Matematicheskaya fizika, analiz, geometriya
1996, v. 3, No 1/2, pp. 70-79

A theorem on stability of the argument of
characteristic function

Al Iinskiit
Kharkov State University, 4, Svobody Sq., 310077, Kharkov, Ukraine

Recelved December 8, 1994

Let f(f) be the characteristic function of a probability distribution on the line. If
1 - [f(#) | s efor |t] < aand, moreover, e < C; , then

min  max |argf(f) - Bt| =Cyhe 3/4,
geR |t| <a

where C, , C, are suitable absolute constants.
1°>2

1. Introduction and statement of results. We shall use the concepts of distribution
function and of characteristic function in the sense generally accepted in the Probability
Theory. The following abbreviations will be used without any explanations: d.f. = distri-
bution function on the real line, ch.f. = characteristic function of d.f. We shall denote by
C with indices positive absolute constants.

The following theorem is well known (see, e.g., [1, p. 13 ]).

Theorem A. Let 8 be a positive number and let f(£) be a ch. f. If | f(2) | =1 for |t| =,
then f(f) = exp (i B {) where B € R.

Thus, if absolute value of a ch.f. is equal (precisely!) to 1 in a neighbourhood of zero,
then its argument is a linear function. A.Ja. Khinchin ([1, p. 19 ]) obtained an estimation
of stability of Theorem A. To state Khinchin’s result we need the following definition. Let
f(f) be a ch.f, set U=sup {u>0: /(1) =0, || <u}. The function w(f) is called the
argument of f({) and is denoted by arg f(¢) if satisfies the conditions:

(i) w(?) is continuous on the open interval ( — U, U),
(i) w(0) =0,
i fO = /() | exp {iw(@® }fort € (- U, U).

Theorem B (Khinchin [1, p. 191). Let 8 be a positive number and {7r,(0} := L bea

sequence of ch. f’s such that | £, | =1 as n- o uniformly with respect to

t €[ —98,381 Then, for arbitrarily large T > 0, arbitrarily small p > 0, and sufficiently large
n, the inequality holds
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lw,®—tw, ()| sp{VI-1/,O]+VI-[/,0)]} for [1| <T,

wherew (1) = arg f, ().

The aim of this paper is to prove the following theorem.

Theorem. Let a> 0. There exist absolute constants C [ C2 such that the following
statement holds:
If ch.f. f(t) satisfies the condition
1= A | s¢e for |t| =a,
whereQ s e < C,, then

min max |argf() - ft| = C2£3/4.
BER |t| <a

This theorem is stronger in a sense than Khinchin’s one. It can be viewed as a fact of
Stability Theory of Stochastic Models (see [2-4)).

In section 2, we give a preliminary estimate of the distance between the argument of
the ch.f. f(7) satisfying the condition | — | /(1) | < e for || < a and the set of all linear
functions. In section 3, we specify this estimate.

2. The preliminary estimate. Let us introduce some notations. Let f(7) be a ch.f. with
the d.f. F(x), 4 be medion of d.f. F(x). Denote by F*(x), F,¢ (x), Fy (x) thed.f.’s withch f.’s
| 7(2) 12,1, () = J(1) exp (= iet), fy (1) = /(1) exp (= ieo(1)1) respectively.

The proof of the theorem we divide into series of lemmas.

Lemma 1. If the theorem is valid for a = 1, then it is valid for every a > 0.
Proof. Let f() be the ch. f.and 1 — | f({) | <& for | t| < «. Consider a ch. f.

p (r):=f(at). Wehavel — | p(1) | < efor| v | < 1. Then there is a real number 8 such
that

max | arg () =7 | < Ce 34,

|t =1

which is equivalent to '

max | arg f() — B/a)t} s Ce 34

[t <a

This completes the proof of the lemma. B

Suppose, the ch. f. f(¢) satisfies the condition of the thcorem to be proved with a = 1.
Obviously, the condition

