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We have obtained the conditions which garantees that an Wo -valued almost periodic
solution to a nonlinear parabolic equation is really almost periodic with values in the space
W:)‘ P where p— 2 > 0 is sufficiently small.

0. Introduction

It is well-known that the gradients of generalized solutions to Dirichlet problem for
nonlinear elliptic equations have excited summability (Meyers estimates; see, for
example, {1-3]). In the recent papers of the first author [4-6] a new approach to such
estimates was proposed, which permit to include in consideration domains with Lipschitz
boundary and mixed boundary value problems (in the of case of second order equations).
In particular, {5] contains the resuits on W }‘/’-regularity ot solutions to mixed boundary
value problems for nonlinear parabolic equations.

In the present paper a similar approach is developed to investigate W 1‘/’—regularity
of bounded and almost periodic (a.p.) solutions to parabolic mixed boundary value
problems. Here we consider boundedness and almost periodicity in the sense of
Stepanov, almost periodicity in the sense of Besicovich, and the case of solutions on the
whole axis which are integrable with the exponent p (the last case is closely refated to
Besicovich a.p. solutions).

The main idea is the following. We reduce the problem under consideration to an
operator equation of the form u = Qu =T, S, u in a corresponding scale of functional

spaces (parametrized by the exponent p = 2). Then we look for a fixed point of Q by
means of the contraction principle. So, we need to estimate the Lipschitz constant of the
operator Q. Here T, is the inverse operator to the similar problem for the heat operator
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J, u="hu'— Au. On the other hand the Lipschitz constant of S, may be estimated
explicitly in terms of the original problem. It turns out that, with a suitable choice of
A, this Lipshitz constant is less than 1.

Therefore, we have to estimate the norm || 'I'l Il o which depends on the exponent p.

First of all, using an interpolation techniques, we show that || 7, || » is close to || T ”2

as p is close to 2. We note here, that in the Stepanov case we make use a new interpolation
result, while the Besicovich case may be covered by the classical Riesz-Thorin theorem.
Then we estimate the norm || 7 || ,. In the Besicovich case it is more or less clear (by
means of the energy argument) that this norm is equal to 1. On the contrary, in the
Stepanov case || T)L |l , is greater than 1. This gives rise to an additional quantitative
condition (5.6), which guarantees excited regularity. However, it is still open to
determine is this condition essential, or not.

Now, we sketch briefly the contents of the paper. In Section 1 we start with general
definitions and notations. In particular, we define the class of regular spatial domains

by pasting together corresponding local models. Section 2 deals with some general
properties of the operator 7, . We show that 7, has the same norms in different functional

spaces, e.g. in the spaces of Stepenov bounded and Stepanov almost periodic functions
with the same exponent p. Then, in Section 3, we study some properties of regular

domains and estimate || 7, || » by means of || 7, || ,. With this aim we prove here the

new interpolation result (lemma 3.2) for linear operators acting in the spaces of bounded
in the sense of Stepanov functions. We do not know is the similar result true for the
spaces of Stepanov a.p. tunctions. Therefore, it is crucial for our approach to use the
norm coincidence result stated in Section 2. In Section 4 we derive the estimate of the
norm || 7, 1 , in the Stepanov case. Our main results are stated and proved in Section

5. These results atfirm that there is excited regularity of solutions for suitable subclasses
of the class of regular domains. Then, in Section 6, we investigate these subclasses in
more details. We show that in the Besicovich case the regularity result takes place, really,
for any regular domain, while in the Stepanov case it is so for any domain, whose
boundary is, locally, a graph of a Lipschitz function. Finally, we conclude with a few
general remarks (Section 7).

As for results on existence of a.p. solutions we refer to [7,8].

