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The Darmois—Skitovich Theorem and its generalization that was given by Kagan are
transferred on a class of complex-valued random variables. They are also extended on wide classes
of generalized random variables for which functions of bounded variation are taken instead of
distribution functions.

1. Introduction. Let XI’XZ""’XN be independent random variables (r.v.) and

Li=a,X +a1?X wta Xy Ly=ay X tapX,+...+a X, be two

2N “*N
hnear forms The Darmois—Skitovich Theorem [1, 2 ] was one of the first results concer-
ning characterization problems of the mathematical staustlcs

Theorem A. If L, and L,are independent, then those Xj which appear in the both forms,

i. e. correspond to those j for which a, . a.,. # 0, are Gaussian.
. 172

Theorem A may be formulated in terms of the characteristic functions (c.f.) ¢, (f) of
r.v. X!. (j=1,2,...,N) in the following form: Let ®; @ (j=1,2,...,N) satisfy the
functional equation

N N N
U ?; (axj“ +ay, 4] =.I;[ p;(a; u)l;I P (az,- )

forall u, t € R. Then P (#) are Gaussian c.f. for all j such that g, jay * 0.

This Theorem was extended in various ways. Zinger [3] has considered those
restrictions on c.f. of rv. X G (j=1,2,...,N), that were induced by independence of
the polynomial Q (X,, X,,..., X,) and the linear formL=a, X, + a, X, + ... + ay X .
Laha [4}, Lukacs and King [5 ], dealt with regression conditions on the linear forms L,
L, preserving the conclusion of the Darmois—Skitovich Theorem. Kagan [6] gave an

analytical extension of Laha’s result. Heyde [7 ] characterized the condition on r.v. to be
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Gaussian by symmetry of the conditional distribution function of L, when L, is given.
Zinger and Kagan {8 ] improved Heyde’s result under additional hypothesis of existence
of (2n — 1)-order momentsof r.v. X i and Kagan {9 | gave an analytical refinement of the

Heyde Theorem. Zinger and Kagar{ {10, 11 T have studied the coadition of the regression
constancy in a wide sense for the problem for three forms L oy L3 . Linnik and Skitovich

112} have transferred Theorem A to classes of functions of bounded variation and further
description of this approach will be given below.
Kagan {13 ] has developed the Darmois-Skitovich Theorem in another direction. Let

Lj= a; X + (1!.2)(2 + ...+ ajNXN’ i=12,...,m,
be m linear forms of independent r.v. X, X,,..., X,. As above we suppose that the
coefficients a; are real and keep this assumption valid everywhere below. We shall also
say that the joint distribution P of the forms L, L,,..., L, belongs to the class Dm, P
1 <k =m,if its c.f. p(f,..., ,; P) admits the factorization:

@(tyyeer 1,3 P) = HRilv---,ik (t"l""’ t

i are continious (complex-valued) functions, R, ; 0,...,0) = 1, and the
P i freees

multiplication is extended over the set Ik of all multyindeces (il,..., ik) satisfying

) {feen t,) ER™. Ly

Here R‘.

Isi<..<ism From now on when writing the right-hand side of (1.1) we mean this
kind of factorization.

Theorem B {(Kagan [13]). If the joint distribution of the forms Ll, Ly.., L, " belongs

to the class Dm’ m - 1 and, jor some j, we have Ay @y * 0, then X,' is a Gaussian r.v.

The class D, , contains all distributions on R” that have independent compounents, so

the Darmois—Skitovich Theorem is a particular case of the Kagan result.
It should be pointed out that Kagan has obtained a more general result. Following
Kagan we say that P& D, (loc) if condition (1.1} is fulfilied in some neighborhood of

the origin {(Z,..., tm)i <e. Theorem B holds if we assume that P€ D, | (loc).
Besides, if we assume that P € D . k (loc), k <m — 1, the result comes immediately from

Theorem B, we omit the explanations here.
Further researches connected with the classes D, , (loc) could be found in [14-16].

2. Formulations of the main results. The aim of this work is to extend Kagan’s result
(and, in particular, the Darmois—Skitovich Theorem) to the case of complex-valued r.v.
and also to some classes of functions of bounded variation (f.b.v.).

The contemporary statistics often deals with complex-valued r.v. that may be repre-
sented in the form W = U + iV, where U, V are independent Gaussian r.v. (see [17]). We
denote Z = X + iY, where X, Y are real-valued r.v. Let us require that

E(cty)<oo’ {ER, Q2.1
and define the characteristic function ¢, (¢) of thc complex-valued r.v. Z by the formula
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Some extensions of the Darmois—Skitovich and Kagan Theorems

P, (r) = E(exp (it(X + iY))), tE€R.
If r.v. X and Y are independent, then
P, () = E(exp (itX)) E(exp (= 1Y) = ¢y () 9 (it), tER,
here o, (1), ¢, (i1) are c.f. of r.v. X, Yrespectively. Here we used condition (2.1) which

implies that c.f. ¢, (f) admits analytical continuation to the whole open complex plane

C which may be expressed by the same integral that defines the function E(exp (itY))on
the real axis.

Definition 1. We say that a complex-valued r.v. Z = X + iY ‘belongs to the class
ERC (Z € ERC )if X, Y are independent, r.v. Y satisfies condition (2.1) and also
E(exp (itY))# 0, t€R. » 2.2

Our first result is

Theorem 1. Let { X } i=1
complex-valued r.v. Zj. Xj + ij (=1,2,..., N) belong to the class R , and let their c.f.
¢, (1) satisfy the equation

J

and { Yj } ;vz | be two sequences of independent r.v. Let the

H(pz (ayt, + ayty+ ..+ a1y =]] Ry i (st ) Q2.3)

in a certain neighborhood of the origin |(t1 yeres tm)l < e, Then Xj s Y} are Gaussian r.v. if,

for the corresponding j, a C Gy 0.

1%

Proposition 1. If, in the definition of the class R o we cancel either the condition of

independence of r.v. X, Y or condition (2.2), then there exist solutions ¢, (1), ¢, (?) of the
1 2

SJunctional equation
«pzl(tl + 1) <p22(11 —l,)= (pzl(tl) V’ZZ(tl) <pzl(t2) <pzz(t2), 1,1, ER, 2.4

such that X Xy and Y, , Y, are pairs of independent r.v. and all these r.v. are not
Gaussian.

Thus the condition of independence of r.v. Xj , Yj and condition (2.2) for r.v. YJ. in

Theorem 1 are necessary for the statement of the Theorem to be valid.

Let us note that Theorem 1 presents a new direction of extensions of Theorem B. It
differs from the generalization of the Darmois—Skitovich Theorem for the n-dimensional
random vectors due to Skitovich; Gurie and Olkin (see [17]).

Our next goal is to find the widest classes of functions of bounded variation (f.b.v.) to
which the Darmois—Skitovich and Kagan Theorems could be transferred. Let B be the class
of £.b.v. ¥(x) on the axis ( — «, ) that are normalized by the conditions

lim V(x)=0, lim V(x)=1, V(x-0)=V(x).

