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We study the normalized eigenvalue counting function N” (A) of an ensemble of n X n
symmetric random maitrices with statistically dependent arbitrary distributed entries uy, (x, »),

x,y =1, ..., n. We prove thatif the correlation function § of the entries is the same for each n and
the correlation coefficient of random fields { u, (x,y) } decays fast enough, then in the limit

n - « the measure N” (di) weakly converges in probability to a nonrandom measure N (di). We

derive an equation for the Stieltjes transform of limiting N (¢A) and show that the latter depends
only on the limiting matrix of averages of u, (x, ¥) and the correlation function §.

1. Wigner ensembles and the semicircle law

Random matrices of large dimensions are of considerable and rapidly increasing
interest both due to their numerous applications in different areas of theoretical and
mathematical physics (statistical nuclear physics, statistical mechanics, quantum
chaology, quantum ficld theory, ctc.) and because the spectral theory of random matrices
represents a somewhat unusual but natural part of modern operator theory. In this field
a large number of results are related to eigenvalue distribution of Hermitian (or
symmetric) random matrices in the limit of their infinitely increasing dimension. The
principal fact here was established by E. Wigner [14]. This statement is known as the
semicircle (or Wigner) law and can be formulated as follows.

Let us introduce the symmetric n X n matrix U () whose entries u, (x,y) are inde-

pendent (except the symmeliry condition) identically distributed random variables
satisfying the conditions

E{u, (v, 1)} =0, E{lu (v, P}=v? x, y=T1,n, (1.1
(symbol E{ - } denotes the mathematical expectation) and consider the matrix
wm =L o (1.2)
n
Let the normalized cigenvalue counting function (NCF) N, (A) of a symmetric n X n
matrix A" be defined by the formula

n
NG Ay =n =P @),

i=1
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where I, (x) is the characteristic function of a set B and A‘(.") are the eigenvalues of A(",

Then the sequence N, (1) = N(4; w M) converges with probability 1 to a function
N, 4

lim N, () =N, }) | (1.3a)

H—> o0

with the density of the semicircle form
N ()= 2w?) " (4P -2%) ”21[ ) (1. 3b)

The limit of NCF’s, if it exists, is called the integrated density of states (IDS). Here
and below the convergence of nondecreasing functions is meant to be the weak convergence
of measures associated with these functions.

Wewill call the ensemble (1.1)-(1.2) the Wigner ensemble. For the case of the Gaussian
u, (x, y) it is more convenient to consider the variant of (1.2)

E{u, (%, Yu, (5, )} =02 (3,8, +8,,8,). a.4

Then the density of the probability distribution of w (M has the form
Pr{w®Wedw®}=2z""exp{-n?) ' Tr F(W™)}dw®,
F(x) = x2, (1.5)

which is invariant with respect to orthogonal transformations of R". This ensemble is
known as the Gaussian Orthogonal Ensemble (GOE).

It should be noted that the spectral properties of the random matrices (1.2) with
independent entries are extensively studied (see e.g. [10, 4, 6 1), while the case of
statistically dependent entries is not so well understood. Only ensembles of random
matrices which have explicit special forms of a probabilistic distribution have been
considered so far. In particular, a large number of papers is devoted to the ensembles
having probability distribution (1.5) with an even F(x) infinitely increasingas | x | »
(see, for example, the review [3] and references therein related to applications of
corresponing to (1.5) matrix models in quantum field theory and other branches of
theoretical physics; rigorous results on the IDS of such ensembles are obtained in [2]).

In the present paper we study the limiting eigenvalue distribution of an ensemble of
random matrices having arbitrarily distributed statistically dependent random entries.
Thus, in contrast to the ensembles analysed in [2] and [3 ], we consider the ensemble
whose probability distribution is not orthogonally invariant. In other words, the ensemble
we study is a generalization of the Wigner one. It has the form

o = H(On) + _‘}: 1AC (1.6)
n

with nonrandom H g') and random U (" whose entries u, (x, y) are statistically dependent

random variables having zero mean value and a covariance matrix S (™, The ensemble of
the form (1.6) could be called the deformed Wigner ensemble.

We prove that if: :

(i) the sixth moments of the random variables u, (x,y) are uniformly bounded;

Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, Ne 1/2 81



A. Khorunzhy

(ii) the correlation coefficient of the random ficld { U ) } vanishes fast enough;
(iii) the matrices H (()”) and S " are n-dimensional restrictions of the Toeplitz matrices
HO and S,

then the NCF’s N(A; H ") converge in probability to a nonrandom IDS NQ). We
derive an explicit equation determining the Sticltjes transform of the limiting N(1) (see
(2.11)). This equation depends only on the Fourier transforms H,and S of HyandS. It

generalizes the equation (1.18) for the Stieltjes transform of the semicircle distribution
(1.3b). Thus, corresponding to (2.11) IDS can be called the generalized semicircle
distribution. We study the properties of this limiting N(1) and show that it differs from
(1.3b) even for the case of H) = 0.

An equation similar to (2.11) was derived first by Wegner [13] for an ensemble of
random matrix operators. This ensemble can be regarded as an example of random
matrices whose entries are dependent in the manner opposite to the described above. In
Sect. 5 we discuss interrelations between the Wigner and Wegner ensembles and present
the equations determining the IDS of their generalizations.

The deformed Wigner ensemble (1.6) with the Gaussian U " having correlated entries
was considered in [8 ]. In this paper equation (2.12) was derived by using a version of the
characteristic property of a Gaussian random variable £ with zero average:

E{EF) ) =E{EIE(F'©)}, a.n
where a nonrandom function F is such that all the integrals in (1.7) exist. This relation
allowed us to employ the well developed technique based on the derivation and asymptotic
analysis in the limit n - o of an infinite system of relations for the moments of the
resolvent of # (V (see also [7, 6] for applications of this technique to various random
matrix and random operator ensembles) .