1. Preliminaries

o —
Let G be a bounded subset of R"”. We denote by G, @G, and G the interior, the
boundary, and the closure of G respectively. As in [S] we call G regular, if for every

y € OG there exist open subsets U and U of R" and a bijective map ¢ : U — U such
that :
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@) ¢ and ¢ ! are Lipschitzian, and the Jacobian detgrminant of ¢ is constant;
(i) y € Uand ¢ (UM G) is one of the following sets
Elz{xeR”:m <l,x, <0},
E,={xeR":|x|<1,x <0},
Ey={xeE,:x;,>00rx, <0}.

Here | - | stands for the usual Euclidian norm in R ”. In what follows we always assume

G to be regular. Moreover, for the sake of simplicity it is assumed that (n — 1)-dimen-
sional surface measure of G\ G is positive.

Let ] < p < oo and ;17 + ~1,— = 1. We denote by Wé”’(G) the closure of the set
P .

{uIGo:ue C*®R"™), G supp u is compact in G }.

(All functions we consider are assumed to be complex valued.) We can define the norm
in W ' P(G ) by the formula

Il u ||’1"n:j’]Vui”dx.
G

By W™ 1'P(G) we denote the dual space to W7 (G). We shall omit G in such
y p 0
notations, if no confusion is possible.

Now, we introduce the operator J € L(W(l)’ wolz2 ) — the space of bounded

. . . 2. — 2 ~
Jinear operators acting from W é’ “into W™= - by the formula

(Ju, V>=Jvu-Vvdx for u, ve Wé'z,
G

where ( -,- ) is the canonical pairing. It is obvious that J maps W(l)‘ P ¢continuously into
W™ 1P In what follows we shall consider the parabolic operator J,, A > 0, defined
by the formula

Jy u=xu +Ju, (.1

1y

where *” stands for the time derivative. Corresponding function spaces will be justified.
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Recall definitions of some function spaces (see [8] for more details). Let £ be a
Banach space over C. The space BS” (R; E ) consists of all measurable functions f:
R — E such that the norm

t+1

1
1 o= sun f CTTAGY, (12)

is finite. The space S” (R; £') of Stepanov almost periodic (a.p.) functions of exponent
p may be defined as the closure of the set of all E-valued trigonometrical polynomials,
i.e. functions of the form

N

fO=Y aexp(irt), a€E. & eR, k=1,..,N=N(f).
k=1

Equivalently, f € S7 (R; E ) iff the family of its shifts { (- + 1) } e R is precompact
in BS” (R; E). Sometimes we shall use another equivalent norm in these spaces: -

1+ 0
1

=g ' L duow. o > 0. (1.3)
(Nal ,“;";{( .!- 1.f (o) | d) ’

Bs? 0

The space CAP (R; E ) of Bohr a.p. functions (or uniformly a.p. functions) may be
defined as the closure of all E-valued trigonometrical polynomials in the space

C,(R; E) of all bounded and continuous functions f: R — E endowed with the usual
supremum norm. Another characterization of this space is the tollowing. A function
fe Cb(R; E ) is Bohr a.p. it and only if its shift family { f(- + 1) } R is precompact
T€
with respect to the supremum norm.
Now, for fe CAP(R; E ) we set

T +w

T
A12,= v [ ae
-T

The completion of CAP(R; E) with respect to this norm will be denoted by
BP(R; E ). This space consists of all Besicovich a. p. functions of exponent p. We remark
that a Besicovich a. p. tunction is, really, a class of equivalent tunctions, not a single
function on R. However, there is a natural embedding S”(R; E) c BP(R: E )
is dense and continuous.

We define the tollowing spaces

which

>
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“XP=BSP (R- WL P
X =BS" (R, W),
X P=BSP (R, w17,
_ Whi={ueXi: uweXx P}
where i’ is the time derivative of u in the sense of W™ 1*P-valued distributions. We

introduce also the spaces X ¥, X, ” and W’i’ for i =2, 3 and 4 replacing in the previous

definitions BSP by P ifi=2, by L? if i =3, and by B” if i = 4. In the case i = 4 the
time derivative is regarded in the sense of Besicovich a.p. distributions (see [8]). The

norms in X# and X;” 7 will be denoted by || - || p.i and Il - respectively. We shall

(.
omit the index ’i” here, if no misunderstanding is possible. We shall write X f G .,
if we need to indicate the set G explicitly.

