2)+a ( 11/u)(k/2)—l -
ak 7| t",(k/2)~l a [ 1 + u® eiﬂq/Z '2 | 1 |2 + 2

w

=-2—Imf udu ___Lf zdz _
e ) (L4 ue T (12408 mid 42 ¢12-22

= — Res
z=!f!((1+za)(|,;2 1+lfl“ |
This shows the validity of Theorem 1.
Theorem 2 is a corollary of Theorem |. We restrict our attention to the case k = 2 since
the case k& =1 follows from Linnik’s formula (2.2). Using the formula (3.1) with
v = (k/2) — 1, z = ru, we obtain from (2.1)
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-3 oo .
sm——— k+a—l
du ~rcoshd . + k—2
9t (i‘)= f il 2 Zfe sinh 6do =
ok =2 (k+1)/2 1+u e
al ) F OI | 0
0 00

- sin’y J’e_mka-Idvfcosh‘““asinh"“zeda
ok - 2n(k+1)/2r k—l | cosh® 8 + v% /2 |2

0
3.6)
Hence, the function g , (r) admits a representation of the form
o
4y (N = f e ™ h(u) du, r>0, 3.6)
0

where h(u) is non-negative on [0, «). Since the integral in (3.6) converges for any r >0,
it converges absolutely and uniformly in each half-plane {r:Re r>48>0}. Evidently,

(3.6) yields the inequality ( — 1)" qg}‘c) (r)>0foranyr>0andanyn=0,1,2,....

4. The Second Integral Representation of ¢, (). (Proof of Theorem 3). We restrict

our attention to the case k£ = 2 since the case & = 1 has been considered in [10]. Though
the latter case could be considered by our approach also, it needs a separate consideration.
To prove Theorem 3, we define the function ¢, (r) by formula (2.6) and set

Py =g, (lx]),xe RX. Then we shall show that P, (x) is summable in R* and its
Fourier transform ¢ , (#) coincides with (1.1). This will prove that the function g, (r) is

the same as in Section 3.
From (2.6) and (2.7), it follows that g, (r) is a continuous function of r on (0, «) and,

for any c satisfying condition (2.7), we have
lg (Ol =Cre™ Y

where C is a positive constant depending on c¢. Choosing ¢=—%k+ 1+ ¢ and
c=—k+1—¢, where(Q<e<d, weobtain

qak(r)=0(r—k+£), r-=0,
(]ak(r)=0(r_/‘_5), r— o,

respectively, whence p , (x) = g, (| x |) is summable in RX,
Using Schoenberg’s formula and (2.6), we obtain for t € RF

. 21t k/2 %
Pu 0= [ 9y () 69 e = T 2y 111190, 25 =
k 0
R
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¢+ >

‘T“f &/2),1(“!3)»"/{/243ffuk(z)sz—ldz. .1
0

c— [

We shall show thatif ¢ = — k + 1 + (6/2), then the hypotheses of Fubini's theorem
allowing the changc of the order of integration are fulfilled. Fors € (0, 1), using (2.5) and
the well-known bound of the Bessel function at zero, we obtain

k/2 z—1
| Yoy (L2 19)s 2f ((2sF E
SCs(k/Z)"ls /Ze—JIIZ[/(Za)S(;—l =C86/2e_n!z]/(2ll),

where C depends neither on s nor on z. The last function is evidently summable over
(0, 1) X (c — i, ¢ + ix). Further, using the well-known bound of the Besscl function at
o, we abtain for s € [1, «)

| s -1l t1s)s¥2s , (2)s*7" E
< Cs V2 g2 mm | 21/Qa) go= 1 po(—k=1+8)/2 = | 2 1/Qa)

where D depends neither on s nor on z. The last function is summable over
[1, @) X (c = i, ¢ + i»)since (—k — 1 +8)/2< — 1for k = 2. Thus, the change of the
order of integration in (4.1) is justified.