In our non-Gaussian case, to avoid the use of (1.7), we follow a version of the
perturbation theory approach developed in [6] for random matrices with independent
entries. We combine these computations with the method developed by Bernstein for sums
of dependent random variables (see, e.g., [5 D). Another modification of ihe technique used
_in [8 1is based on the observation that, to prove the theorems presented in [8 ], it is not
necessary tostudy the infinite system of relations for the resolvent. We show that sufficient
estimates follows from the iwo first relations of this system. This fact considerably
simplifies the proof. Toillustrate the main points of the technique which we will use below,
we present here a rather short proof of the semicircle law for the GOE (1.2), (1.5).

Usually, instcad of the NCF N(A; H () ), itisconvenient to study its Stieltjes transform

f”(z)sf(l——z)_ldN(A;H(”))=n—]TrG(”), Imz =0, (1.8)

where GV = (™ — 2y 7! 1t follows from the propertics of the Herglotz functions [1 ]

and the Helly theorem [9 ], that to prove the existence of the IDS of the ensemble H ("),
it is sufficient to prove the convergence (in probability or with probability 1)

lim /, (2) =/ (2) (1.9
Hh—sx
in a region
Dy={z:|Imz|zn,} (1.10)
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The limit function / (z) can be extended into the region C, = {zeC, Imz = 0};o0necan

obtain corresponding N(1) by using the inversion formula [1 ]

b
N(b) — N(@) =z~ ! lim f Im f (A + in) dA,
URRY
where b and a are the continuity points of N(1).
Let us write the resolvent identity
G-G'=-GH-H)G', G=(H-2"", G'=@H -z~" @ID
for Hx,y) = W™ (x,y) =n "~ 172 u(x,y), x,y=1,n, H = 0in the form t
n
E{g,}=t-{n"¥2 Y E{(Gx,»)u(. 0}, (1.12)
x,y=1
whereg =n “!'Tr G and {=—2z" ! To calculate the last averagein (1.12), we use the

generalization of equality (1.7) to the case of the distribution (1.5) and obtain the relation
E{Gx,y) u(y,x)} = — vin =12 E{G(x, x) Gy, ) + G(x, ) G(x,y) }. (1.13)

Here we take into account the equality

9G(x, - o
Eg’,?%=“" V248 )7 G, 0 G ) + Gx,y) Gl )], (L1

which follows from (1.11). Let us denote §” =g, - E{ g, }, substitute (1.13) into (1.12)
and obtain our first main relation

E{g,} =L +v E{g, 1 + 5 E{g,8,) +v’En " 2E{(TrG?), (119

we use the fact that the resolvent of a symmetric matrix is also symmetric).
We derive the second main relation for the variance of g,

—~p o~

Cn = E{gn gn} = E{ g;x 8, b gI‘I =8, (z) = &, @
Applyingtothefactorgn in the last average the identity (1.11) and using (1.7) and (1.14),
we obtain the equality

E{g,s,} =
=CvPE{Z, g2} +5vPn T PR{E Tr G2} + 2503 n " 3E{Tr [G’' PG}. (1.16)
In fact, (1.14) and (1.16) prove (1.3). Indeed, since forz € D, (1.10) the estimates
lg, | <ng ' |n~'TrG?| <n;? L.17

hold with probability 1, then the convergence in the mean value
lim E{g, } =/, z€D,,

n—=>

Here and below we omit the superscripts n when no confusion can arise.
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with f | satisfying, the equation

f (@ =(—z=v/ ()", (1.18)
follows from (1.15) as soon as the estimate stating the self-averageness property of g,
,E{lf,,(Z)|2}=C,l, sup C”=()(1), n-» o (1.19)
T E D0

is estabished. Note that (1.19) implies the convergence (1.3a) in probability (sce
Lemma 1, Sect. 4) and, if = C” < o0, then (1.9) and, hence, (1.3a) hold with probability 1.

Observing that

E{7,82)} =E{Z,8,} E{g,} +E{Z,7,¢,) (1.20)
and taking into account estimates (1.17), we derive from (1.16) the following
C, s 202y~ 1 C"+v277_3n_ ! Ve, + 2!_}277—4'1_2’ (1.21)

where # = Im z. Since C” <y~ 2, then for z € D0 with N> 202 + | incquality (1.21)

implics the estimate sup C, = O(n "~ 2y,

zEl)O

Using the inversion formula, it is easy 1o derive (1.3b) from (1.18). The simicircle law
is proved.

2. Main results and discussion

We study the ensemble of symmetric random matrices # (") = HE)”) + w0 with
entries

H®M () =Hy(x=y+n" 1/2 u, (%3, xy=1,n, 2.h

where a nonrandom function H() satisfies the conditions

Hy(x)=Hy(= %), X [Hy(x) | <. 2.2
XEZ

Let random variables «, (x, y) be normalized by the relations
E{ u, (x,»}=0, (2.3)

E{u, (6, Du, (5,0} =S(x-s,y—-1)+S(x—1t,y—5), 2.4

where E{ -} denotes the mathematical expectation and S(x,3y) is such that
S(x, —y) = S(x,y) = S(y, x)and

SIS )| =8,<e. 2.5
X,y

Assume also that each of the random ficlds {u” (x,y) = u, (h,x), x<y, x,y= 1,n},

n € N possescs the following property: there exists a sequence of monotonically
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decreasing functions v (x), x> 0, such that for arbitrary measurable functions ¢, and
@, , with all the integrals below convergent,

| E{@, (W ()@, (W{")} ~ E{® (W{")}E{®,(W{))} | <
1/2
<] (E{ | @ (W) |2}) ¥, (d(4, , 4,)), (2.6)
i=1,2
where WE")) ={u, (x,5): (x;,¥;) € A, Y, i=1,2, A, being some sets of pairs (x, y),
X, y= 1, n, and the distance d(A, , A,) being given by
d(A;,Ay))=min{ inf (Jx —x, |+ ]|y =)