X — oo X = ®©
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Each f.b.v. V(x) may be represented in the form:

V(x) = w (x) ~ o (x), (2.5)
where w (x), o (x) are non-decreasing f.b.v. and w(— ») =g( ~ ) =0. Let M(x),
T(x) (x> 0) be positive non-increasing functions. We denote by B, the subclass of the

class B consisting of f.b.v. V(x) € B such that the corresponding functions w from
expression (2.5) satisfy the condition

w( + ®) - w(x) + o —x) = O(M(x)) X->+ », (2.6)
and the functions o satisfy the condition
o(+ ®) —0o(x) +o( = x) = O(T(x)), x>+ ». @.n

For each f.b.v. V(x) € B we define a c.f. ¢(¢; V) by the expression
e(t; V) = fexp (itx) dV(x), tE€R. ’ 2.8)

Linhik and Skitovich extended Theorem A to various classes of f.b.v. Let us consider the
functions M, ” (=T, y (x) =exp (- Xy ), (x>0) for each y>0 and introduce the -

class B, of f.b.v. as follows B, = L>JOBM1 STy For each f.b.v. V(x) € B, its c.f. (&5 V)
y ¥

admits analytical continuation as an entire function of finite order which is defined by the

integral from the right-hand side of equality (2.8). '

Theorem C.(Linnik, Skitovich [12]). Let cf ot V) (]—1 2,...,N) of fbv.
V € B, satisfy the functional equation

. N i
H 80("1,"1 +ayt; V) =_H play; ; V,-)'H play 13 V;), LER. 2.9
Then, for j such that a; a,; #= 0, V, are Gaussian distribution functions.

Our second result is an extension of this Theorem. Let us consider the functions
M, . (x) =exp (- cx), x>0, T, (x)=exp(~cxlnx), x>1

for each ¢ > 0. Let us introduce the glass of f. b v. B = By, T We would like to
c>0 2 ¢’ 2 C

note that c.f. of f.b.v. Vfrom this class are entire functions as well as c.f. of f.b.v. o from
representation (2.5) and also

le(t;0) | = O(exp (exp (c|Im t}))), |t] = =, Y >0. 2.10)

Theorem 2. Let f.b.v. Vj (j=1,2,...,N) belong to the class B, and let their ¢.f.
(L Vj) satisfy relation (2.9) in a certain neighborhood of the origin | 1, 12)l <e. If, for

some j, ay; ay; # 0, then Vj is a Gaussian distribution function (d.f).
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Proposition 2. If in the hypothesis of Theorem 2 we change the class B, to the wider

class 33 =N U BM T. > then Theorem 2 does not hold. Namely, there are f.b.v.
c>0 r>0 2,C’ 2,"

Vj (7i=1,2,3, 4) in the class By that are non-Gaussian and their c.f. satisfy the equation

4
Htp(al/t1+a2/ 37 H(p(alj I,V)ng(az/ V), t€R, Q21D

where a; ; -1(]—1234) Ay = gy = 1023—a = - 1.

Note that the class B, contains the class B, and therefore Theorem 2 is an extension
of Theorem C. However, the class B, does not contain all d.f. It contains only those d.f.
F for which

l1-Fx)+ F(=x)=0(™"™), x->+ 0, Vr>0.
Thus our next step is to find a class B gs) of f.b.v. that contains all symmetric d.f. and such

that Theorem 2 holds for this class. Let B f:) be a subclass of the class Bs =B

LT
c)Q T 2,¢
consisting of symmetric (i.e. 1 — ¥V(x + 0) = V(- x), x = 0) f.b.v. Vsatisfying
f x% do(x) = f 2 do(x), k=1,2,... (2.12)

The classes B, .. participating in the definition of B are the standard classes B,
’ 2, ¢ Y

withM(x)=1,T(x) = 2 (x) being defined in the definition of the class B, . Note, that

the integral in the left-hand side of (2.12) always makes sense even 1hough it may be equal
to + o,

Theorem 3. Theorem 2 is valid if we change the class B, to the class B gs).

The condition of symmetry and condition (2.12) for f.b.v. in the statement of Theorem
3 allow us to prove

Theorem 4. If f.b.v. V/ €B 2‘) (i=1,2,...,N) and their c.f. satisfy (2.9) in some
neighborhood of the origin |(t,, t,)| <e, then V,€B,(j=1,2,...,N).

Thus Theorem 3 follows from Theorems 2 and 4.

In connection with study of factorization of Gaussian d.f. into composition of f.b.v. the
Cramer Theorem was transferred to different classes of f.b.v. Linnik and Skitovich [12]
considered the class B, ; Grunkemeier [18] considered the subclass By of the class
B, = N B,, ». (thefunction M, (x) was introduced in the definition of the class

>0 %¢'T2¢ , ’ . ’
B,) of f.b.v. Vsuch that

1-V(x) 20, V(-x=0 Q2.13)
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for sufficiently large x. (Note, that the Grunkemeier class of f.b.v. is more restricted, than
B} Chistyakov [{9 ] dealt with the subclass By of the class Bg such that

R

=,

ﬂ

o
I(y, V) = fe‘-w‘ dV(x) =0, ¥
— o

(the integral I(y, V) = I(y, cb) — I(y, o) always makes sense for f.b.v. ¥V & B, due io con-
dition (2.7) with T(x) = T2 (x) and arbitrary ¢>0). Yakovieva {20 ] considered the
subclass B, of the class B, = [ B f Q? f.b.v. ¥V such that
c>0 “
I3, ) Iy, w) =1=e" € where Q(y) = r)(eb‘%'”), y= o, ¥e>0. (2.14)

The classes B in the definition of the clas B o are the classes EM P where

I, M

Mx)y=1,7T(x) = Izt'lz, ¢ (x). The division in the left-hand side of (2.14) is aiways possible
because 0 < Iy, w) < «, and 0 < J(y, 0) < = by condition (2.7) with T{x) = M, /.x\ and
arbitrary ¢ >0. As we have already noted B, C &,. it is obvious tha f'\ »
Hence, Theorem 2 holds true for the classes B, , B, N By . One can cas;iy construct
examples to show that the classes Bg, By, B9 does not contain one another and also ihat
the same is true for the classes B

holds:

5 B By M B, . Nevertheless the following Proposition

Proposition 3. Let fbv V. (j=1,2,..., N)belong either to the ciassb’ or to the class
B, M By and let their c.f. samfy relation {2.9) in a certain nergnborhOAJ of the origin
,(tl, ,2)[ <e.Then f.b.v. VjE B, (j=1,2...,N)}

.

Corol!a 'y. Theorem 2 holds true for f.b.v. V from the classes B o and B, N By

The situation changes substantially when we try to exiend the Kagan Theorem.