1]/ | e for |1] =1 (1)
yields :

L= | /()] %<2 for |t] = 1. 2
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Lemma 2. Inequality (1) withe < C3 yields

1, - O<A_<.AE,
dF*(x) <
f ) 1 + A?
IXIZA C4€ AZ ’ A>A€»
where
1/ C,e 3
A= 1-C,e’

P roof. Using well-known Raikov’s inequality
1 — Re ¢(21) < 4(1 — Re p(1)),
which is valid for any ch.f. ¢(¢), we obtain from (2) by induction
L= | /(1) |2 <4" 2, for |1]<2", n=1,2,.... C)

We shall use (4) for the values of n satisfying the inequality 4" 2e < 1/2, that is for
n < N, where

log (1/¢)
N= 2 log 2
In the equality (see, c.g., [5, p. 85D
+ o ) +
X _ ,—Y (5)
dG(x —fc, 1 — Re g(9) dt, .
[ =60 J 70 -Reaty

which is valid for any d.f. G(x) with the ch.f. g(7), we set G(x) = F *(x), g() = | /(D) |2. We
obtain

]

2
f JF*(x) < 2 ZZA fe—f(l N OIRY 2 (6)

[x]=zA 0

Using inequalities (4) for 0 < < 2" and the trivial inequality 1 — [/ |2 <1 for
1>2", we obtain '
k

o 1 2 =)
N
fe"(l—1/(z)|2)c/zsfe‘f2m/z+2 f e~ 4% 2 gy +fe"dt<
k=1
0 0 2k—1 2N
N1 ; )

: /
<2 [1+3 > 4772 +exp (- 2M).
j=0

We have
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24jexp(—2j)scs. @)
i=0

Moreover, by the definition of N, we have
exp(—2N)sexp(~—:lt—e—“2)<e' CN
fore < C, . Using (6)-(9), we obtain for any A>0
1+4°

f dF*(x)SC4£ Az 10
Ix|zA

The left hand side of (10) is not greater than 1, hence
. . 1+ A2
dF7(x) <min{l,C, e ——5— }.
[ are { o }
|x]=zA

This is equivalent to the statement of Lemma 2.
We shall suppose, in addition, that ¢ < C6, where C6 is so small that A‘Z < 1/2 for

€< C6 . For any d.f. G(x), define
WG(A) =1-G(A) + G(-A), A>0.

From the symmetrization inequality (see, ¢.g., [6, p. 177D

f dF(x) < 2 f dF*(x)

x—u|zA | x| =A
and from Lemma 2, it follows that

1, 0<A5At__,

W. (A) < 11
Fﬂ() c 1+ A2 ASA ab
16742 e

Lemma 3. If a ch. f. f(1) satisfies condition (1) with0<e < C8 , then

‘[fﬂ(f)-—llsc()\/E/or [7] = 1. 12)
Proof. For| ]| <1, we have
I, (-1]s f+f |c"’-‘—1|dﬁﬂ(x)s
|x]=st |x]|>1

13

<f | x | dF, (x) +2W, (1).
Ixl=1 “

Integration by parts shows (see, e.g., [2, p. 35]) that
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flxldF (vc)<fWﬂ(x)a’x,

Ix|=1

therefore, (11) and (13) yield

. 1
]);t(t)—l]stFp(x)dx+2WFP(l)SA8+C7efx"2dx+C7s. (14
0 A,

Assuming that e < 1/(2C ), we have

1

A =V2C,e, fx_zdeI/\/a;.

€ 4
A
&

Using these inequalities and (14), we obtain (12), W

Lemma 4. If a ch.f. f(1) satisfies (1) withe = Cgy, then _
lwy (1) | S C,yVE, Jor 1] <1, ' 15

where
wq (1) = arg [, (1) = w(t) — w(l)t.