Hence,
@m)¥/? T k/2) +z— 1
tpak(t)=—————~-——-———-ltl(k_/z)_l ffal‘(z)czf (k/Z) (!t]c\q( IR P
c~ i
(2m)k/? e - [ K2 +z—1 '
ZT;ITTffak(z)Itl Uz [ @D
¢~ jo 0

We shall use the following formula of Weber-Sonine-Schafheitlin ([11], p. 391, Eq.(1))

o0 _1__ \
va(t)dt_ F(zy)
f"*“_l 2"—*‘“r(v—%,u+1) ’

0<Rey<Rev+~%.

0
Settingv = (k/2) — 1,u =z + k — 1, we have

Nk =1, [((z+k-1)/2)
fj(/(/Z)—l(U)v dv = 2~(k/2)—z+1r((1 _z)/'z)

0

Substituting this expression into (4.2) and recalling explicit expression (2.4) offm,c (2), we
obtain

c+ i
i 1 t] "*dz
o ()= - ——— f . (4.3)
et ) 2a|t!",‘c_iws-ni’iz—+-j“1)
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To evaluate the integral in the right hand side of (4.3) in the case | ¢]| 2 1, we
consider the integral along the boundary - of the half-disk

{z:lz+k—-1]< (n + %) a,Re z>c}, apply to it the Cauchy residue theorem and

then let n » «. We obtain

_ i .- _ [ ¢}~* 1
Pt (D= 2] k0 2"’2IR""’z-w«r—lwl(smngz+1k‘-12) T+ e
a .
In the case | t| <1 we consider the integral along the bouhdary of the half-disk

{z: lz+k—-1]< (n + %) a,Rez<c }, apply to it the Cauchy residue theorem and let

n -» «, We obtain

© ’ ‘ “ -

» i . (2% 1
)= ~——————]2wi » Res __ _ = .
svak(‘)‘ L q§1 z=—ga k+l(sinn(z+ofc—l)>‘ 1+|t|f’

5. Expansion of 9ok (r) into Asymptotic Series at . (Proof of Theorem 4). Denote by

I, the boundary of the rectangle {z: — k + 1- (l + %) a<Rez<c, | Imz | < R}where

¢ satisfies (2.7), /= 1, 2,... . Noting that all poles of f, (2) situated in {z:Rez<c}are
containedin{ —ga —k+ 1} 2°= 1 we have, by the Cauchy residue theorem,

. I »
§fakrz_ldz=?.m' > Reszz_qa_k+l(fak(z)r’_l).
Mg =1

" Let R - «, The integrals along both of the herizontal sides tend to zero in virtue of bound
(2.5). Therefore we obtain

c+ i%

l
f fo @r* " dz=2mi Yy Reszz_qa_,Hl(fak(z)rz’1)+

qg=1

c— oo
—/c+1-(1+—12->a+iw

+ f ‘ fak(z)rz—ldz.
—k+l—(l+—;—)a—iw ’

The left hand side coincides with ¢, (r) by Theorem 3. Expression (2.4) yields that all
poles offak (z) lying in { z:Re z< ¢ } are simple and

e
R -1y =
€S _gu—k+1 @™ ) Zn("/z)”l“(-(—ﬂl)
2
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_ (=% (e gatk gay . 7ag| —ga—k
= T3 2 r( 3 )I‘(1+2)sm 7 (7 .

Using bound (2.5), we obtain, for any fixed [,

—k+13—(l+l)a+ioo

2
I f ’ fak(z)r‘"ldzlsCr_k—(H%)a:o(r‘k"l“), r- o,

,—k+‘1—(l+%)’a—ioo o

* Thus, we have, for any_l=i 1, 2., r»o,

PR S 0 () =

: W 2{( 1)i"'ll""r‘(ge'-i—k‘) r(\1+'-”~25‘£) sin%}rmfuo(,—za—k)’

mchnscquivalentto Q@ 8) Lol

6. Expansion of q,, (r) into Condmonally Convergent Series and its Asymptouc

‘ Behavnour at Zero. (Proofs of Theorem 5 and of Theorem 9). It is easy to check that, if
' a_satvisfies either condition (i) or condition (ii) of Theorem §, then the sets

A, _{-qa~k+1}°"’ , A _{zq+1}q=0
' . are dxs;omt since the Dlophantme equatlon
’ pa -~ k+1=2g+1"

B does not have any solutlon (® q) Formula (2.3) yields that the set of all poles of f (2)

o lymg in { z:Rez>c} commdes with the union A, U A, and all poles are simple.