XY €4
inf (Jx, =y, 1+1y-xD}
X;0 5, € A, 1 2 1 2
Theorem 2.1. Let
supsup E{ | u, (x,3) |°} =S5, < QN
nox,y
and
lim n,l/z:p” (n'/%y = 0. (2.8)
n-» o
Then
(@) the convergence in probability
p = lim NG H M) = N2) Q.9
n-—> % ! .

holds;
(b) the IDS N(A) is nonrandom and its Stieltjes transform f (z) = f A-2)" ! dN()
can be found from the relation
1
f(2) = ff(p; z) dp, 2.10)
. 0
where g(p; z) is the unique solution of the equation
-1

1
g( 2 Z) = FIO (p) -z - fr(l)’ q) g((]; Z) dg , .11

0

in which
ﬁo = Z H (x) exp { 2ix }, ' 2.12)
xXeZzZ
T(p.g) = D S(xy) exp{2ri(xp+ygh (2.13)
’ X, yEZ .
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(c) equation '(2.1 1) is uniquely solvable in the class G of the functions f ( p; z) bounded
in p € [0, 1] for each fixed z, Im z # 0, analytic in z, Im z # O for each fixed p € [0, 1]
and such that

Imf(p;2z)Imz>0, for Imz=#0.

Remarks.
1) Let us consider the ensemble (2.1) with (2.4) given by

S(x,y) =v?d 09,0 (2.14)

(this is the case of uncorrelated random entries). Then relations (2.10) and (2.11) can be
rewritten in the form (cf. (1.18))

() =f,+v2f (), - @1s)
where

Ny () =lim N(&; H (V).

n-—-> w

Equation (2.15) is a generalization of the equation for the Stieltjes transform of the
semicircle distribution. It was obtained first in {11 | for the deformed Wigner ensemble

(1.7) with the diagonal # g’) having limiting IDS N (1) and jointly independent random
entries u,, (x, y) normalized by (1.1) and satisfying the well-known Lindeberg condition.
Thus, it follows from Theorem 2.1 that the condition for «, (x, y) 1o be independent is not

necessary for the semicircle law to be valid.

2) Conditions (2.3) and (2.4) represent a natural generalization of conditions (1.4)
(see also Sect. §). To be more close to the definition of the Wigner ensemble, whose
matrices have entries with equalla_riancc (1.1), one should consider the "triangle” random
fields { u, (%, ¥, xsy, X, y= 1, n '} and define the covariance matrix as

E{u, (x, ) u, (5,1)} =S(x=s,y~1), for x<y, s<1. (2.16)

In this case Theorem 2.1 is also true, but its proof requires more cumbersome computations
than the proof of the case of (2.4). _

3) The property (2.6) with decaying y (x) is known as the Bernsicin condition which
is sufficient for the central limiting theorem for sums of dependent random variables to be
valid (see, for example, [§]. This condition is a consequence of the strong mixing
condition [5] which characterizes random ficlds with weak dependence (such ficlds can
also be referred to as locally dependent).

Note that Theorem 2.1 will also be true if we consider a nonmonotone function y
instead of ¥, . In this case the condition (2.8) is 1o be replaced by

lim n'/? sup y (x)=0. .17
(el ST

4) Equation (2.11) was derived first by F. Wegner [13 ]in a study of the n-component
generalization of the discrete random Schrodinger operator. Infinite matrices of this model
are of the block form with n being the dimension of the block. In this case relation (2.10)
defines the IDS of the ensemble in the limit n = o« (see {7 ] for rigorous results).
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Random matrices of this random matrix ensemble (we call it the Wegner ensemble),
as well as matrices of the Wigner ensemble we deal with, also have dependent random
entries. But this dependence is opposite in some sense to the dependence considered in
Theorem 2.1. Corresponding random fields do not satisfy the condition (2.17) and could
be called asymptotically nonlocally dependent (see Sect. § for the definition of the Wegner
ensemble, results for its generalizations and discussion). _

Now we shall list some properties of the IDS N(4) which follows from (2.10) and (2.11)
8}

(i) leta and a, be the left and the right endpoints of the support of the measure ¥
corresponding to the IDS N, ; then the support of N(1) is a subset of the interval
(@ =Sy —Lay+ 55+ 1);

(i) if there exists v, > 0 such that

inf E(p, q) Zv,,
p,q€0,1]
then N(4) is absolutely continuous with a bounded derivative:

AND =p My dh, pR)y=n~ oy

(iii) let H0 be the finite-difference operator with the matrix

Hy(x—y) =29 +6 (2.18)

x+1,y x~—=1,3’
S(x, y) be given by (2.15) (in this case the condition of (ii) is obviously satisfied), and &
be an endpoint of the support of the corresponding p (1); then
py=CylA—a| 21 +0(1), 1>, 2.19

where a constant Cy depends on the properties of the Stieltjes transform of the IDS of
(2.18). In fact, the asymptotics (2.19) holds for a wide class of H and thercfore reflects
the generic situation.

It is widely known that the limiting distribution of normalized sums of dependent
random variables is Gaussian, i.e. coincides with that obtained for independent variables.
In contrast to this, the IDS defined by (2.10) and (2.11) in the general case differs from
the semicircle distribution (1.3b) even for Hj(p) = 0. Indeed, considering two first

nontrivial coefficients in the expansion
F@O=(=2"'+aM (=273 +d®P (-4 0(lz| %), 2 o,
one can derive from (2.10),(2.11), and (2.13) that
a =50,0), o =252(0,0).
The latter relations contradict (cxcept the special case of (2.14)) to those obtained from
the similar expansion for f_ (z) given by (1.18): asvz) =2 [aEV') 12 =20t

We define such a support as a set of those points 4 for which Ny (1 + 0) # Ny (A — 0) or N(') A)>0.
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3. Main relations and proof of theorem 2.1

The main goal of this section is to derive and analyse relations (3.13) and (3.16) which
are analogs of relations (1.15) and (1.16). To do so, we use a version of the technique
developed in [6 ] for the deformed Wigner ensemble. The essence of the argument is that
in the last average of (1.12) the fixed entry n - 172 u, (x, y) can be regarded as a vanishing
perturbation for the resolvent c™ (x, y). Usmg twice the resolvent identity (1 11), one
can replace G by G= (H —2)~ 1, where H=H® | w(x,y) = o The term G does not
depend on u (x, y) and this makes possible an exact computatxon of the average. After
this, using (1 11) again, one can pass | back from G to G ™ in the relations obtained.