Proposition 4. There are pairwise noncollinear vectors{ Gy by g .) (j=1.2,3)with
the conditions ay; @y, ds; # 0 and non-Gaussian f.5.v. ¥V, (; =1, 2 3\ which all belong to
either the classes Bfl or B’7 N ‘88 or B7 N Bg and Suciz that ¢.f. of fbv Vj, satisfy the

equation
Hga(a r+a i1 +a 4,V)~
j=1
— P 4 3
'Rl,z(tl’tz)Rl,s(z)’ts)Rz,a("Z’ La), (“;’tz’ 13)ER. (2.15)

Thus the Kagan Theorem is not true in the classes of f.b.v. that contain the classes
B, B7 N BS , B, N By . But this is not the same for f.b.v. from the Grunkemier class Bﬁ .
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Theorem 5. Let f.b.v. Vj € B\6 (7=1,2,...,N) and let their c.f. «p(t;‘ Vj) satisfy the
relation ' /

ety

N
II‘P(QUH tayt+...+a,t;V,)= HREI,...,im_l . -

j=1 :
in a certain neighborhood of the origin I(tl yeos tm)| <e. If, for some j, ay;ay;...a
then V, are Gaussian d.f. '
In some sence Theorem 5 may be improved for the case of symmetric f.b.v. VJ . We
denote by B (6s) the subclass of all symmetric f.b.v. from the-class B, satisfying condition
(2.13) forall x> 0.

Theorem 6. Theorem 5 holds true for all fbv. V,(j=1,2,..., N )’ from the class
BY. "

Although Theorem 5 is not true in the class B, (recall that B, C B,) it may be shown

that there is a subclass Bll for which it remains correct. Let us consider the function

T, , (x) = exp ( _— 1( G- £)) (x> 0) foreach 0 < ¢ < 3and introduce the class of £.b.v.

B,=N U B, Tl
>0 0<e<3 267 3¢

Theorem 7. Theorem 5 holds true for f.b.v. V, €B,,(i=1, 2,..,N).

Theorem 7 is unimprovable in the following sense. If we consider the wider class

4/3 :
Pra= OOBMZ T30 (T3 6 (x) =exp(— x"""), x>0) instead of theclass B, , then the
c » ’

following Proposition holds:

I

Proposition 5. The assertion of Proposition 4 is true for f.b.v. from the class B 12

3. The extension of Kagan’s Theorem B to complex-valued r.v. We formulate here
some results we need to prove Theorem 1. All of them are contgined, say, in monograph
[21 Jexcept Lemma K which may be found in [13].

Theorem D [21, p. 25 1. If a c.f. ¢, (1) is analytic in a domain G containing an interval

(ia, ib) of the imaginary t-axis (we assume a < 0, b 2 0, b — a>0), then it is analytic in the
whole strip a < Im ¢ < b and may be represented in this strip by the formula '

px (0 =B = [ @ ap,
, Q ‘ ' ;
“where the integral converges absolutely and uniformly in each stripa<a, =Im¢=<b <b.

~
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Theorem E [21,p. 28 ). Ifac.f. Px () is analytzcm thestripa<Im t<b,a<0 =< b, the
following inequality holds there:

lox (] < pyilmi).

The following Lemma is a little refinement of Lemma A.2.1 from [21, p. 342 ] and may
be proved in a similar way.

LemmaF. Ifg(t) is analytic and nonvanishingin the strip | Im ¢ < % , and, in this strip,
|e()] < H < o, then

1501 = exp (=38 (11 )1 + I #l)exe (141
in the strip |Im ¢| <-123 —~e. | ‘

Let f(#) (1 € C) be an entire function. We denote
M(r, f) =lrrlxax /(D).
ti=r

Lemma G [21, p. 31 1. Let¢(?) be an entire ridge function. Then, for eachr>0,
M(r, p) = max (lpGr)|, [p(—ir)]).
Theorem H [21, p. 14 ]. Let g(2) be an entire function and f(t) = exp (g(?)). Then

M(r, g s41nM(%r,f) + 5] g(0)].

Theorem I [21, pp. 44, 361 ]. Let Q(f) be an entire function such that
In M(r, Q)

lim =0,
LU r
r->

@D

and Q(0)=0. If the function ¢(t)=-exp(Q()) is « ridge function, then
p(y=exp(—o0 224 i B1), where B, o are real constants.

Theorem J (Cramér) [21, p. 59]. Let X, Xyse-s X, be independent r.v. and let the
sum X, + X, + ...+ X, be Gaussian r.v. Then r.v. Xj (j=1,2,..., n) are Gaussian.

Lemma K [13]. Let v, (u),..., ¥, (u) be continious functions on the real axis, the

vectors a; = (alj, Qyjsenes amj) (i=1,2,..., n) be pairwise non-collinear, and let the
relation

HV) (alj tl +a : nU m I_[R s .m—l (til""’ tim—l)
470
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be satisfied in a certain neighborhood of the origin |(r,,..‘, f,,.)| <e. Then, in a certain
neighborhood of the origin, ¥, (u) = exp (Pj (u)), where P/. (u) are polynomials of degrees
not exceedingn +m—2,j=1,2,..., n.

We shall also need the following auxiliary statement:

Theorem 3.1. Let ¢, (1), ¢, (1) be c.f. of (real-valued) r.v. X, Y, and let ¢, (1) be an
entire non-vanishing on the real axis function. Let also the equation
Py (D py (i) =exp(P(N), (E€[—¢e], >0 (3.2)

holds true, where P(1) is a polynomial. Then r.v. X, Y are Gaussian.

Lemma 3.1. If we cancel the condition ¢, (1) # 0 for t € R, then Theorem 3.1 does not

© remain true.

Proof of Theorem 3.1. The proof of the Theorem is bascd on one method due
to 1.V. Ostrovskii. He used this method in studying the D. van Dantzig class of c.f. (see
[21, pp. 347-348 ).

By relation (3.2) and the condition ¢, (1) # 0 for t €R, c.f. p , (¥) coincides on the

segment [ — €, ¢ | with a function which is analyticina domain G containing the imaginary
axis. By Theorem D, the function ¢ () is entire and hence equality (3.2) holds for all

t€C. Thus cf.p, (1), ¢, (1) are non-vanishing entire functions.v Let us represent c.f.
¢ (1) in the form

Py () = exp (Q(0)),
where Q(f) is an entire function, Q(0) = 0. By Theorem E, in every strip | Im1] <§
(R > 0) the inequality holds
lex (O =H, = sup |, (ir)] <.

—-2-<T<3‘

Using Lemma F we get the estimate
loy (0] 2 exp (— Crexp (% M)), IER,
where 0 < C, < ® is independent of 1. By Lemma G, we have, for any fixed R >0,
M(r, py) = max (lp, (N, lpy (= in]) =

exp (Re P(r)y exp (Re P(-r)) 7
= max |‘PX(’)| , |‘Px(v_ Y < exp (2CRexp (Er)), rzr,.

Hence, for any ¢ > 0,
In M(r,p,) =0("), r—o.
Using Theorem H we get
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M(r, Q) < 41In M(% r,py) +O(1) = O(eZEr), r .

Since & > 0 is arbitrary small, we write

lim InM(r. Q) _ 0.
7> r »
By Theorem I, ‘
Py () = exp ( maytz +ip, 0, (ER,
where a, = 0, [J’Y € R, 1. e. Y is a Gaussian r.v. Since (3.2) holds for all 1 € C, we can

represent ¢, (1) in the form ¢ () = exp (P, (?)), where P (?) is a polynomial and
applying Theorem ! again w¢ have that X also is a Gaussian r.v.

R emark. Theorem 3.1 remains true if the polynomial P(7) in the right-hand side of
(3.2) is replaced by an entire function Q(?) which satisfies condition (3.1). This may be
proved just by repeating the same arguments.