2. Special linear problem — general properties
We shall consider the operator J, in the spaces we have just defined. More precisely,

the formal expression (1.1) defines a closed linear operator from X f into X i'” with the
domain W‘i’, i=1,2,3 and 4. We still denote this operator by Jy.
Now, for p>2and A > 0 let

<1y, - @y

MO, =sup {lull, tue WP 1Jul_, ;s

where i=1,2,3, 4. It is well-known, that there exists a bounded linear operator
Jy I.x i" 2.,x ?, A > 0 (see, for example, [8] for less familiar cases of bounded and

a. p. functions). Hence, M (20k < oo, Moreover,

MPy =M, =1, - @2)

as it follows from the standard energy argument. In general, it may happen that

M ,(j)l =+ co. However, if J, W# = X."7, then there exists a bounded inverse operator
Jy I, X,._p - X f and M g) 2 < . The converse is not true in general. We shall use

the quantity Mg)k only in the case, when J)va = Xi" P, In this case Mg)k coincides
with the norm of the inverse operator.
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Remark2.1. Scaling T =Xt turns the operator Jx into the operator Jl. Hence,
J1W€ =X,7 implies J, W% = X7 for any A >0 (i=1,2,3,4). Moreover,
Ms)k (R) and M/()4)k (R) do not depend on A > 0. This follows from the scaling

invariance of the corresponding norms. In the sequel we shall omit the index *A in
M("))\ , wheni=3 and 4.
P,

Proposition 2.1. M; = MZ. Moreover, W0 = X"P iff J, W0 =X~

P roof. We note that the definition of the quantity M 1(71) . (R) makes sense for any

p > 1. If we prove the first statement of the proposition for this extended range of p’s,
we can derive the second one by means of a simple duality argument.

Now, we fix o € (0, 1) and consider a smooth function Yr on R such that
O<wy,(<1,| \|/'T (|<C-T ®forteR, Y () =1tor[¢1]<T, and y. (1) = 0 for

|t12 T+ T°, where C > 0 does not depend on T. Evidently, such the function exists

for any T > 0. For any W é’ P_valued trigonometrical polynomial w() we have

Hhﬂw v |12

—-/)3
1
7 I I vi? J Wl LI, dr+
<T Ts|z|sr+r“ .
L1 J' P Lj Ll dr+d +J
2T I\VTI Hv”_lp 2T ” lv”-—l.p L+ l+ 2°
T<|t|<sT+T° el =T

It is easy to see that]1 <C-T°~ 1, where C > 0does not depend on T (but depends

* on V). Similarly, /, < C- 7P =1 Henee,

R P Y L DA

T——)oo~

In a similar way

lim o7l v l?, = Ivi?, .
T—>
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The last two equations imply M ,()4) <M /(73)’ since trigonometrical polynomials form a
dense subset in W1,
Now, let u be a smooth compactly suppbrted w (1)’ P_valued function on R. Assume

that supp u < [ - 7, T'] and denote by u,. the 2T-periodic extension of u l-T.T1©
R. Then

1
27‘““”5,3:” uT”Z'4’

1
ﬁ'“Jku ”,:,0,3 = ,'Jlurllljp,4 .
If we combine these equations with a simple density argument, we see that

M ;)3) <M ;4). Hence, M S) =M ;4) for any p > 1, and the proof is complete.

Remark 2.2. The proof of Proposition 2.1 is an adaptation of the arguments
used in [9] and [8, Ch. 5] to our more simple situation.