In the case of correlated entries, G strongly depends on the element u, (x, y). Thus,

we have to modify the argument and we proceed with the classical Bernstein method
developed for sums of dependent random variables (see, e.g., [5 ]). Following this method,
we introduce an "approximating” ensemble of random matrices W(l") of the block form,

where a fixed block workes as a vanishing perturbation of the resolvent under consi-
deration, each block being asymptotically independent of other blocks in the limit n - o,
With these conditions in mind, let us consider the ensemble

H(l'l) = Hg”) + W&”), (3.12)
where H gl) is the same as in (2.1) and

mem;ﬁmyEA
Wi (x,y) = ) )E4, (3.1b)
0, if (x,y) € B,

for each realization of W (V. We define the scts of pairs A and B, as follows: introduce

. n .
numbers a, and b” such that the ratio p = A be integer, where A n= 2“:1 + bn + 1;

n

. then
A, ={(6»: 3Lk, k=1,p, | x—jA, | =a,ly-ka, |= a,t,
B, ={(x,y):x,y= 1,n}\ A, . Thus, the matrix W(l") consists of p'zl square arrays

(blocks) each of them having (2a, + 1) X (2a, + 1) entries; these blocks are separated by
corridors of a width b .

The following proposition states the approximation property of the ensemble H E"‘).

Proposition 1. Let us denote g, =n" "TegW=n= ey -z~ 1,
r,=n- "rer®W =y} Tr(H E") - 176, = o(a,), then

limE{| r, —g |*} =0. (3.2)

n - oo
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It follows from (3.2) that Theorem 2.1 can be proved for the ensemble (3.1) and due
to Lemma 1 of Sect. 4 it will also be true for # ™ (2.1).

P roof. The resolvent identity (1.7) yields the equalityf

n
ra=g=n""1> G 9IW-Ws R, x) =

X, 85, t=1

=n"%23 [RGI(s, D, (s, 14 (s, D),
s, t
where I, is the characteristic function of the set B,. This equality implies that

E{lr,-g %=

<E{n"'( En: | IRG)(s, DT, (s, 0) |2)2n ™ 2( i lu, (s, )15 (s, 0 12)2) =
t=1

s, s, t=1

<y 4E{n"? 2 Iu"(s,t)lz}577_417"(2(1"+bn+l)"'(V(O,0)+V0),

.NEB,
7 =Im z. 3.3
When deriving these inequalities, we used the Schwartz inequality and the estimate
n
sup S 1G™ (x,3) 2=sup |6We, ||s ]G 2y, 3.4
X y=1 X

where e, (s) = J__is a unit vector. Proposition is proved.
In Sect. 4 we show that it is sufficient to choose
b =nS+¢ . a =n"bInn R
n n’ n ’

1/6

where ¢ = o(n"'" ) is used to make p, an integer.

Derivation of main relations.In this subsection we deal with the resolvent
RMof g”). It is easy to derive from (1.7) the relation

E{R(x,3)} = Gy (x,5) =

n= V2 E{R(x,jA + a)u(jA+a,kA+B)}G, (kA +B, ).
k=1 lal.iBlsa 36

For  fixed j and k we denote (@,B)=u(jA+a,kA+p),
Rjk ¥, 0)=R(jA+y, kA +9), ij. (r) = R(x,jA + y),andey (0) = R(kA +4,y)and

See the footnote on page 4.
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define the matrix R = R|

v =u..=0> Where Ui stands for the corresponding "block".
Jk Tk

Applying (1.7) to the pair R and ?? we obtain 1
R(x,3) = R(x,3) —n ™2 2, Ry 0t & 8y 8) + Ry ity (s O)R,, (8 13.T)
y’
Using (3.7) twice, we derive for the last term of (3.6) the relation

2. ZE{Rx,w)u,k(a B)YGy (kA +B,3) =

jkapB
=n"1 zk ﬁz 5E{ ka Rjj @, a)uy (a, B )uy; (v, 8) Gy (kA + B, ) +
Js a Py,

+ > oM (x, ka + )G, (kA +B,), 3.8
i=1,2,3 kB

where

) (x, kA +B)=—n I/ZZRXJ (@)uy (a, p),

j a

(I)(zn) (kA +f) =~ l/2/ azy 6R\'/ ) Rk/ ©a) 4 ( ﬁ)u/k .9,

q)gu) (x, kA +/3)=n_ 2 Iij(/t)Rkj(v,y)Rk.(é,a)+

j, a,y, 0, 44, v
+ R, )R, (4,7) R ;6 a) + R (,u) RkL (v, 9) R i ) +
+R, ) Ry (1, d) Rjj (y,a)l uy (4,) W (v,9) Wi (a, B).
Let us denote also

) (kA +f)=n"" Y 5?€xk()’)R (0, @) (e (@ By (v, 9) =
5y,

- E{ U (a,B )“kj ¥, 9. 3.10)
Using (3.8) and (2.4), we rewrite (3.7) as :
E{R(x,3)} =Gy (x,y) +

> ,&2 E{R, ()R, (6, )}V (a~8,y )Gy (kA +B.3) +
j k a, “)/(5

+ z z E{ D (x, kA + B)}Gy (k A + B, ), 3.11
i=1kp
where

DL (x, kA +B) =

Here and below we omit the limits of summation when no confusion can arise; jand &k run from 1 to p,and the

Greek variables always belong to the interval [ = a,,a, ].
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S S RyMRG )V~ DA+ ay, (k=))A+=3). (G2
ik o« y,d