Proofof Lemma 3.1. Let us consider c.f.

| 2
Px (=13 pyO= (1-1%exp (- %)

They satisfy
/2
9y () (if) = exp ERE

whereas none of ¢, (#), ¢, (7) is a Gaussian c.f.

Proofof Theorewm 1. We can assume, without restriction of generality,

hat - all vectors 4. = (g .. ) i st e i
that, for all vectors a; (alj..aa,,,.,amj) in (2.3), ay; “2/"'(1771/’”0' Actually, if,

for  Tsome Uppyen- dy = 0, then the corresponding functions
¢ b - 3 . . < .
P, ,(a.” 7, ay L+ i fm) do not depend on some of th‘e variables Lo lyseons B,

J
Because ¢, (0) = 1, all functions ¢, () do not vanish in a certain neighborhiood of the
i - : -

origin v € [ — e, €], and by dividing the both parts of equality (2.3) by them we get the
necessary asseriion.

Without restriction of generality we can assume that a;, =a,, =...=q,, =1L
Actually, since a # 0(s=1,2,....N), this assumption holds true for the functions
v (u).

z; /aij

The vectors a, ..., a,, may coincide. Suppose there are n (n < N) different vectors

among them. We split all functions ¢, into groups with equal vectors aj;_an'd (renumbering
J : '
vectors if need be) we assume that
a,=a,=..=a
4

, 8, ., =..=a, , .., a
2 kl A,+l k2 ‘k
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where kn =N, a, ,a, ,...,a, are pairwise non-collinear vectors. We denote
1 2 n -

kg

. . . |
hy(w) = H(pz W,.o b, () = [ ¢, W (3.3)
cof=1d ’ j=k,_ ¥l :

Applying Lemma Ktothe funcnons h, (4),..., h, (u) weobtain that each of these functions
“admits the representatlon : |
hj(u) = exp (P, (1)) 3.4
in some neighborhood of the origin, where P | (u) are polynomials. Then, by Theorem 3.1,
r.v.

X1+"’+Xkl’ Y1'+“'+Ykl’ ‘,X/< + .+XN, Yk +...+YN
n-—1 n-1
are Gaussian. By Theorem J, we can say thatr.v. X ,..., X, ¥,,..., Y, are Gaussian as

well.

Proof of Proposition 1, LetXl,Xz,Yl,Yzbeindependentr.v.and

' 1 _ 2 12
px, (D =rx (t)=-;75, Py =y =0 -tHexp (-7).
Thentheﬁmc‘mﬂs‘/’z ®, ¢z, (¢) satisfy equation (2.4). Thus we have demonstrated that

condition (2.2) in the dehmtlon of the class ‘R cannot be neglected if we want to keep the

statement of Theorem 1 true. :
Let us show that the statement of Theorem 1 does not hold, if we'neglect the condition
of mdependence of r.v. X Y We consider independent r.v. X, , X, and independent

rv.Y, Y, such that c.f. of the two-dimensional random vectors (X, ¥|) and (X,, Y,)
may be represented in the form

L, 5
‘Px Y(tl’ )__(ev"("1’1+”1’2)+ (@t} +b, ‘2)) (3.5

where the parameters a, , b (k=1,2) are posmve numbers and a, #a,, b #b,
b, ~ a, = by — a, = c. From (3 5) we see that r.v. X,,Y,,X,, Y, are non- Gau551an
Be51des I.V. X and Y are dependem If they were 1ndependent then forall?,, 7, €R
the equality

(pX Y (11’ 2) = ‘Px (¢ )¢y (tz) ‘ (3.6)

would hold: But xf' we use (3.5) and the explicit form of the functlons Px Py then setting
J

i
t =1, = t one easily can see that (3. 6Ldoes not hold on the dlagonal

Let us form the complex valued r.v. Z X + zY (j— I, 2) Their c.f. may be
represented in the form )
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2 2 2
P, (1) =% (et Gy —ap) 4 ot (”2"’2)) = ¢
i .

and hence, they satisfy equality (2.4).

4. Extensions of the Darmois—Skitovich and Kagan Theorems to functions ef bounded
variation. To prove Theorem 2 we need some auxiliary results.

Lemma 4.1. Let an entire functon f(t) be posztzve on the imaginary axis, f(0) = 1, and

a) lim nlnMgR Q

Ro>w

b) for each fixed variable v € R )
- K W) s ~In|flu+ )] <K)(uf"+1), u€ER,

where the parameterm € N, and Kj(v) (j =1, 2) arefinite, positive and independent

of u.

Then f(t) = ep(’), where P(t) is a polynomial of degree at mosr m, real-valued on the ‘

imaginary axis, and P(0) =

For the case m = 2 Lemma 4.1 was already provedin [19, Lemma 1 ]. The proof of the.
general case is similar, so we skip it here.

Lemma 4.2. Let a function f({), /(0) = 0, be analytic in the half-plane Im t = 0 and

max max(Ref(R e’B) 0) + max 'R'ef(t)=0(eCRk), R, > oo,‘VC>O;
0<f0=<=x Rkst<Rk :

for some sequence of positive numbers { R B } 1 . Then

1. R,
If(ile)l =O(ec Ky, R, > o, ¥Yc>0.

This Lemma is close to Lemma 2 from [19 ] and may be proved in a similar way. Here
we omit the preof.

Let Gg={t€C:|t|<R,Im¢>0}, and f(#) be a funcnon analytic in G, and
commuous up to the boundary. Denote

M* (R, f) = max |10
te GR

Lemma L. Let afunclton (1) be analytic in the half-plane Im t> 0, continuous up fo
the real axis, and

a) If(t)l < C(|r|” + 1), t ER, whereC a are positive conctants,

In M* gR f]

R—»oo
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Then
lim M =0.

R—+

This Lemma could be proved by the standard methods using the Theorem on two
constants (see [22, p. 296 ) so we skip the proof.

Theorem 4.1. Let f.bov VJ.EBz(j= 1,2,...,n)and
P V) et Vy)op(t; V) = PO, 1R, @D

where P(t) is apolynomzal of degree m (m = 1). Then p(t; V )=e Fi¢ (] =1,2,...,n),
forall t € R, here P_, (f) are polynomials of degree at most m, real—valucd on the imaginary
axis. ' v

Corollary. Let fb.v. V,€ B,(j=1,2,...,n)and

a,o

Vx*Vz*"""Vn=q) 2, o T 4.2)

where (I)a o2 is the Gaussian d.f. with mathematical expectation a and variance o %. Then
£.bv. V;(j=1,2,..., n) are Gaussian d. 1. '

R emark. This Corollary was already proved for the case n = 2 in [19, Theorem 1 ].
The class B'2 is not closed with respect to convolution, therefore, for n = 3, the above

‘statement does not follow frqm Theorem 1, [19]. To check that the class B2 is not closed

with respect to convolution we consider f.b.v. ¥, , V,, € B, with c.f. of the form
it . it .
. = -1 t . - ~1 - iat
p(t; V-1)"€e.‘ —eb“, ptVy)=e " —e ',

where 0 < a < % . It is easy to see that V¥V, & B,.