Proposition 2.2. M 1(7{)7\ =M g-:))u Moreover, .IXW’; =X l—" if and only if
P_x~P
HWa=X%
Proof. Since W4 and X, 7 are closed subspaces in W/ and X "7 respectively,
we have Mcz)ASM(l)A. Conversely, let u € WP and T > 0. Denote by u.. the
p, P 1 T

2T-periodic extension of Uy, 1yt R. It is easy to see that u, € Wg and

lull,, = tim gl .
To©

IlJlu\I_pJ: lim ”JA”TH—;J,Z'
T

(We remark that || - || po= il . 1-) These equations imply M,()l,)}\ < M,(;:,,)k and, hence,
) _a @

Mp‘ )\‘ - Mp, A
We note now that any duality argument is inapplicable in this situation. Therefore,

we prove the second assertion directly. Assume, that J, W/ = X "7, Then for any
fe Xz‘l’cX’l’ there is a unique solution u € Wll’ of the equation J,u=f and

Hul W,,S C-llul where C > 0 does not depend on f Since the set
1

-p. 1>
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{fG-+1} + e R 1§ precompact in Xfp, the last inequality and the translation invariance
of J, give rise to the precompactness of { u(- + 1) } _ _ p in the space W’l’. Hence,
ue W’z)‘

Now, we assume, that J}LWQ =X, P Let fe X 7. The 2T-periodic extension, f.,
ofﬁ[_ T.T) belongs to X,_,_p and |IfT|| Sp2 <FI o1 Then there exists a unique
solution uTg W’; of the equation J, u= f. and i uTH w? <C-Ifll B Hence,

2

there exists a sequence T, — o such that u.. — u weakly in L? (R; wl 7?7y and
k Tk loc 0

L

is complete.

u. — u' weakly inL’l;C (R, W~ L Py Ttis evident that u € W’l’ and J, u = f. The proof

3. Special linear problems and regular domains

For p>2 we denote by R’(’S) the class of all regular subsets of R” such that
JKWIIJ =X, P A > 0 (or, equivalently, J}_W’,j =X :—,p ). Denote also by X’(’b) the class

of all regular subsets such that JLW{; = X5 P& > 0 (or, equivalently, JlWZ =X, Py,
Now we modity slightly some of our notations as tollows
() (D) _as (@)
M]),?»_M/L;VWM/J,}\. ?
) _ ay B)_ s @)
MP =MD =m®
Recall, that M (), | i=3, 4, does not depend on & > 0 (see Remark 2.1) and

¢ > ‘s "o " . C o .
Mg’) = 1. Here ’s” and *h’ correspond to "Stepanov” and "Besicovich” respectively.

Lemma 3.1. Ler G € f’(?,,) (resp. G e R(({v) )) for some q > 2. Then G € :{fb)

(resp. G K’()S) ) forp € |2, q) and
) (b) \O
Mp < (Mq ),
resp.

(s) (s) 1 -0 (s) O .
‘ Mp,}.g(M'l.}.) (M(/,l> ?
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1_1-6_6
where};— 5 +q'

Proof is almost identical to that of Lemima 1 [5]. Only one remark is in order. In
the ’s’-case we need to use the following interpolation result of Lemma 3.2 instead of
classical Riesz-Thorin theorem.

Lemma3.2.LetE = BS" (R; L" (G)) and A be a linear operator acting continuously
on Er and on Eq, qge(l,©), re(l,x). ThenAeL (Ep)and

0
141y <hal gy 141 )
q

wherelzl—e—rg.
p r q

Proof. We define an operator

®, E, > F =1"(L"(0,1)xG))
by the formula
Qou={ol)}pez>
where
et x)=ulw+1+kx), ae(0,1), 1e(0,1), xe G -

It is obvious that @ is an isomorphism of E_ onto F, and

lullg= sup [P oullp.
T oae (0,1 r

(X.,B_ "1
Let A -—Q)QOAo(DB . Then

o, B 3.1

”A'”L(E): sup inf || A4

“L(F)‘
ae(0,1)Be(l) r

The operator A™ p may be represented by an infinite matrix (Ai‘ ) and

| A HL(F):SUD ZHAI/”L(L)
,e7

By classical Riesz-Thorin theorem we have

B
||A°"|1L(F)s sup Y4l L(L) N A o) <
i€

je 7
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-G ‘ )
S sup (Z”AUHL(L))l ()'(Z”A,-j“L(Lq))L]S
’EZ]eZ je ’

<HA°‘“uL(F) uA““uL(F)

Using (3.1) we complete the proof of Lemma 3.2.