To obtain the main relation for E{ R(x, y) }, we pass from R to R in the right-hand side of
(3.11), using again (3.8). Denoting r, (x, y) = R M (x,y)and R = MW _ (R},
we finally obtain (cf. (1.15))

r, (%, 9) =Gy (x,y) +

n—lzk ﬁz 6r”(x,kA+y)r”(jA+d,jA+a) Vie=0,7 =BGy (kA +B,y) +
LK &Py,

+ Z ) (x, kA + B) Gy (kA + B, ), (3.13)

where U (x, y) = z (I)(") (x, y) with

i=1
U (x, kA + ) =

=n z ; Ry (7) [Ryy (O, 0) Ry (v, @) + Ry (8,%) Ry (wy @) +
J o,y 8,

+ Rjj (v, 9) (ij ) Rk/( (u,7) + Rkj 3,7) Rj;\- v, V)) Hyj (2, v)
and

<Dg")(x, kA+B)y=n" z E{R, (y)R G, @)} V(e=38,y-p). GB.14
jra,y, o

Our second main relation is related to the variance of the generalized "trace” .

Re(x)=n" 1 le RIA+u,IA+v)V(u—v,x), x€L (3.15
oo

Let us take E{ 7{‘3 (s) R(x,y) } and apply to R(x,y) the identity (3.7). Repeating the
procedure described above, it is not hard to obtain the relation (cf. (1.16))

E{R () R(x, )} =

E{ Ry () R(x, kA +7) YE{ R (7, B) } G, (kA + B, y) +

k By

;}; E{ R (s) R(x, kA +y) Rg{y =)} Gy (kA + B, y) +

3
+ SE{W Y (x kA +8)} G, (kA + B, ), (3.16)

i=1

where

W (x,3) = Rgd M (x,y), i=1,2,3,4,5,
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|4 N ~
lpg")_: -_n'3/22 2 [R;j(,u,a)R;(l(r,v)+le(y,r)Rj'.l(o,v)]ujk(a,r)x

I=1u,v,0,1

XV(p—~—v, s).]ls (x, ),
W (x, kA +B) =

=n—5/22 z Z [le(/t,cr)le(‘l-',V)+le(#:7)Rﬂ("v")]x
N a,y.a MV, 0,7

XR (DR, (1) V (k=79 Uy @1 uy(@B)u(r8),

W (x, kA +B) =

=n—3/22 > X IR (MR @)+ R, (1R (0,91 (0,7) %
Lj a,yd uvor

xka(y)Rjj(a,é) Viu=-=v,s)V(a~38,y - B).

Proof of Theorem 2.1. We start with proving that
1

n
p —nlimwn -1 Z R® (x,x) = fg(p; 2)dpV 2€Dy, 1,228,+1. GID
’ x=1 0 ,
First we show that
1

n
limn ! z r, (%, x) — f g(p; 2)dp =0. (3.18)
n—->x =1
0
Let us consider the equation

n

6N =GPy +n"t S £ (6 () Sr=s,p -G (1),
N p.rst=1

X y=1,n, (3.19)
which is uniquely solvable for z € D, (see Lemma 4.4.). We prove in Lemma 4.5 that the
relations )

lim sup | E{®M (x,5)} | =0, i=1,..,7, zED,, (3.20)
n—>o x,y

imply the convergence

limn ="' [r, (x,x) ~ £, (x, x)]=0.

n-o x=1

This relation, together with Lemma 4.4, proves (3.18).
Estimates (3.20) for the cases of i = 1, ..., 6 are proved in Lemma 4.7. The estimate
for <I>g”) reflects the selfaveraging property of the generalized "trace” R s (3.15).In Lemma

4.9 we show that this estimate follows from the relation
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SE{| Rg(1) |2} = 0(1), n >, 3.21)
{

which is a conscquence of (3.16) and the relations

lim sup | E{W® (x,»)}] =0, i=1,..,8. (3.22)

n->00 X,y
It should be noted that the estimate (3.21) can be derived for Rg with an arbitrary function
S satisfying (2.5). Taking S of the form given in (2.14), we obtain the relation

limE{In'lTrﬁ|2}=0,

Hn-> o

which, together with (3.18), proves (3.17).
Now, combining (3.17) and (3.2) with Lemma 4.1, we complete the proof of items (a)
and (b) of Theorem 2.1. Item (c) follows from Lemma 4.4.

4. Auxiliary facts and estimates

In Lemmas 4.1-4.4 we list facts that were proved in [8].

Lemma 4.1. Let { N, (A, w) } be a sequence of random nondecreasing and bounded
Sfunctions, and let {f” (z, w) } be the sequence of their Stieltjes transforms, where w is a
point (realization) of the respective probabilily space Q”. Suppose that there exists a
nonrandom function [ (z) which is analytic for Im z # 0, satisfies (2.10) and (2.11) and
such that

lim  sup E{]/,(2) /() |*} =0

n-co|lmz| z 7
for some Mo > 0.1/ NQA) is anondecreasing ftm('lion which corresponds tof (z) and satisfies
conditions N( — =) = 0, N( + «) < o, then at cach continuity point of N(A),
p—lim~N, 4, w)=NQ3),

H->
or, in other words, the measures N, (d A, w) correspondingto N (4, w) converge (weakly)
in probability to N(d A).