Proof of the Corollaryv By Theorem 4.1, we have (¥, V ) = exp (ia t+ b 12)
(j=1,2,..., n), where 4 b are real constants. Since the absolute values of all <p(t V )
are bounded on the real ax1s we have b =0 (j=1,2,..., n). Therefore f.b.v. Vj
(j=1,2,..., n) are Gaussian.

Proof of Theorem 4.1. Cf. ¢(# V) of f.b.v. V € B, may be analytically

continued from the real axis to C, this continuation is given by the same integral from the
right-hand side of (2.8). Therefore, equation (4.1) also holds for all 1 € C and below we
use it just in this sense. The functions ¢(t; V/ ) are real-valued on the imaginary axis and

equal one at the origin. Using (4.1) we can see that they do not vanish in the open complex
plain C. Therefore they are positive on the imaginary axis. Let us show that the functions
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et Vj) satisfy condition b} of Lemma 4.1. The left-hand inequality follows immediately
from the relation

| p(u + i3 V.) = p(v;w )+ ofiv; o) uvER, (4.3
where w;, 0; are non-decreasing Lh.. from representation (2.5) for £b.v. ?/j and @,
satisfies condition (2.6) with M{x) = M, . (%), for an arbitrary ¢ >0, o; satisfies (2.7)
with T(x) = T, . (x), for an arbitrary ¢> 8. Let us check the right-hand ineguality in
condi.ion b). Using the refzation

c, (v)-—E Insup {ou+iv; V)| < vER, {(j=1,2,...,1),
k=1 KER
k#j
and (4.1) we get
ln|<p(u+iv;§/j}’gZ~cj(v)+ReP(u+iﬁ}, (j=1,2,...,n).

Hence, for any fixed v € R, there exists K, /.(v) > { such that
—In | plu + iv; ;”/j)§ﬁﬁi{z,.(v)(iu}’"%-}}, UER (j=1,2, 4.4)
To get the assertion of the Theorem it now suffices to prove that because of (4.1) with
arbitrary polynomial P(r}) (not only of degree m), at least one function p(#; wl.) satisfies

condition a) of Lemma 4.1. Indeed, assume that it is true for ¢(#; w,). From (2.10) we
estimate the functions o(t aj) {(i=1,2,...,n)

po,)=0C ;:exp {exp (CM))), [tf =, t€C, ¥c>0. 4.5
Hence, the inequalitics

M(R, ¢(t; Vj)) < MR, ot @, 3+ MR, o(8; Uj)), (j=1,2,...,n)

yield condition a) for the function o(f; V). But then the function ¢(f; V) satisfies all
hypothesis of Lemma 4.1 and, therefore, has the form ¢(f; ¥V,) = exp (P, (), I €R,
where P, (7) is a polynomial of degree at most m, real-valued on the imaginary axis.
Dividing the both sides of (4.1) by (4 V) we arrive to the equation

. . _ Pt
Pt VoY ot V) oot V) = PO, 1ec,

where P(f) is a polynomial of degree at most m. Repeating the above arguments n — 1 -
times we come to the conclusion of Theorem 4.1. .
Thus, we have only to check that there exists at least one function o(z; cuj.) satisfying

condition a) of Lemma 4.1. Suppose it is not true. Then, for j = 1, 2,..., n, there exists
d > 0 such that )

M(R, ¢(t; wj)) =max { ¢( = iR; wj.), P(iR; w/.) }>exp (e‘SR), R>Ry;. (4.6

Show that these inequalities yield a contradiction. There are two choices. The first one is
that there exists sequence { R, }, RkT oo, such that, forallj = 1, 2,..., n, we have either

M(R,, p(t; w; ) = @UR,; wj) or MR, p(t; w; ) =l — iRk;wj )
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The second choise is that for each sufficiently large R there exist Jy =14 (R) andj2 = j2 (R)
(J, # J,),suchthat M(R, o(1; w; ) = ¢(iR; w; ),M(R, ¢(t; w; ) = ¢( — iR; w, ). Thefirst
1 1 2 2

choice is impossible because of relations (4.1), (4.5}, (4.6). Now we are going to show that the
second one is also impossible. Indeed, let us assume that it takes place. Then there exist a
sequence { R, },Rk'r o, and a set, ofindecesj], j2""'j1’j1 e dy (I < n) independent of

R, such that
MR, p(f; W, ) = (iR, o, ), s=1,2,..,1
s §
and

MR, p(1; sz)) =¢p(— iR, sz), s=1+1,..,n

Without loss of generality, we can renumber the functions <p(t;‘wj) such that j, = I,

Jy= 2,...,j[ =0LJj =/+ 1,...,j, = n. By conditions (4.5), (4.6), we get the cstimates

. 1 .
go(sz;Vj)>7cxp(exp(ékk)), R.>Rs, J=12,..,L

Together with (4.1) this yields, for Rk > Rza ,

. \ . ; . SR 1 R
PRV, ) (iR V) < 2 exp (l PR | = Le k> < exp( —5e k). 4.7

Therefore at least one of the functions from the left-hand side of (4.7), say for
definiteness p(1; V, ), satisfies

. 1 SR
‘p(le;V1+l)S€Xp(—m(’ k>, R

. 4.8
Then, by (4.5), we conclude that
PR @, )= O (exp (exp (cRY)), R, = @, Ve >0,

and taking into account estimate (4.5) we, for any constant ¢ > 0, get the incquality

‘ LoV, )| < HR,) = A(c) exp (exp (¢cR))) (4.9)
ineachstrip—1 < II_n I=R,. Here and below in the proof of this theorem we denote by
A(c) various positive constants. Since ¢(; V, . ) does not vanish in C Lemma F with
gy =p(t +i(R, —1)/2;V, ) yields the estimate

LoV, ) Zexp (~ IORk(i ngp (%i(Rk—— DV, ) | +|In H(R)) {)e“”'“‘k)

for0<Im¢<R, —1.Letus consider the entire functiony, ., () =Inp( Vv, ) (we
fix the logarithm branch In ¢(0; V, ) = 0). Denote U, _, (1) =Rey, ,  (1). Using
(4.3), (4.4) we obtain '

U L =0(10™), 11] >, ' (4.10)
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for {Im 1] < 1. Because of estimates (4.9), (4.10) the function ¥, | , (71 sausfies the
hypothesis of Lemma 4.2. By this Lemma, the relation

) | \ /. cR )
|1 (3ER - D) | =01e K), R, Ve>0

holds. Therefore. recalling the representation of H(R,), we immediately obtain the
¢stimate

Pl V. Y| = exp %(-— A(C)R, exp (ch + %—ZI—) “4.11)
for0<Imrs < R -1 Byv estimates (:1.9) and (4.11) we, for any fixed ¢ >0, get the
inequality

Uy (0] =A™ “.12)
ia the half-disk GRL- _,=1{tecC ) < R, -1, Im >0 }. Applying the Schwarts formula

(see 122, p. 288 ) to the functiony, | €)=y, | (1 +0), [E] <1, we write

L i6
Lo 1 o C . «
sz_l(t+§)=—2-n~fU[_H(Rer+c059,lmt+sm9)ei9— dé+ilmy, (1)
0

Now, differentiating this equation with respect to § and setting § = 0, we have
21
¥, 0 =%f U,, (Ret+cos6,Im¢+sin6)e” % ap.
0
Using estimates (4.12) and (4.10), we obtain

’ ¢R
‘V’H,(’) i SA(C)@ k’ tEGRk—Z’

for dny fixed ¢ > 0, and

Ly @1 =0(1t"), lfl>w, |m:|s

[ I

1
PACIEIE KT [ max v, (@,
/ max

we finally get

2¢R
[, ., (O s A(©e %, t€Gy o

for any fixed ¢ >0, and

1
b, @ 1=0(10™* 1), 1t >, |Imt] <3
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These estimates show us that Lemma L can be applied to the function ¥, ., (0. By this
Lemma,

.1 + _
Rh_’meInM Ry, =0

- which easily yields
| lnp(iR, V,, ) i =0(eR), R->w, Vc>0.