Lemma 3.3. Ler { U, ... Uy } be an open covering of G and UM Ge .’7((‘)
(resp. UM Ge Rgh) ), i=1,...,N for some ¢>2. Then Ge 7{2’5) (resp.
G e Riy:

Proof issimilar to that of Lemma 5 [5].

Lemma 3.4. Let E={xe R" :|x| < 1}. Then for every fe BS” (R; L7 (G))
(resp. f € L? (R x E)) there exists a unique solution of the equation '
u'-Au=f (3.2
such that
ue BSP Ry WEP(EYNM WP (E))
resp.

ue LV R WP EYN WP (E)).

Prooft. Let Zx, &, ) be the classical Green function of the Dirichlet initial
boundary value problem for equation (3.2) on £. Let

k+1
U (x, 1) = J dt _[Z(x_. E.0f(E, 1-1)dE,
k E
and
ux,n= Z U, (x, 1. (3.3.)

As in [10], standard properties of the Green function and Mikhlin theorem on Fourier
multipliers imply that

U > < .
” OHLP(S',.S‘+];W2 ”fHLp s+ 1 L/ ”f”BSp(R;LP)
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Moreover, it is well-known that
0% Z(x, &, |<Cye” ¥, 121,

for some ¢ > 0. Hence, fork =1

s+1 ’ s+1 k+1
jnuk YL 3 Y Idrja 20,8, 0 f 6, 1= & 1|7, <
ol <2 5 k
s+ 1 k+1

ccoem [a fdrﬂf( =D |52 Ce T )

s

BSP (R, LP(E))

Together with (3.3) this implies that u € BS” R; w2 (E)). It is evident that u(x, 1)
is a solution of (3.2) and u € BS? (R; W(l)’ P(E)). The LP-statement may be proved in

a similar way. The proof is complete.
Now, exactly as in [5], Lemmas 4 and 5, we have

Lemma 3.5. For every p € (2, «) the sets E, E,, E, and E, belory to the classes
p P
R(s) and R(b)'

4. The key estimate

In this section we have to estimate the quantity M gs)}" Let x be the embedding

constant for W ' (G ) < L¥(G), i.e. [l u | pecllull e, ue whG).

Lemma 4.1. The following inequality

Mf,‘)X < \E _leakd A>0 ~ @.1)

k4 ’

V4 + 602 - 1
is valid.

Proof. Weapply here a more refined version of the arguments we have used in
the proof of Lemma 1.1 [8, Ch. 2]. Let u W% (R) and f= Jx ue XIZ (R). To get

the required estimate we may assume that supp u < R _ (see, e.g., [8], Section 2 of Ch. 3).

We introduce the following notations: ¢(f) = A2, I| u(®) || 2 h@) =1 u(® || wh?
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gO=Nf@ON 1.2, and @ =|IfIl ;. We have ¢ (1) <k - h(s), where k = A2k,

1

and ¢ (0) = 0.
Multiplying the equation A4’ + Au = f by u and integrating, we obtain the inequality
’ h b
2 9%ty ) =5 @) + _[ 1) dr < fh(:)g(:) d, 4.2
ll . tl
where 0<¢, < f,.
First of all we prove the inequality
<p2(t)s3-(%+k2)@2, teR,. 4.3)

Inequality (4.2) with ¢, =0, £, = ¢ implies that <p2(t) < % @2, t € [0, 1]. Hence, (4.3) is
valid for ¢ € [0, 1].