Lemma 4.2. Let H f)”) be a nonrandom matrix with entries [Hf)”) 1(x,y) = H, (x, y),
where H  satisfies (2.2) and Gg)”) =(H g') —-2z) ! Then,

sup Z | G(()”) (y2) | =24 Pfor z € Dy, 4.1
A ¢

Lemma 4.3. Let us consider n X n matrices K and L satisfying the conditions

K=Ky, ILII<Ly, sup | K(x,y) | =K, and suleL(x,y) | =L,
X,y x Ty
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n
with the norm ||E’||2 = z | e(x) 12 and define the matrices

x=1

AV, ) =n" 1 ’zl V(x,p) K(r, S)S(r—s,p—=0L(,Yy),
_ p,r,s,t=1

BVYxy=n"1 S K(xp)V(s)Sr—sp-1L(ty),

prs, t=1
and
n
C= 2 S(x=s,y=rK(s,r).
rs=1
Then,
A=k, LyS,HivI, supz | A ) | =K L Sosupz | V(x,» |, 4.2
Yy x Yy x
B ll= KyLyS,, iug | B(x,y) | SKOLOSOqu | Vx, 9|, 4.3)
and
ICll=v,K,. / 4.49)

Lemma 4.4. Equations (3.19) and the equation

gx) =Gy + > gx=p)g(r) Sr,p-1)Gy (1), xEZ, 4.5)
p.HtEZ B

where G, (x) = f (JZI0 ) —2)~ Vexp {—2mipx}dp, have unique solutions for
z € D, . The estimate

sup Z ™ (x,y;2) | < 20y ! 4.6)
X y .
holds for each n and
n .
sup lim [n~! z 7™ (x, x) — g(0) l =0. 4.7
zE [)O n-»c x=1

Equation (4.5) is equavalent to (2.11)-(2.12) withg(p; z) = Z g(x) exp {2mixp}.
X

Lemma 4.5. Let us consider relation (3.13). If estimates (3.20) hold, then,

123
lim In— ! 2 [r ™ (x, x) = 7™ (x, x)]l = 0. (4.8)
n—=> x=1

Y

Proof. Denotingd, (x,y) =r, (x,) -/, (x, y) and subtracting (3.19) from (3.13),
we obtain the following matrix relation
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d, =d _PS,, PG+, PS,,, PGy+ (®+E +5,)G,, 4.9

n
where P = E P, with orthoprojectors P, defined by the formula
k=1

- e(x), if x=kA+a, |a| =a
Pev1€ 10 =%0, it |x—kA|>a,
and
ST(x,y)En—IZT(p,r)S(p—r,x—y),
b, r
E (%)= %f(x, PIS,= PS;PYp,Y), E,(x,3) = %f(x, DIPS ;_ pipy PAD, Y)-

Since | r, (x,¥) | = 1/7 , it follows from (4.1) and (4.2) that || S, , PG, || < 25,/7,,
z€ D, . This inequality and (4.6) imply the following estimates for the matrix

" ~1,
A'=(Hy—z=PS, P~ "

lA" sny ' @g-5y) '=a <1, su;pE | A" (x,)) | <4Symy %, 2EDy. (4.10)
X
Rewrite (4.12) as
d,=f PSppPA + (P +Z +E,)A"
It is easy to check that the mapping B defined as in Lemma 4.3 with K = fP and L = PA’
satisfies the inequality ||B || < a, <1 for z€ D . Thus, to prove (4.8), it suffices to

estimate the termn = ' Tr B¥ (1® + = + =, ). It follows from (4.3) that

sup | B(T)(, ) | sa;n” Vsup | T(x, y) |.
X,y Xy

This relation together with (4.10) shows that estimates (3.20) and
SupIEl(.”)(x,y)l =()(l)7 n—>o0o,i=1,2 4.1D
X,y

imply (4.8). We prove (3.20) fori=1, ..., 6 in Lemma 4.8 and for i = 7 in Lemma 4.6.
Estimates (4.11) follow from Lemma 4.7.

Lemma 4.6. Lef estimates (3. 22) hold. This implies that relations (3.21) and (3. 20)
far the case of i =7 are true.

Proof. Let us rewrite relation (3. 16) as

n

’EZZE{Tz; ORHY=n"1 Y lE{E’S (NIRPR PA |(x,3) }S(x — y, 1) +
X, y=

8
+ S E{W M PG A \(x, ) }S(x = 3, 1);

i=1
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where we use the notations of Lemma 4. 5. The first term of the right-hand side of this
relation can be estimated by the expression

E{E|R 0 |2}"2E{2 lsulePR PA [P In T Y IS =y 1) | )2 s

x,y

—S()’]()— (”g—so)—lgE{lelz}-

Thus, taking into account the relation R ' = R and inequalities (4. 10), we obtain

ZE{lR () 12}<Zn“‘22| (WA () Sx-y 0] <

i=1 t x,y
580770—12 supllpg")(x,y)l,
i=1 %Y
forz€ Dy withy>2S5, + 1.

Now let us show that (3. 21) implies (3. 20) fori = 7. To do that it sufficies to observe
that

sup | {0 (x,3) | =
<sup sup [E{Zl [RP, 1(x,z)12>]”2 [E(S I Rge-»14]"
xy k=1, r, t

Lemma is proved.

Lemma4. 7. Let n X n matrices K and L be such as in Lemma 4. 3. Then,
limn ! 2 [K — PKPY(x, Y)L(y, x) =0

n-—» X,y

Proof. Itis easy to see that

a7l Y k- PKPl(xy)L(y,x)[<2f<n“Z Sedmi+ 1yl

|x=y|>m x=1y=0
Observing that in the region | x —y| < m the matrix K — PKP has no more than

4b(2m + 1)n/ A nonzero entries and takmg m = log n, one can easily obtain (4. 11).

Lemma 4. 8. Estimates (3. 20) are true.

P ro o f. Using (2.6) and the obvious inequality | R(x,y) | <9 ™!, we derive the
following estimate for E{ ® (l") }:

‘”2[2 E{ Ry (@) uy @B)} | <n™ 2y~ 102y, (b)2ap.

j=1lla|=a

Taking into account (3. 5) and (2. 8), we obtain (3. 20) fori = 1.
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Now let us consider E{ ® (3") }. It contains four terms which can be estimated by the
same expression. Thus, we have

|E{®{ (x, kA +B)} | <

n A ~
4n”¥2Y > (| R (MR, » )R, @ a) IPH1EEL ] u, (x3) 19112,
i=la,ydé,uv

4.12)
where [, m, s, t are equal to jor k. It follows from (3.4) that
Qa+1)"VEX E(| R (w) P12y,
I
Qa+1D)"¥2S E{| R, @,7) |21 s gL .13