But this is a contradiction to estimate (4.8). Theorem 4.1 is proved.

Proof of The oAr em 2. As when proving Theorem 1, without loss of gcnerality

- we may assume that a, . ay; # 0 and a,, =a,,=...=a,y=1,for all a; = (a]j , "2/') in
(2.9). Some of the numbers Gy seees Ay MAY coincide. Let there be n (n < N) different
ones among them. Let, for the sake of definiteness,

a, =...=a, , @ =...=dy , .. a =...=ua ,(4.13)
21 2k, 2,k +1 2%, e NS 2%,
wherek = N,anda,, ,a,, ,..., a,, are pairwise different numbers. We denote
n 2%, Y2k, 2, - ' ¢
k, o k
n .
H (1) =.Hl<p(u; Vi oo s HyW) = kﬂ Hsa(u; V). (4.14)
j= j=

n-1
Applying Lemma X to the functions H | (u),..., H (u), we see that each function A (u)
(I = 1,..., n) may be represented in the form '

H=exp{bju+tbyi+..+bu"y. @19

in a certain neighborhood of the origin. By the Hermite condition on the functions
p(u; Vj ), the coefficients blp are real for even p and purely imaginary for odd p. Since c.f.

o (u; Vj) (j=1,2,...,N) are entire, equality (4.15) fulfills for all x € C. Thus all
functions in (2.9) do not vanish in C. Denoting In ¢(u; Vj) =y, (u) v('/’,- (0) = 0), we have

j=1

’ N . N N
D ey =A21w, () +-zf’f (ay; 1))
/= j=

for all L4 E C. Now, if we differentiate this equation with respect to L, and put t, = 0,
we have

N
zajwj' (’1) =
=

for 1€ C, where a;= a%j. >0, ¢ is a constant. Integrating two times with respect to'tl and
exponentiating the obtained equality, we get

’ N a.
[Tt V). = exp (P1))), 1, €C,
j=1
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where P(?) is a polynomial of degree not exceeding two. This equation may be written in
the form A

n

a .
{

‘ 'Hl (Hl (zl)> =exp (P(1))), 1 €C.

J= .

Now let us show that blp =0 forl=1,2,...,n, p=3,..., n. By the previous equality, we

can write :

a, blp +a, pr +.ota, bnp =0, p=3,..,n (4.16)

Let p = n and let it be an even number. The absolute values of the functions H, (1) are
bounded on the real axis. Therefore all b, = 0 and, by (4.16), we have blp =0
(l=1,2,...,n, when p = n. Let n be an odd number. In this case it is easy to see that,
for each fixed y € R,

| Hy(x+iy) | = exp ((z’me}ly+ by - 1),::"‘_1 + O(Ixi"'2)>, |x| » ®», xER.

Since, for any fixed y ER, | H,(x + iy) | is bounded with respect to x € R, then
: 1
lblncny+ bl,n«l =0

for all y € R and therefore b, = 0 (d=1,2,...,n). The similar arguments for the cases
p=n-1,n-2,..., 3 yield the desired result.
Notice that, in representation (4.15) of the functions H ; (), the coefficients b, are

non-positive and the coefficients b, ,are purely imaginary. It means that

V.*...xV, =0 2y eee s V *...*V'=(D 2
1 /c1 a0} kn—l+1 kn an‘on,

where (ba » 2 are Gaussian d.f. Then, by the Corollary of Theorem 4.1, all f.b.v. V! are
!

IR

Gaussian and Theorem 2 is proved.

Proof of Proposition 2. The assertion of Proposition 2 comes immediately
from the Linnik-Skitovich example [12]. Actually, let us consider two functions Wl s

W2 from the class B with c.f.

2 )
p(t; W,) = exp (—%—+A(e"’”—- D), .17

2
t m
p(t; W,) = exp (— 7 =A™ - 1)), (4.18)

A being a positive parameter. The functions W, , W, satisfy

- Jny =
Varvl’j(x)llx|>y—0(exp<—} 2 )), j=1,2, y>0,

and hence, belong to the class B3 . Now set W3 = W1 , W4 = W2 . It is easy to see, that
the functions ¢(1; Wj.), i=1,2,3, 4, satisfy equality (2.11).

Proof of Theorem 4. This proof is based on two auxiliary Lemmas.
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Lemma 4.3. Let Viseens Vn be symmetric f.b.v. and belong to the class B and let each
of them berepresented in form (2.5) (Vj =w;~-0 ), wherewj » 0; aré non-decreasingf.b.v.,
and let

-]
2] ;e
fx daj(x) <o, (j=1,2,...,n)
-

for some positive integer L If their c.f. (t; V)),..., p(8; V) satisfy the relation
- Pt V.ot V,) =9(t,) 4.19

on a sequence of real numbers { 1 }, 1 4 O, where p(1) is an even 2l-times differentiable
real-valued function, then ‘

fx”dwj(x)< ®, (j=1,2,...,n.

In the case n = 2 this Lemma was already proved in [23 ]. If n > 2, this conclusion may
be obtained in a similar way, therefore here we omit the proof.

Lemma 4.4. Let fbv. V|,...,V, belong to the class B ss) and their c.f.
@( V)seo (8 V,)) satisfy relation (4.19), where the function p(t ) is even, real-valued

on the real axis, and analytic in the strip |Imt|<H. Then the functions
o(t; Vl)" ot Vn) are analytic in the same strip and equation (4.19) is satisfied at each

point t of this strip.

Proof of Lemma 44. By Lemma 4.3 c.f. p(5; V))...., p(t; V) are infinitely
differentiable and, by the Rolle Theorem, relation (4.19) implies the equation

n - @
[ [Tew V,-)] t

j=1

_o=? @ (0) (4.20),

forallg =0, 1, 2,... . From Cauchy inequalities we obtain that the estimates

le@@©) | s MH~¢,p)(H—€)" ¢, ¢=0,1,...
hold for any ¢ € (0, H). Let us write equation (4.20) in the form

n
2D v)[] e;v,)+
j=1 p#j

. ,

q: v
TTal? W0, ¥ 0 WO V)=p@@©. @21
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All functions ¢(1; V/.) are even, thus their odd derivatives vanish at the origin. Thercfore
it suffices 10 consider the case of even g. Because of (2.12) it is easy to see that the
summands in the left-hand side of (4.21) have the same d(gumcm This. implies the
estimates : ‘ .

max [ @ (0; V) | < | e WO | SMH—e,o)(H-€) 9", ¢=0,2,4,.... .
that yiclds the assertion of Lemma 4.4.