- Let HIR be the boundary of the rectangle { z: c<Re 2<—k+1+Q,, |Imz|<R}
K where the number Q, belongmg to the interval (lx, (I + 1)@), I = 1, 2,..., is chosen in the

" following way. Each of the intervals (le —k+1,(l+ l)a—k+1) between two

" neighbouring pomts of Ay contams at most one point of 4, . If it contains none, we set
Q= (l + ; a) If it contams one, 2q, +1 say, we choose Ql such that the distance from

: Ql —k+1to the nearest of three pomts lo —k+1, 2“1 + 1, (I + Da - k + 1 is not less

than a/4. :
Applymg to the mtegral ,

| " j;fak(Z)r

-the Cauchy r'esidue theprem and then lettmg R o, we'}obtain

q"k(r’):—zm{y‘~R°S=’=qa-k'+x(f,,k<z>r’-l>+
. g=1 A

.
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Q[—k+2+im
+ 2 Res | _po 4 Uy @ ri 7 h+ f [ @r? " e
nsm+isa+%p—k+1 : Q= k+1—iw .
. 6.1
Using formula (2.3}, we obtain
Resz=qa—k+1(fak(z)rz—l}:
(-2t 2= de pga =k 62
Ty 2 wlga—k+ 1), ga—k+2 gay ’ e
cos 5 F( 7 )T( 5 )
(-—l)qi - 2—2qr2q
Res _ (f,(ri h= ' . 6.3
=2¢+1 k k. k/2 -
A @ 20n 2 5in TECE B rg 4 1 (g + 4

To estimate the integral entering into the right hand side of (6.1) we note that, for

2@ U {z:]z=(a-t+D]<3HU| U {z:]z2-Qa+ 1) <T},

g=-® g=-

tne following bounds are valid
lsinﬂi—%ﬁ:—ﬁlz’p’exp{%llmzl}, lcesn—zzlzCexp{%lImzl},

where C is a positive constant independeant of z. Moreover, for any M >0 and H >0, the ’
Stirling formula yields the bound

1 . A
I el ! = Cy p €XP {‘f“mzi ~MRez}, z€{z:Rezz-H},
where C,,, does not depend on z. Hence, on any vertical line {z:Rez = Q,—k+ 1}
lying inside { z: Re z > 0} the following improvement of (2.5) is valid

1/, @ | SAcxp{-g{Imz] — MRez},

where A depends neither on z nor on /. Using this bound, we obtain
Q[ — k41 + i

r* f fa@rs b I < B(e” Mr)Ql , 6.4)
Ql —k+1—jeo
for [ being large enough, where B depends neither on [ nor on r. If D is a given positive

number, we choose M such thate”™ ™ D < 1. Then, as /- o, the right hand side of (6.4)
tends fo zero uniformly with respect to r € [0, D 1. This proves Theorem S.

To prove Theorem 9, we choose [ being the smallest number such  that
Q—k+ 1>2N — 1, where N is a given integer. The desired result will follow from

(6.1)-(6.3) if we show that the integral in the right hand side of (6.1) is o(r ¥ = %) as
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/O, — k
r—->0. But bound (6.4) shows that this integral is ()(r(“b' ) as r—=0. Since
2,k - ’
Q1~k>2N~2,Wehavc()<r(‘f )r:o(rz’v 2),r-~>0.

7. Expansion of g_, {r) into Absolutely Convergent Series for almost all Vaiues of a.

(Proofs of Theorem & and of Theorem 7). In virtue of Theorem §, Theorem 6 will be
proved if we show that the both series in the right hand side of (2.10) converge absolutely
forany r> Q.

if o satisfies condition (ii) of Theorem §, then for any inleger ¢ we have

Icoslt—gq—a—:z—]fi—l—li ?.sin%, Qsinﬂzi—*_—ill ?.sin%. _

This yields the absolute convergence of the both above mentioned series.