1434

Hence, the r.h.s of (4. 12) can be estimated by the value C (2) S als/ 2,-32 p(2a + 1)7/ 2

that vanishes due to (3.5)
This estimate with S¢ changed by sup sup E{ | u, (x, ) I2 } is valid also for E{ ® g") }.

n xYy

Applying (2.8) to E{® (”) } and using (2. 4), we obtain that

E{® (" (x, kA + )} =n“‘z ZéE{RX,(y)Rk G, a)} x
i=1a,y,

X [S(y—a,d —-ﬂ) +S((j=kA+y =B, (k=j)A+d-a)]+E (B), 4. 14
where the last term vanishes as n - oo

STV E L (B)] s

-lz S E{IR MR, @) P12y, 8) <772 Qa+ Py, 8).

j=1la,y,6
Here we denote S, = supsup E{ |« (x,) |4} and use inequalities (4. 13).
n oxy
Let us note that the proof of vanishing of E{ ¢g")} is literally the same as for

It follows from Lemma 4. 3 that ||2 R (5 a)S(-—a,8—-)[|sS,n~ !, Since the

véctor R ( ) has the norm bounded by 7~ !, then the corresponding term of (4. 14) can
be estunated by S,7 ~2p/n.

Due to the property (2. §), one can write the inequality

n
D D Is(ja+y-Bja+d-a)| = a+1)3n" !5, 4.15)
j=la,y,d

which completes the proof of (3. 20) for the case of i = 2.
Note that (4. 15) also provides the estimate for E{ ® (”) }. Lemma is proved.
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Lemma 4.9. Estimates (3. 22) are true.

Proof. All the estimates are based on (4. 13) and mostly repeat the calculations used
in the proof of Lemma 4. 8. Thus, we explain here how to treat the terms that were not
present in Lemma 4. 8.

For the cases of i = 2, ..., §, estimates (3. 22) follow immediately from (3. 20) for
E{® E") },i=2,..,5.Since we use (2. 6) in the proof of (3. 20) for & S") and @ g"), then

to estimate terms ¥ s”) and W g”), we have to pass from R 'S (x,y)t0

n A~
HOOR(uy)=n""S S R'(iA+o0,iA+1) S0 -1,%x-Y).

i=1o0,1

The following inequality proves vanishing, as n - o, of the additional terms that arise
when this transition is done:

n~ l E > E{R a0 uy, (o, r)le (r,v) S(u —v, s)Rw(a) uy (@, ﬁ)}l<

Lj=1aprv ot

<Sl/2 "22 2 IE{Z]R;I(;L,UHZX

j=Ya,uv 0,1

leR,,,,(r W2 R @) 1212 S =v,9) |

< Sl/zn '380 2a + 1)7/2pn

Combining this inequality with (4.13), one can also estimate the averages E{ ® ("},
1
i=7,8byy 4 Sy S é/z (a+ 18 pn~ 52 4nd p =4 SS (2a + 1)3 pn =32, respectively.

Lemma is proved.

5. Other ensembles of matrices with correlated entries

To study the cigenvalue distribution of the matrices # ™ (2.1), we introduced in Sect. 3
the "approximating” cnsemble of random matrices H (]“) having a block form. We construct

H (1”) in a special way so that in the limit n - o (more precisely, in the limit of infinite
a, and b” (3. 5)) these blocks become, roughly speaking, independent. In other words,
the dependence between the entries of H (l”) in this limit concentrates inside each block.

In this section we discuss ensembles of block random matrices that represent dependence
between entries of a type somewhat different from the above type. One of such ensembles
was introduced and studied at the theoretical physics level of rigour by F. Wegner [13].
Corresponding infinite matrices H (2 have the entries

H()(x y) = H()(x-—))+a 1/2 V/f(‘ ¥, X, yE€Z,, a, ﬁ—l a G. D

where H  is the same as in Sect. 2 and V(,/s (x, y) are random variables with zero mean
value and the covariance matrix
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E{ Vaﬂ (x,y) V#v (8,9} =T(x,y,s, t)(é(w (518,, +4,, 613# ) 5.2
satisfying the symmetry condition
T(x, 9, 8, ) =T, x, 5, 8) = T(y, x, 1, 8) = T(s, 1, x, ¥) 4$.3
and
T(x+k,y+k,s+k, t+k)y=T(x,ys,1) for all k €Z. . 4)

Thus, H @ can be regarded as an infinite symmetric matrix & (9 consisting of a X a
squares (or blocks) labelled by pairs (x, y).

Letus consider the case of the Gaussian ch6 (x,y)’s. Then (5. 2) implies that all entries
inside a block labelled by the pair (x, y) are jointly independent, while the entries with the
coinciding Greek subscripts but with different (x, y)’s have nonzero correlation. This

means that random fields corresponding to H@ do not satisfy the condition (2. 17), no
matter what function y (x) may be chosen. Thus, the ensemble # @) (5. 1)-(5.2) can be
regarded as giving an example of matrices with asymptotically non-local dependence
between entries. In this connection, the following result seems somewhat unexpected.

It was shown in {13 ] (see [7 ] for the rigorous results concerning this ensemble) that
if the random variables Vaﬂ (x, y) have all their moments finite and

z |T(O,y,s,t)|sT0<oo : 5.5
Vosit

then the NCF N4, H (a‘)) converges, as a - », to a nonrandom function whose Stieltjes
transform can be found from relations (2.10)-(2.12) with

I'(p,q) = z 7,y s, Hexp{ 2ni[ (y — s)g + tp1}. 6.6
»Ss,t

Thus, the ensembles (2. 1) and (5. 1), while being rather differently defined, have the
same equation for the Stieltjes transform of the IDS.

In order to understand how the local and non-local dependence enters into the limiting
equation, it is natural to consider the ensemble with the mixed type of dependence which
can be called the Wegner-Wigner ensemble. Using the method described in sections 1 and
2, one can prove the following statement.