Let us form the functions H ..., H as we did it in the pmof of Thcomm 4. Thesc

n -1

=0d=1,2,...,n;m=0, Lo [ 5=

ok

functions are of form (4.15) and bl. 2m+ 1

‘Then, by Lemma 4.4, all functions ¢(t; Vj) (j= L,..., N) are entire. Hence, f.bv. V)

(j=1,..., N) belong to the class 5, . Theorem 4 is proved.

We need two Lemmas.

> given, and (— 3. <
e m =1, be given, ar.d (-~ 1 o .

2 - - L
Then the function f(1) = cxp lz/ it + (12(1{) + 2,”(11) m} is of. of vortain Liw

Lemma 4.5. Let real coefficients dy d

{
V satisfying

|~ VA2in =1y U+ 1/(2m - 1),

. 1
Var V(x)l x| >y = ) CXP{ "~ 20m ‘dZ}” :

with some positive constant C(V).

We confine ourselves to short outline of the proof of the Lemma. It can be doue by
estimating the Fouricr transform of the function f(r) by mean of replacing Hn fine of
integration to the corresponding horizontal line in the complex f-plane

Let V be f.b.v. and let M be a real number. Consider the function

M -
SV MY = fe”‘fdi/(x), tER.
4 ’ -l Lo

Theintegralin the m,ht -hand side dehines thuanalylnal continn aton ol Jin V, My otk
lower haif-planc.

Lemma M. Let f(1; V, M) be « non-vanishing funciion ix the {ower hall-plon
L 1< 0. Then, for sufficiently large y : ‘
| (= 1y,VM)|>r ’3",‘
where e = c(V,MYisu /umllw constant.

This statement is a direct consequence of the Carathéodery Th orem (see [21, p. 342 4

Proof of Proposition 3. First, we consider the case Vi,V

Cf. (5 VI.) (j=1,2,...,N)arc cmirc functions s'alisfying
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L - ; ) SR
Pt V) =1+t f (r- V!(x))e X gx — it f V,(x)e xgx (4.22)
| ) +0 . - ®

" for all ¢t € C. One can obtain this relation if imegrating by parts. This formula gives us the
estimate which is similar to the ridge condition for c.f. (sce Theorem E):

[ (5 V)I = llltl

. ' ¢, |Im t} ) :
m 1] (lcp(zImt;Vj)|+e‘/‘v +2cj),,1mz¢0, (4.23)
here the constant ¢, > 0 depends on f.b.v. V.. '

Construct the functions H |, » H, as when proving Theorem 2. These functions are
entire and admit representation (4 15) for all complex ¢. Since V (x) =20, l -V (x)> 0
for sufﬁcnently large x; then, using Lemma M, we have the estlmates

lpy V) lze <V (Gi=1,2,.,N) " (4.24)
for sufficiuently laxfge’ | y.|. We can now note that formula (4.15) yields the inequalities
& , o

‘ . B : ‘ . n . . . -
| ]I (iy;v.)]:,lH,(z'y)lSec'”' Iylzyo =12,
/—-/cl 1L - :

~where C>0isa constant Together with (4.24), this ylelds the esnmates

lp(iy;V)|5eC|y' +N"“y' lylzy,, (j=1,2..,N).  (425)

By. (4 23) the order of entire functnons«p(t V Y(j=1,2,...,N) does not exceed n and by

“4.15) they are non-vanishingin the Whole complex t-plane Now the Hadamard Theorem
(see [21,p. 13D gives .

- 2 . m,
p({, VJ.) = exp {djlt‘+dﬂt‘ +...F djmjt !} (m; = n, djmj #= 0), (4.26)

where ,,djp are purely imaginary for odd p and real for even p. Besides, as we could see in
- the proof of Theorem 2, if m;> 1, then m; is an.even number and a’jm‘ <0.By Lemma 4.5

‘f b.v. V with such c.f. belong to the class B CB,. '
Now let us consxdcr the case when V|, V belon'g to the class B, M B, . For each
£.b. V. V ‘we write representanon (2:5),i.e. V = wj - aj where w;, 0, arenon- decreasmg

f.b.v. and ‘ . _ '

] = - Yy .
Var I‘/J:(x)! x5y =0€ ?) y= +,‘°°, ch >0.
Besides, by condition (2.14) we have . R

10,0)) = 10,9)) = 100 )e GO 4.27)

where Q 0= O(eclyl) y—=> o, Ye>0., Lel us come back again to the functions
H,, H In this case they are also entnre and (4, 15) fulfills for all 7 € C. Therefore the
‘equatlons '
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4 -0, o
[T (1Gswpe 577 = [T etnv)=
: j=kll+1 [=khl+l
q“y+qﬂw)+ by ()" U=1,2,....)
are satxsﬁed for y € R. Hence

¢ ,
«p(iy;a)j)=0(ee M), y=> oo, V>0 (j=1,2,..,,N). (4.28)
" From (4.27) we may obtain the similar estimates for ¢(iy; aj) (j=1,2,..,N). Itiseasy

to see that the inequality

e'My(wj(’-l— ©) — o, (1\4) +w (- M) = feylxi dw, (x) S«p(iy;wj) + (- iy;wj)

[x| =M

is satisfied for any y, M > 0. Now let ¢ > 0, y= %ln M. By (4.28) we have

‘ -Ml M
@, (+ ©) =@, (M) + @ (= M) = o( " )
M-+ o, VYe>0 (j=1,2,...,N).
The same estimate for the quantity oj(+ w) — 9; (M)+a( M) (j=1,2,...,N) may

.. be obtained similary, so f.b.v. V] (j=1,2,. N ) belong to_ the class B,
: ': C ' . T —107%,4
Proof of Proposition 4. Letus consider the function f(7) = e . By
lemma 4.5 this is c.f. of some fbv.VE€B, ~ ,  withy = 1/3,i.e. £.b.v. V from the
class B and also

4/3)

Var V(x)l le>y=0(e_y )y vyt

It is‘obvious that V € B, N By . Let us show that f.b.v. V also belongs to the class
B, N B,. It is enough to establish condition (2.14) with

w(x) = —;—{Var V(x) li ot V(x)}, a(x) =1L {Var V(x) |)i o T VL

We note that w(x) # 0 and therefore I(y, w ) ze cly | (¥ yeR), with some positive
constant c. Now we mention that

_10-6,4 -6_4
1(y,w)—1(y,c7)=e oy =o(—-2_10 y) Sy o,
which implies the fulfillment of condition (2.14) for f.b.v. V.
Now let us take Vi=V,=V,=V. It may be immediately checked that their c.f.
(1 V ) (j=1,2, 3) satisfy equation (2.15), where non-collinear vectors (a1 » Ay a3l)

(j= 1 2, 3) are the following
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[1’2.*.{6-’_2_1—_\/_6_),
S+

1,5+2V6, - = 1.1).
2\/_ ( )

2V6

Thus the Proposition is proved.
Below we need some kind of sharpening of the Marcinkic¢vicz Theorem.