We shall consider the case when « satisfies condition (i) of Theorem § (i.e. is
irrational) buti it is not a Livoville number, :

Evidently, for any integer ¢ = 2, there is an integer lq’ such that -

2 +k
q
i o — ———— l <=,
q q
Since « is not a Liuoville number, there exists » = 2 such that
2] +k
q 1
l a— | =2 —-.
| Y ! q

Therefore we have, for any g = 2,
¢ s g = (2, + k) | < L.
Hence,

!cos—w-—z;—————-i=lsm 5 [_>_q‘“’, g=2. a.n

Therefore the first of the series in (2.10) converges absotutely for any r = 0.
Evidently, for any ¢ = 2, ther¢ is an integer m, such that

m

] g |
1 | (7.2
a3 | <2000 . )

- Hence,

m
1 5

1 1 4 1
———— e e | — ———e & e
it la vzl et i
Note that inequality (7.2) yields m, 2 2 for ¢ being large enough. Since a is not a Liuoville
number, we have, for an integer r = 2,

5
m, < 5= (2q + k).

Ia—M|Z—l——

m [ r’
m
g q
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m
Multiplying this ineauality by ;(—,275—%_—6, we obtain

m m
q 1 a

1
'5"204—& m’ ra(Zg+ k)T

J1[sy Tt (1.3)
: X

Inegualities (7.2) and (7.3) yield

1—-r
1(5 1 29+ k 1
—(40:) (gq.;_k)’*lsi a mqi<2
for ¢ being large enough. Therefore for such ¢ we have
: {—=r
(29K 2g+k 2{35)\ Y 4
I st a E l St (ﬂ< a m‘f)) i Za (4&} (2g + [ .9

and the absolute convergence of the second of series in ¢2.10) for any »> 0 follows,
Ta deduce Corollary to Theorem 6, we set

1 had (..3)4‘”24
A (z)= E 7 7 ;
ak (k/2) -1 wgg—k+1) . 0a—k+1 ger
7 = 79 i
¢S g BT Dpga skt Ly p gy
21—k ad (__m(l q
(2) = -
Nak o2 = 2 224 ¢ _;:rgz 33‘(7+1 A{Q_E_,;_\)

Itis known (see e.g. (141, p. 4, Eq.(1.05)) that the power series
f(z)= § a,z?
represents an entire function of the order p iff

=1 __qlogg
P =l S S (T )

Taking into account (7.1), (7.4) and the Stirling formuia, we obtain the desired assertion.
Now we whall prove Theorem 7.

Let{o, 3} ® =1 be a very fast increasing sequence of integers defined by the equations

0,=2 o, = 2 ’n, n=1,2,.. 1.5

Denote by A the set of all sequences { c?j } ;°= , With the terms dj. taking values O or 1 only
and satisfying the conditions

) 6f is allowed to be equal to 1 if j € {0, } :’= , only;

(ii) infinitely many of 6/.’5 are egualto 1.

It is evident that the set

Q=ly:iy= 2 6,27/, {8} €
j=1
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has cardinality continuum. .
Denote by A the set of all numbers x € (0, 2) representable by finite binary fractions.
Set

E={a€(0,D:a=x+y,xEA yEQ}.

It is easy to sec that the set E is dense in (0,2) and has cardinality continuum.

We shall prove that, for any a € E, the both series in the right hand side of (2.10)
diverge.

If « € E, then there is an integer m such that

a—b+2a2 I+ Z 8,27,
=1 j=Em+1
where b is either 0 or 1, a!.’s take the values either 0 or 1, {dj} ;°= | EA Denote by
{n,}, - thesubsequenceof{o,} 7_ suchthat 6j =1forj€{n,},_ and 6/. = 0 for
JEL{n,},

Then, for any 7 p>m we have

n=1"
M, 1
0<a- b+2 27 Y 82| = 2 8,27 <2 a1’
j=1 j=m+1

I=0y 4

Multiplyiﬁg this inequality by 2”", we see that there is an odd integer p, such that

1
O<a2"n-pl<2"n_'7n+l“<2_2""+1 7.6
1
for sufficiently large n.
Suppose, the dimension & is odd and consnder the terms of the first of the series in
(2.10) possessing the numbers g = q,= 21, From (7.6) we obtain