Now, we assume, that (4.3) is valid for ¢ € [0, n]. We have to prove that it is also
valid fort € [0, n + 1]. Let T € [j—1,/] be a point such that

¢ ()= max ().
[i-1jl
Ifo(r,, ) <¢(r,_,), then the required assertion is trivially valid. So, we assume,

that ¢ (T, , ) > ¢ (2, _,). Inequality (4.2) and the well-known inequality

b2
b< =
a sa + de 4.4
imply
. Tn +1
J. K0 dt < ——— @2,
4g(l —€)

Tn‘ 1

It is obvious that here the optimal choice of € is € = % Hence,

tn+1

j () dr<3 - @2,
T

n-1

Since ¢ (f) < k- h(r), we have
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T
n+1

J X1 dr <3k 2 @7,

In—l

Hence, there exists 1y € [T, _ |, 7, | 1} such that

3k @ (4.5)

$ly) s <3k e

n+1 n-1

Now, inequality (4.2) with 1, = ¢j and £, = 7, | implies

T
n+1l

1 1
20, ) - 2 ?(tp) +I KA(r) dt <
rO

T T T
Tn+1 n+1 n+1 n+1

< [j R dn'* - [J FR0) cmmsj 50 dt+%! 2@ dr.

Y f o fo

Since T, | | ~ fo S 3 we have (using (4.5))

T
n+ 1

5 1
@(x, ) < 0y) + 5 _f gX () dr < 3.(% +k2)@2,

)

and (4.3) is proved.
- Now, (4.2), (4.3) and (4.4) imply

T+1 T+ 1 T+1

I hz(t) dt < % (pz(r) + € J. hz(l) dt + 1 j gz(t) dr L
4¢
T T

T

T+1

3 :
<15 5 +k )+ﬂ % +¢ ng(t)dt.
T

Hence

T+1

j K1) dr S?i’ :
T

31 +2%2) e+l oo
e(l -¢)
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It is not hard to see that

2 L 2\2
312k )e+ 1 6(1+2k2)

e>o0 &e(l-¢) (m_l)

3 -

This implies (4.1) and the proof is complete.

Remark 4.1. We know nothing about exactness of estimate (4.1). However, there

is an example, which shows that M '(.15'))» > 1.

Remark 4.2. With the norm || - || $? o (see (1.3)) as a background we can

introduce the quantity MS,)X, 0= Ml()l,)x, 0= M,(z—)}», o using (2.1) with || - || P replaced

by || - || s Scaling t=0 5 turns || - || 7 o into 6 - || 5 and the operator J, into
J5 /o - Hence, we have immediately
@ -pm® (4.6)
M e=Mp 0

5. Main results

Now, we are going to prove regularity results for bounded and a.p. solutions to rather
general nonlinear second order parabolic operators under the assumption that

Geﬂ(ﬁ)orGeﬂﬁ'gb).

Let b: Rx GxC"— C" be a function such that b( - ,-, 0) = 0, satisfying the
following hypotheses:

Re(b(t, x, &) = b(t, x, ) - (E-n)2m|E=n [’ m >0, G-D
b, x, &) - b, x, ) |SMIE -7 |, M >0, 6D

_for(t, x) e RxGand&,ne C",

b(-,-, &) is measurable for every £ e C". 6-3)

Here & denotes vector whose components are complex conjugate to those of &.
We consider the equation

u'+ At =f, : -9

where the operator A(f) : W(l)’ 2 (G)-> W~ L2 (G) is given by the formula
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CA(Du, vy = J b(t, x, Vi) - Vvdx, u, ve Wy > (G). (5.5)
A ,
It is well-known that under hypotheses (5.1)-(5.3) for any f € Xl._ 2 equation (5.4) has

a unique solution u e W% , i =1, 3 (see, for example, [8]). Moreover, if additionally
the hypothesis

(ap) [Ep(z, x, E) is a. p. on ¢t € R uniformly with respect to (x, £) e Gx C"

is valid, then the previous statement holds for i = 2, 4 too.

Theorem 5.1. There is p, > 2 such that for any G € ﬂt@), pel2,pyl the
following statement holds true. Assume (5.1)-(5.3) to be valid and .