Lemma4.6. Let Vbea f.b.v. fromthe class B7 and letits c.f. p(t; V) satisfy the relation

lp@ V) | =0 (1 1+ | piIm 5 W), 1] > w, (4.29)
outside the strip | Im t | <1, ¢ being a positive constant. Let also its ¢.f. ¢(t; V) may be

represented in the form o(t; V) =P ('_), where P(t) is a polynomial. Then V is a Gaussian
d.f. : : :

Pr oof of Lemma - 4.6 follows the pattern of that in [21, p. 41 . Let
Py =dit+ ... + d”-ltm andd,, # 0. As wecould seeabove, the coefficients d; are purely
imaginary for odd /’s and real for even I's. Moreover, if m = 2, then m is an even number
and d, < 0. Thus if m < 2, then V is a Gaussian d.f. Let us show that the assumption
m >2 yields a contradiction. We consider theray arg t =6, = — % in the t-plane. It is

obvious that.
L Il | =1 d, |1+ o(1), . (.30
On the other hand, by relation (4.29) c.f. ¢(f; V) can be estimated as
n | p(remy V) | < 1n |(L+p(irsing, ; V)| +0@), r- . (4.3
Comparing (4.30) and (4.31) we see that
ld | r™ (1 +o(l)<|d

m | r™|sing, |"+o(r™), r- .

m l

Ifm>2,then | sin 6, | <1andwe getacontradiction. This completes the proof of Lemma
4.6.

Proof of Theorem 5. As when proving Theorem 1 we assume that
a....a, =0 and a,; =1 forallvectors a.= (a,;,...,4a,.), j=1,..., N. Thisinvolves
J mj 1j J 1j mj
no loss of generality. Also we form the functions hi(w) (j= I, 2,..., n) by formula (3.3)
with the only difference that we use the functions ¢(u; Vj) instead of the functions

¢, (). Since p(u; VJ.) are entire functions, then, according to Lemma K, the functions
J

h, (w),..., h, (u) satisfy relation (3.4) for all complex u. Now by repeating the arguments
from the proof of Proposition 3 for the class B, (Bg C B7 ) we see that the functions
o(u; Vj) (j=1,2,..., N) admit representation (4.26). Fr'om estimate (4.23) for c.f.
e(u; Vj) (j=1,2,..., N) it follows that these functions satisfy inequality (4.29). Thus
f.b.v. V! satisfy all the hypothesis of Lemma 4.6 and therefore are Gaussian.
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.

Proof of Theorem 6. Asin the proof of Theorem § we see that the functions
hy ()., k, (u) satisfy relation (3.4) in a certain neighborhood of the origin. Since all the

functions ¢(u; Vj) are even and real-valued, the functions A (u)...., A, () also satisfy

these relations. Integrating by parts we note that

w £ 0
fxz"‘de(x)=2k fxy‘_l(l—Vj(x‘,)dx-—fok"'le(x)dx >0,
— o0 ' 0 -0

By

k=1,2,..., j=1,2,..,N.
Thus f.b.v. Vj (x) satisfy condition (2.12). Therefore f.b.v. Vj (j=1,2,..., N) satisfy
the hypothesis of Lemmas 4.3 and 4.4 for any H >0. By these Lemmas, c.f. ¢(u; Vj)
(j=1,2,..., N) are entire functions and hence our f.b.v. V, (j=1,2,...,N) belong to
the class B . By Theorem 5, they are Gaussian.

Proof of Theorem 7. We start as when proving Theorem 5. Using the same
arguments we can see that relation (3.4) is satisfied for each function A (x),
l=1,72,..., nand all complex u. We note that the class B,, CB,. By Theorem 4.1, c.f.
p(u; V/.) (j=1,2,...,N) admit the representation

p(u; V,) = exp {dﬂ "+ dj2 W+ djsj usf}, s;Sm+ N =2, djsj z0. (4.32)
Suppose S > 1. We have already mentioned that, in this case, the numbers djp are purely

imaginary for odd p and real for even p. Besides, S; is an even number and djs <0.
J
Now let us show that all §; = 2. Indeed if $; is divisible by 4 (we denote itas 4| §; ), then

pliviw;) < p(iy;0,) + O(1) = R A
for so‘mc e € (0, 4). Hence, in this case, c.f. ¢(i; Vj) is an entire function of order less
than 4. This contradicts to the assumption 4] S -
1f $; is not divisible by 4 and 5z 6, then
, 1 s, 1 6 :
p(iysw;) z exp {5 E <{,~Sj I y/} Z exp {-2— | djsj Iy } [yl =y,

and hence, for |y| = Yo »

P(iy; U,') < %(p(iy; wj) .
This gives us the inequality
Py ;)
ls——-<xs1, Z Y, .
P V) =%

The two last estimates yield
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. . . 3 . .
bplut i V) | s e w;) + iy 0)) = 5 (v 0;) < 39@y; V)

for {y| = y, and u € R. This inequality shows that, in this case, c.f. p(u; Vj) satisfies
relation (4.29). Since B, C B, and (4.32) holds, Vj satisfies hypothesis of Lemma 4.6.
By this Lemma, V, is a Gaussian d.f. It contradicts to the assumption 5; = 6.

So we have showed that all of f.b.v. V, (j=1,...,N) are Gaussian d.f. and thus

Theorem 7 is proved.

Proposition 4, if mention that f.b.v. V, =V, = V, with c.f. ¢(4; Vj) =e

Proof of Proposition §. It suffices to repeat the final part of the proof of

-6 4
-0 e belong

to the class B12 .

[

[
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epenecenne reopem Japmya—Ckurosnua v KaraHa Ha xaaccol
' 00O0DUIEHHBIX CAYYAWHBIX BEJIMYMH

T".I1. Yucrsaxos, C.10. ITeprameHues

Teopema Japmya—CkHTOBHUA O XaPaKTEPHIALMK HOPMAJILHOCTH CYUAMHBIX Be-
Juuuyd (C.B.) CBOMCTBOM HE3ABUCHMOCTH JiMHEHHbIX Gopm 1 ee 06obienne, pauHoe
A M. Karanom, ncpeHoCATCs HA KIACChE KOMIMIEKCHOZHAUHBIX C.B., 4 TAKKE HA LIMPOKME
KJacCbl 0600UIeHHbIX C.B., KOTOPbIM BMECTO DVHKIMI pacnipenieneHns oTeenaoT GyHk-
LMK OFPAHMUCHHOMN BAPHALIMM,

Iepenecenrs Teopem Japmya—Cxurosuya Ta Karana na knacu
y3araJibHEHHX BUNAaAKOBHUX BEJIUYHH

['.I1. Yucrakos, C.10. ITepramenues

Teopema Jdapmya—CxkHTOBHMYA NP0 XAPAKTEPHIAUIK HOPMATBHOCTI BUNAAKOBMX
BenMuMH (B.B.) YMOBOIO HE3ANEXKHOCTI Niniiinux Hopm Ta Ti yaarasbHeHHs, 3a00yTe
AM. KaraHoM, nepeHeceH0 Ha KAacH KOMILICKCHOIHAUHMX B.B. i HA UIMPOKI KAACH

y3arajsibHeHUX B.B., 3aMICTh (PYHKUIA POINOALNY GKHX PO3rasaaiorbes dyHkuii odme-
JKEHOT sapiauii.

e
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