ﬂ(qa—k+1) Tqa n(qa-—p) . l,,
] = — CO. . pidt 2'n+1
l cos 7 l I cos — I l sin 3 I 3 2
Hence, for sufficiently large n, we have '
| (- )" @r™e
. n(qna—k-(-l) qna—k+2 g, 2
cos 3 F( 3 )F( 2 > |
_1 2
> 297241 gyt T @t 1) @D

Since {7 nt := | is a subsequence of { o, 3} the following inequality is valid

n=1’

= 3 .
77”+122 n._.qn, A (7.8)

and therefore the left hand side of (7.7) tends to infinity as n - .
If the dimension % is even, we consider the terms possessing the numbers

g=q,= 2" l.‘ Using (7.6), we obta‘in
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- | 1
(:o:s-—-—-—-~-—-~-—--————n(qﬁa2 i 1—)! = I sinf—gﬁ ! = l sinn(gn”"‘l’n) I <ma 2T+l

and an estimation similar to (7.7) shows that the left hand side of (7.7) tends to
infinity as n —» o,

Thus, the first of the series in the right hand side of (2.10) diverges.

Consider the second series in the right hand side of (2.10). If the dimension & is odd,
we consider the terms possessing the numbers ¢ = g = (p, — k)/2, where p_ is the odd
number defined by (7.6). From (7.6) we obtain

w(2g + k&) xp n(al”'!——pn)

1
Ry | ain ™ Py T34
!-—Ism p i<a2 .

-

Hence, for sufficiently large n, -

-1 In 2 It k 1 2
| (= 1)n(r/2) ' | 5 C93 Tt (it hym @0 (1.9)
. (an + k) k 4 - ]
sin ————T(g, + )T (qn + 5)
Noting that (7.6) yields
Py~ k p, 1

n_ 2 7 n “\1/3 ’
g, =5 <5 <zal <7 S5 .

we conclude that the left hand side of (7.9) tends to oo,

If the dimension k£ is even, we consider the terms possessing the numbers
g=q,=2p, ~ k)/2, where p_ is defined by (7.6). Then (7.6) yields

E mQa, R Wy (@2 —p )
sin ~—-———-—-——l = | sin | = | sin———F5—"

_1
i{%ﬂ_z 2""4‘1
[24 < Q

and the estimation similar to (7.9) shows that the second series in the right hand side of
(2.10) diverges.

8. Expansion of ¢, () into Absolutely Convergent Series for the Most of Rational a.
(Proof of Theorem 8). Recall that the set of all poles of the function fok (2) lying in the
half-plane { z: Re z = — & + 1} coincides with the union of the sets

, A= {qa——k+l};°=1, Az={2q+1};°=0.
Under the hypotheses of Theorem 5, these sets are disjoint since the Diophantine equation
xax—k+1=2y+1 (8.1

does not have any solution (x,y). Under the hypotheses of Theorem 8, that is if
a = m/n (m, n being relatively prime integers) and if one of three conditions (i)~ (iii)
mentioned before the statement of Theorem 8 in Section 2 are satisfied, the equation (8.1)
possesses infinitely many of solutions. Rewriting equation (8.1) in the form

xm = (2y + k)n
and using the standard tools of Diophantine Analysis, we can describe the set D g of all
solutions in the following way:
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Analytic and asymptotic properties of multivariate Linnik’s distribution

D, ={x=(2t+ ), y=wu:tel}incase(i);

D ={x—2m y_ztﬁz-——- rEZ}incase(ii);

tm — k
2
As an immediate consequence we obtain the following descriptions of the scts P, and

Q,, defined by (2.12), (2.13):
w© _fet+ ym - k)7
Pu= (@D}, Qak—{

2
tkm = max {O, [% (—’% - 1):“ in case (i);

—{Ztn} Z’_m_:_’i}

D, ={x=tny= : ¢t € Z} in case (iii).

t=t,, v Q= ) ) tkm=max{1, [—i%]} in case (ii);
'=tem
® tm — k ®
Pak={tn}t='km, ak={-——-—-—2 }

y by, = max {1, [—k—]} in case (iii). -
m . m
t=t,
m

Evidently, the following equations are true
ANA,={pa—k+1l:pz1l,p&P, },
A,\A ={29+1:920,9¢Q_,}, }
A nA2= {2¢+1:¢9€Q Y ={pa~k+1:pEP, }
The polesoff , (z) situatedin A; \ A,and 4, \ 4, are simple, the poles of f,, (z) situated

in4 N A, are double. Note that the set 4, U A, is a subset of the set { I/n } ;": .