M <3 -m. ) (5.6

Then for any fe BSP(R:W NPy there  exists  a unique  solution
ue BSP (R, W(l)' Py of equation (5.4). If, additionally, (ap) is valid, then for any

FeSPRW Y7y wehaveu e SP (R; W Lry,

Theorem 5.2. There is py > 2 such that for any G e I/t/(’h), pel2,pyl the
Jollowing statement holds true. Assume that (5.1)-(5.3) are valid. Then for any

FeLP (R W™ 17 there exists a unique solution u € LP (R; W(l)’/’ ) of equation

(5.4). If, additionally, (ap) is valid, then for any fe B” (R, W™ Py equation (5.4)

has a unique solution u ¢ B (R; W, Lry,

Proofs of Theorems 5.1 and 5.2. As in [5] we define the operator

Qpu=Jy ((J =N Au+1f).

It is not hard to see that for fe X7 the operator QO is a Lipschitz map from X ? into
itself (i = 1, 2, 3, 4). Moreover, any fixed point of ins a solution of (5.4). Therefore,
we shall prove that under appropriate conditions Qf is a contraction. We consider the
case of Theorem 5.1 only (the case of Theorem 5.2 is similar). We shall use the norm
in BS ? defined by (1.3) (instead of (1.2) ).

Set A=m/M>. A simple calculation shows us that the Lipschitz constant of Qf is

equal to & - M;S;))., o » Where k=(1- 5-3 )] "2 and M,(:;)x, o is defined in Remark 4.1.
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Now (4.6), Lemma 4.1 and Lemma 3.1 imply that we can choose 8 > 0 being
sufficiently large so thatk - M IS');" g < lforp > 2being sufficiently close to 2. Hence,
Qf is a contraction and the proof is complete.

Remark 5.1. Under the assumption of Theorems 5.1 and 5.2 the map fr—> u is
a Lipschitz map between corresponding spaces.

6. Lipschitz diffeomorphisms, Lipschitz sets, and regular sets

Now we present more details about set classes ﬂt’(’b) and ﬂtf 5 - First of all, we have

Theorem 6.1. Any regular set belongs to K’(’b) Jor some p > 2.
The result follows immediately from Lemma 3.3 and

Theorem 6.2. Let G € R?b), q>2,ande:G—> Gisa Lipschirz diffeomorphism

with a constant Jacobian determinant. Then G € be) for somep > 2.

Proof. Essentially, we repeat here the arguments that were used in the proof of

Theorem 2 [S]. Let Lu=uo ¢~ LIt is easy to see that L maps W(l)’p (G) onto
W(l)”’(é ). Denote by L the adjoint operator acting from w~LP(G) onto

w-bLrp (G )foranyp > 1. Itis not difficult to check that LL  u= Au, where A denotes
the constant Jacobian determinant of ¢. We shall also consider L (resp. L*) as a linear

bounded operator from Xi G onto Xi s (resp. X;%;onto X : "é ),i=1,2,3,4 1tis

evident that the operator 4 = A~ AN G L satisfies the assumptions of Theorem 5.2 for

_ somep > 2.Hence,X?’é={u'+Au:ue WﬁG}forsomep >2(i=3,4). Letfe Xi_

Then L® fe X[ 7., and there exists u € W2 - such that
L' f=Mu'+Awy=L"Luy +L"J & Lu.

This implies that (Lu)’ +Jé Lu =_f. It is easy to check that Lu e W’i’ G Hence,

Ge R (- The proof is complete.
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Rémark 6.1. In Theorem 6.2 we cannot assert that G € K?b)'
The arguments of the proof of Theorem 6.2 do not work in the Stepanov case
(i =1, 2) because of strong assumption (5.6) in Theorem 5.1. Nevertheless, we have

Theorem 6.3 Let 0G = I‘1 U I’z, where Fl M 1"2 =0, G\G= I"l. Assume, that

OG s locally a graph of aLipschitz function of (n — 1) variables, and f'l M FZ is locally

a graph of a Lipschitz function of (n — 2) variables (in the case n = 2 consist of a finite
number of points). Then G € K’(’S ) Sor some p > 2.