Proof. If |[z—1]| <4, then |arg z| =< (n/2)d. Using this fact with z =/, () and

applying Lemma 3, we obtain

|wﬂ(i)l=]w(t)—,u/]$C”\/E, for |t] s 1. (16)
Setting 1 = 1, we obtain
|w(l) —pu | =C| Ve. an
Since
log | = o —wt] +u-w)||1],

we obtain (15) from (16) and (17). W
3. The more precise estimate. Further, the number ¢ will be assumed so small that
Cyo Ve = /2, (18)

i.e., e = C,. Using the incqualities | sin u | = (2/7)|u] (Ju| <x/2) and e < 1/2, we
obtain

lwo(t)lS%ISinwo(I)lsnlf()(’)l ISinwo(’)l=nIImf0(t)|'

Let us introduce two positive parameters x and « < 1 connected by the conditions

f dF, (x) < a, (19)

x>«
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f dFy(x) z a. (20)
lx| 2z«
We have

lw, () | == I f sin tx dFy (x) | + | f sin tx dFy (x) | =:x(J, +J,).

| x| >« |x|=«

2n

Now, we are going to estimate the values of Jl and .I2 in 21).

Lemma 5. Suppose, conditions (1),(18),(19), and (20) are satisfied. Then the
following inequality is valid )

J sVa (V2e + oy (1) |) for |1] = L. 22)

This lemma and Lemma 6 below were proved by A.Ya. Khinchin ([1, p. 21 D, we give the
proof here for reader’s convenience.

P roof. Using the Cauchy-Bunyakovskii inequality, inequalities (19), (1), and
1 —cos u < u%/2, u € R, we have

Jf = f dF, (x) f sin? 1x dFy(x) <

|x]>« | x|>x

Sa f (1 = cos x)(1 + cos tx) dF, (x) < 2a(1 —Re fo) =
R

=2 {1 = [ (| + | f() |(1 = cos w (1)) } < a (2 + w(1).
Since Va+ b < Va + Vb foralla, b= 0, it follows that incquality (22) is valid. W

Lemma 6. Suppose, conditions (1),(18)-(20) are satisfied. Then the following
inequality is valid:

I, s \/c_r\/ig+%/c3, for |1] < 1. (23)

Proof. Replacing 7 by 1 in (22) and taking into account the equality w, (1) =0, we
" obtain

| f sin x dFy (x) | < Va V2e. Q4

| x]>« ’
Note that

f sin x dFy (x) = Im /, (1) = 0. _ 25

R

1t follows from (24) and (25) that
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l f sin x dF, (v)|<\/—\/§e ' (26)

x| =«

It is easy to shown that )
| sinfx — tsinx | < |x|3|t| h Jor [t =1, | x| =«. @n
From (26) and (27) it follows that

stmlf sinxdFO(x)|+%x3f dFo(x)s\/a‘\/EZ+%x3.

[x|=« Ix] <«

This completes the proof of the lemma. B
Now we are going to estimate the value of k via .

Lemma 7. Suppose that conditions (1),(18)-(20) and also the inequality
K=n (28)
hold. Then the following inequality is valid

/\<C \/ , 29)
a—C' \/— .

The parameter a below will be chosen greater than Ci4 Ve.

Proof. First, we prove that

&=

_23 (2 )a - f dFy (x)|, - (30)
T |x}>2n -«
Using inequalities (28), (20) and | sin u | 2 (2/7)|u} (for | u | < x/2), we obtain

ez1- lf(l)l=l—-Ref0(1)=f(1——cosx)dFO(x)z

R

> 2 f sin? % dFy (x) = sinzg f dFy (x) 2

ks|x|<2n-«x ks|x| = 2mr—-«

2_25,9 a - f dFy (x)|
T

| x|>2n -«

Now, we obtain an estimate from above of the integral in (30). Since & < 7, we have

0

J=
———=dF. (x) =
1+ x? 0()