Applying the Cauchy residue theorem to the rectangle
1

{z:c<Rez<% <l+—2—> —k+1,|Imz| <R}andlettingR—>w,weobtain
. -1
2 RS, _po—rs Uua @i+
—k~+l<pa-k+l<%(l+15) —-k+1
PEP &

qak(r) = — i

+ 2 Res

=21 U Or 7 H +
1

1<Zq+l<—(l+2) —k+1
9EQ ,
+ 2 Resz=2q+l(fak(z)rz—l) +
2q+l<——(1+2)—k+l '
9EQ
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=

é—)—k+1+iw

+ f qu (z)r.z “lgz - (8.2

%(I+%)—k+l—~im

(l+

=

The estimations similar to (6.4) show that the integral in the right hand side of (8.2)
tends to 0 as I » o, Using formulas (6.2), (6.3) for evaluation of the residues at simple
poles and the formula

Resz=2¢1+1(fak("')"z—-l)=

_ (=1t /%
2k K72 + 1

r_Tg+1)
log 3 = 3r(g + 1)

I(g + 1)r(q+§)

for evaluation of the residues at the double poles, we obtain (2.14).
The absolute and uniform convergence of each of three series in the right hand side of

(2.14) is evident since the moduli of the terms cos ﬂp_a_—_éiﬂ)_ and sin E(—Z%—T—k)— are

bounded from below by a positive constant not depending on p and gq.

The proof of Corollary to Theorem 8 is similar to that of Corollary to Theorem 6 and
therefore can be omitted.

Acknowledgement. I express my deep gratitude to Professor Samuel Kotz for the
statement of the problem studied in this paper and for encouraging correspondence.
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AHanWTHUECKUE U ACUMITTOTHYECKHE CBOMCTBA MHOIOMEPHOro
pacnpeneneHus JInnHuka

H.B. OcTpoBckuii
B craTtbe nayuaroTcs CBOMCTRA k-MepHOoro (k = 2) pacnpepencums Jinnnuka, onpe-
AERSEMON0 XapakTepUCTHUECKOHN (hyHKLIMEN

P O =1/(1+[1]%), 0<a<2, reRrk,

) *
rie | ¢ | o6osHanaeT eBKIMAOBY HOPMY BEKTOpa t € R¥. 910 pacnpegenenue a6CoMOTHO

HENPEPLIBHO OTHOCHTEJBHO Mepbt JleGera B r. oty ueHbl PasnoxKeHHs ero IOTHOCTH
B ACHMIITOTMUYECKHME M CXORSUIMECH Papbl No creneHsm | ¢| n |t | dopma atux
PAIIOKEHMI CYIIECTBEHHO 3aBUCHT OT aprudmeTHueckoi npupoasl napameTpa a.

AHaniTHYHI TA ACUMNITOTHYHI BJACTHBOCTI OaraToBUMipHOro
poanioniny JliHHuka

11.B. OcTpoBchKuit

B CTaTTi BUMBUAKOTHCA BAACTUBOCTI k-BMMIipHONO (k = 2) posnoainy Jlinumka, vio
BM3HAHAETBHCS XaPAKTEPHCTHUHOI (DYHKLUIEID

PO =1/(1+]1]%, 0<a<2 terk
A€ ucpes | ¢ | noaHAYEHO eBKAII0BY HOPMY BEKTOpa [ € Rk. Lleit poanoaist € a6coa0THO

Henepepssmm BinHoCHO Mipn JleGéra B Rk 3p00yTO po3KianM OO WLABHOCTI B
ackuMITTOTHY I § 301K HI pas 3a crenensmn | £ i | t|%. ®opma umx poaknanis icToTHO
3AJIEKMTH B aPHAMETHMROT TPUPOIM NAPAMETPY .
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