Theorem S5.1. Consider the ensemble (5.1) with H0 = (0. Let the Gaussian random
variables Vaﬂ (x, y) have zero averages and
E{ Vaﬂ (x, ») le (&, 0}y=Tx 50 [Sa~-u,p—v)+Sla-v,f—-1)],

where T satisfies (5.3) and (5.4) and S is the same as in Theorem 2. 1. Then there exists the
limiting IDS of H (a), a - o whose Stieltjes transform f (z) can be found as

f(Z)=ffE(p, ¢; z) dp dg, .7
[0, 1)

where g (p, g; 2) is the unique solution of the equation

~ ~ -1
g g2 = [—z—ffl“l (P, P )T, (99, &Py 9,) dp, day] 5.8)
[0, 1)
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with Fj, i=1,2 glvén by (2. 13) and (5.5), respectively.

It is worth noting that the condition (5. 4) for the covariance matrix implies that the
joint distribution of the Gaussian random field Vaﬁ (x, y) is invariant with respect to

one-parameter group of translations. More precisely, for every fixed a, a, B, there exists
a one-parameter group of measure preserving automorphisms I'Ik , kK € Z defined on the

probability space (2, F , ) such that
Vs (x, y; [T w) = Vaﬁ x+kyt+tko), weQ.

This fact combined with (5. 5) implies that for each fixed a, the random operator H®@
belongs to the class of metrically transitive operators (see [12 ] for the definitions and the
axiomatic theory of selfadjoint metrically transitive operators).

On the other hand, the joint distribution of the Gaussian random field satisfying (2. 3)
and (2. 16) is invariant with respect to the two-parameter semi-group of translations. This
could be explained by the fact that the matrices we have considered represent a generali-
zation of the Wigner ensemble whose matrices have the entries of the equal "order” (1. 1).
That is why to obtain finite and nontrivial answers for the [DS’s, the factor n ™~ Y2510
be placed in frontof the matrices U, in (1.2) and (2.1). Takinginto account this reasoning,
the ensemble (2.1)-(2.4) can be regarded as the Wigner matrix analogue of the class of
metrically transitive opcrators.

In conclusion, we present the similar to Theorem 5. 1 statement on the limiting IDS of
an ensemble which can be called the correlated Wegner-Wigner ensemble.

Theorem 5.2. Consider the ensemble of random matrices H (@.m with entier

H((l%' 0 (x, y) = ((m,) - 1/2 Vaﬂ (X, )'), X, y= m, a, ﬂ = _l-;_(;

Let the Gaussian random variables V., 8 (x, ¥) have zero averages and

E(Vy (50, (50} =
=[S, (x=85y=-0+S, (x=tLy=-9)[S@-u,p=v)+S,(@a-v,-u)]
where Sj 7= 1,2 are the sume as S in Theorem 2.1. Then there exists the limiting IDS of

H @ o0 = o0 whose Stieltjes transform f (2) can be found from relations (5.7) and (5.8)
with I“j, i=1,2defined by (2.13) for Sj ,J =1, 2 respectively.

Acknowledgements. The authoris grateful to Prof. L. Pastur for useful discussions and
numerous remarks which improved the whole exposition.
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PacnipeaeneHue COOCTBEHHBIX 3HAYEHUN CAYHaNHbIX MATpHL 00bLLON
Pa3MepHOCTH C KOPPEJMPOBAHHBIMU 3JIEMEHTAMM

A. XopyHxui
Hccnengyercs Hopmuposannas GyHKUNs pacnpenenenust cOGCTBEHHbIX 3HAUEHMI
N, (A) ancambns n X N CUMMETPUUECKHMX CAYUANHBLIX MATPUL, B/NEMEHTLI KOTOPBIX
Up (X, ¥)y X, y=1,..., 1 €CTb CTATUCTHUECKW 3ABUCMMBIE NPOMIBONLHO pacnpe-

HENieHHbIE ChTytaiiHbie Beanuunbl. Jl0Ka3aHo, UTO ecau Koppensuuonxas GyHkUMs
3AEMEHTOB S ORMHAKOBA AN BCEX /1 M KOADDULMEHT KOPPEAIUUHU CAYURIHONO MO
{ u, (x, ¥) } ybuiBaeT poctatouso GbICTPO, TO MEPA N, (dA) npu n = ® cnabo cxomuTCs

NO BEPOSITHOCTH K Hecayuainoit mepe N (d). Ins npeobpasosanns Ctiabrbeca npe-
neabHOM N (dA) BLIBOAMM YPasHEHME, KOTOPOE 3aBMCHUT TOJBKO OT NPeaebHON Mat-
PHLBE MATEMATUUECKHX OXKHIOAHKI u, (X, ¥) v xoppeasiumnonHon Gynkumu S,

Po3noain BiacTMBMX 3HauYeHb DaraTOBMMIPHUX BUNAAKOBUX MAaTPHLb 3
KOppebOBAHUMMY eJeMEeHTAMH

O. Xopynxii

Busuaerbca HOpMOBaHa ByHKILIS PO3NONiTY BAACTUBHX 3HaUeHb N n (A) ancambio
1 X 1 CUMETPUUHMX BUNAAKOBMX MATPHUL 3 eeMedTaMu iy, (X, y), X, y = I, ..., n, mo

€ CTATHCTHMUHO 3AJIEXKHI Ta MAKTL A0BULHKI poanoain. Jdoseaeno, wo y pasi, koau
Koppensinifina GyHKUis S eneMeHTis € EIMHA IS KOXHOMN 1 Ta 9Kkwo koediuienT
KOppeauii sunankosoro nonst { u, (X, ¥) } Cnaaa€ RocuTb WBHAKO, Mipa N, (d) cnabko

36ira€Thca 3a MMOBIPHICTIO NPU 1 = © N0 HEBHUNAakoBOi Mipn N (dA). Mu BuBOAMMO
piBHSHHS ans nepersBoperns Criabtheca rpanununoil N (d1) Ta posoaumo, wo Boua
JANEXKMUTL  TUIbKKM  Bil TIDAHMUHOI MATPULi OUiKyBAHb E€JIEMEHTIB u, (x,y) Ta

Koppeasuinuoi gyukuii S.
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