P ro o f. In the case under consideration there exists a collection of Lipschitz
diffeomorphisms ¢, ..., @y, having Jacobian determinants equal to 1, such that
() ¢; ° @y o ... o ¢, maps one of the sets £, E, or E; onto a part of G containing a
given point y € 0G;

(ii) the Jacobian matrix of ¢, , k=1, ... , N, has sufficiently small out-of-diagonal

elements.
We describe brietfly how to construct such difteomorphisms. For example, let

0 € I', \I', . Then in a small neighbourhood of 0 the set G is of the form
{x:x, <hx,..,x,_ )}
where his aLipschitz function. Let0 = £, < 7, < ... <=1 We definé the Lipschitz
diffeomorphisms Yy s k=1, ..., N, by the formula
W ) = (g, s X, g X, noh(x), oy x, ).

Then we set ¢, =y, _, © \|/k~ l, k=1,... NIty -t |, k=1,..., N, is suffi-
ciently small, then statement (ii) is valid.
The composition P ° Py ... oy maps the set

El={xeR":|x| <ex, <0}
onto a corresponding part of G. It is obvious how to complete this set of
diffeomorphisms so that the statements (i) and (ii) are valid. All other cases of location

of the point y € OG may be treated in a similar way.
Now, we can use the argument of the proof of Theorem 6.3 in the following way. Let

GN=E1, E,or E;, and G, =, GkJrl ,i=1,..., N-1. Statement (ii) implies that

the operator A, = L; Js L, where Lu=uce cpk' l, satisfies all the conditions of
k-1 )
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Theorem 5.1. Hence, G, , a small part of G around any given point y € 0G, belongs

to !{’(’ 2 Using compactness of G and Lemma 3.3, we conclude.

7. Concluding remarks

It must be pointed out that the results of Theorems 5.1 and 5.2 may be extended in
an evident way to cover the case of operators of the form

u=-V>ot, x, u, Vu) + b(t, x, u, Vu),

and the case, when n — 1-dimensional surface measure of G \ D is equal to zero (this

corresponds to the Neumann boundary value problem). Moreover, BS 7 and L? versions
of Theorems 5.1 and 5.2 are still valid for equation (5.4) on a half-axis with zero initial
condition.
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Perynapuocts Tuna Meilepa A1st OrpaHUYEHHBIX U MOYTH NEPHOAMYECKUX
pelIennii HeJlMHeifHUX napado/IMYecKUX ypaBHeHUIH BTOPOro NopsaKa co
CMeWAHHbIMH KPAeBbIMH YCIOBUSIMU

K. I'perep, A. Tlankos

[Monytensl yeaosmsi, TP KOTOPBIX TOMTH [IEPHOIMYUECKOE PCIIeHHe HEeJIHHEHHOro
1,2
napaboIHIecKOTo ypasteisl, NPHHALIeXKalulee anpuopy W o » OYHET NIOYTH TepHOaH-

. N 1,
YecKOM (DYHKUMEH ¢O sHadelsiMu B IV 0 ¢ noctarouno mamim p -2 >0,

Perynspsictb Tuny Meiiepa ans oOMexeHHX i Maibke mepioanuHux
PO3B’A3KIB HeNiHItHUX NapadosiuHKUX PiBHAHD APYroro Mopsaky is
MiLIAHUMH KPAiiOBUMM YMOBaMHK

K. I'peorep, A. Ilankosn

OTpuMaHo yMOBH, SIKi TapaHTYIOTh, 10 Mafke TCPIONMYHMI PO3B 30K HeaiHiiinoro
napaboiMHOTO PIBISIHHA € B ICHOCT NePIoAHII0I0 QYHKILE i3 31Ha4ueHHAMM Y IIPACTOpi

2
w [1)"' c W :} S, me p— 2 >0 e IocTaTHLO MaJliM.

Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, No 1/2