- o0
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(21 - k)? f n? f
D s dF, (x) = dF, (x). 30
14+ (21 — k)? oW1 0()_

| x|>2t—-« lx|>2r—«

Using formula (5) with G(x) = F, (x) and inequality (31), we obtain

.4

2
f dFy (%) < lzz" fe"’(l—RefO(t))dt. 32)

|x|>27 -« 0

We shall estimate the integral in the right hand side of (32) in the same manner as in the
proof of Lemma 2. Using the elementary inequality

|[1-zi=<(0—-|z|)+|argz| for z€C, |z| =1,
we obtain from (1) and (15) .
0<1-Refy(n=s|1-f ()| =C5Ve for |t] s 1. 33

Raikov’s inequality and (33) yield
1 -Refy()s4%8 for | 1] = 2%, G4
whered: = C ,Ve. Set N = [(log (1/8))/(210g 2)] ~ 1. Then '
o 1 o 2 %
fe"(l—-Refo(t))dt sfe"adz + > fc_'4k6dt +fe"2dts
0 0 k=1k-1 N

® j N
<4 1+324’e’2 +2e7 2.
ji=0
Taking into account (8), (9) and the definition of the parameter d, we have

oo

fe"(l—RefO(t))dt < Cq Ve (35
0
It follows from (35) and (32) that
f dFy(x) < C, Ve. (36)
|x}|>2n -«

Combining (36) and (30), we obtain (29). H
Now we can choose the parameter a.

Lemma 8. Suppose conditions (1),(18)-(20) are satisfied. Then, for some
Cig= ZCM, if we set

a=C 18 Ve, 37
condition (28 ) will be valid. A
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Proof. By (35), we have

00,

W 2

K X
2 f dF,(x) = f—]—;—x—z‘dFO (x) =

x|z« - ®

0

=f e '(1—Refy (1)) dt = C g Ve.
0
Inequalities (38) and (20) yield

< 14«2
a < f dFO(x)STClGVE.
| x|z«

From (39) and (37) we obtain
Clg -1/2
KE |5 —-1 .
e

16

(38)

39

We see that we can reach (28) by choosing the absolute constant Cis being large enough.

Lemma 8 is proved. B
Now we are ready to complete the proof of the Theorem.
Lemmas 6 and 7 yield (see (23) and (29))

’ - 3
e e,V )’
ErevET e Y T Ve

Since C18 = 2C, ., we have from (37) that

14°

Thus, we have

From (21) and (22) it follows
(I —ava)| wy ()| <nV2ae +n1,.
By (37), we have

_ v 1/2 _ ;o 1/4
ava =m Cge '~ =0C, "

40)

(41)

Supposing ¢ < C,,, where Cy being small enough, we can provide 7 Va < 1/2. There,

(40) and (41) yield
lwg() | = Cpyed® (1] < D.

This completes the proof of the Theorem.
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OnHa TeopeMa 00 YCTONYMBOCTH apryMeHTa XapaKTepUCTHYECKOM
byHkuun

A.NA. NUnbuHckuit

IMycTs f(f) — xapakTepuCTUUHECKan (GYHKUKS BEPOSTHOCTHONO PACTIPERENCHUS HA

npamoit. Ecan | — | f(7) | < enpu |#] < an, kpome Toro, & < C; , 10
min max |argf(H-pt| = Cye 3/4.
BER |t <a

rae Cl 7] C2 — abCOMOTHBIE TOCTORHHDBIE.

OnHa TeopeMa npo CTiNKICTb apryMeHTy XapakTepucTH4HOo1 hyHKUiT

O. L. InpiHcbKHI

Hexa# f(f) — xapakTepucTUuHa (hyHKuUis HMOBIPHICHOTO PO3NOAINY HA MpsaMiil.
SIkmo 1 — | /(1) | < enpm |t] < a,aTakox e < Cy , Toni
‘'min - max fargf(t) —Bt| <C,e 3/4.
pER |t| sa

reCytaCy— abcomoTHi crani.
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