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A general form is found for entire functions f (zl »'2), z) € C,'ze ch _l. of a finite order

p that are M-quasipolynomials in z; for every 'z from a non-pluripolar set Eech~ l, i.e.

m
, 1z
f(zy,'2)= E a;(z) ) e 7", 'z € E. Here m, A;and a;(z ) depend on 'z a priori arbitrarily
ji=1

and a; (z; )‘ belong to the class M of entire functions of the type 0 with respect to the order 1.

An entire function is called a C-quasipolynomial or a quasipolynomial with constant
coefficients? of w € C if it is of the form

Fo) =3 0" M
ji=1 ! ,
where w < o, a;, lj are constants and a; # O, vj, /1!. # /1,. , Vj# i. The numbers a; are
called the coefficients of the quasipolynomial £, and the set A of all exponents /11 yesdy
. is referred to as spectrum.

A P-quasipolynomial or a quasipolynomial with polynomial coefficients® of w € Cis
defined as an entire function of the form ’

f=3 a;(we’i", @

i=1 :
where, as in the case of a C-quasipolynomial, lj €C, /1/. #A T Vj#iand a; (w) # 0 are.
polynomials. Similarly we define M-quasipolynomials as quasipolynomials whose coeffi-
cients are entire functions of degree zero.?

h. This research was partly supported by NATO LINKAGE GRANT # 930171.
2 C-quasipoljmomials are called also exponential sums.
3) P-

quasipolynomials are called also exponential quasipolynomials.

4 An entire function f(z), z € C", is called an entire function of degree zero, if fim mlf;—('fl‘l- = 0.
Z->00
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The value is called the degree of a P-quasipolynomial

degf= Z(l+dega ),

j=1
- where deg a; is the degree of the polynomial a; from (2).
Set ' .
foof e fm

f' f” . f(m+1)

.........

Im(w;f) =

------

It is known (see, for example, [1]) that an entire function f (z) is a P-quasipolynomial of
degree Nifandonly if I, (w; f) =0and I, | (w;f) #0.

The common form of a function of n variables being P-quasipolynomial of C-quasi-
polynomial in every variable was found in [2, 3]. In [4] the entire functions F (z),

z€C", of order pp= 1,V that are M-quasipolynomials in z, for fixed
2= (2y, s zn) € E, were considered where E is a nonpluripolar set. It was estab-

lished that every such function is of the form
w

F@ =Y a, 2™, @
i=1

where w and ,lj ,J=1,...,w, are independent of 'z, and the coefficients 4 (z1 , 'z) are
entire functions in C" of degree zero with respect to z, . In [4] also an example was given
showing that the representation (3) does not take place without the assumption p F= 1.2

In this article (Theorems 1, 1/, 1'’, and 2) the problem of the common form of a
function f (z) being a quasipolynomial in z, with restriction p f< o is solved. It turns out

that the above-mentioned example is in some sense universal.

" Theorem 1. Let E be a nonpluripolar set inC" ~ ! and f (2), z € C", be an entire function
of finite order pf=p< o, Let also f be an M-quasipolynomial of z for any fixed
'z=(zy,...,2,) € E (with the number of terms, cocfficients and exponents in general
dependent on 'z). Then f (z) can be represented in the form

f(z)—za(zl,z)el 4, et )
ji=1

where:

b Recall that the order PR is defined by the equality PE= hm Mxn‘JrgL?‘L

Z=>00

D For pp=3/2and n =2 the function cos (z; Vz, ) can be cited as an example.
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On entire functions of n variables being quasipolynomials in one the variables

a) w < o is independent of 'z;
b) 21 ('2), ..., ).w ('2) are arbitrarily numerated zeros of the pseudopolynomial

— -1
h(zl ,'z) = z‘f + h1 ('2) z‘;’ + ...+ hw ('2)
whose coefficients hj are polynomials in 'z of degree =<.j(p — 1) and whose discriminant
D, ('2) #0; .
c) the coefficients a, (zl s ’z) are entire functions of degree zero in z and are local

holomorphic functwns in 'z in Q= {'z: D, ('z) # 0} when the exponents A ('2) are
properly numerated

P roof. In accordance with the condition of the Theorem, for any fixed 'z € E the
function f is of the form

z) ’
f(z,'2) = i b (2, '2) e, S

where b, (zl , 'z) are entire functions of degree zero with respect to z, . Denote by o ( z)
the type of the function f(z, , 'z) of order 1 with respect to z, 2 Smce the funcuons

bj (zl , 'z) are of degree zero in z),

o;('2) = max lu.(C2) |, ¥V 'z€E€E,
lsj=w(2) /

and hencein this situationaf ('z) < »,¥'z € E. Takinginto account that E is nonpluripolar
and that f is of finite order, we conclude (see [5, 6 ]) that of('z) <w,V'zeC'~ l, and,
moreover, there exist such constants £, >0 and «,, > 0 that ’
' . -1, . ' -
af(z)Shll’zlp +k,,V'zeC" ! (6)

Now we consider a function F(z) Borel associated to the function f with respect to z
(see, for example [5, 7). This function is constructed from f as follows:

* 1 amf
F(z) = Z m+1 ,_m =0 ' @)
oz | Izl

m=0 2

In this case, e.g. when o ()=« |'z] Py k, the series in (7) converges uni-
formly on every compact set in G,= {z=(, 20z, | >k 2| P~ Ty «, }. Therefore
F (z) is holomorphic in G;. Furthermore, it follows from (3) that for any fixed 'z € E

1,0

l) In a small enough neighbourhood of every point 'z~ € Q 1 the zeros of pseudopolynomial 4 can be numerated

s0 that the corresponding functions 4 j ('z) are holomorphic.

In|f(zy,'2)|
2 Recall that o('z) = Im ————— ze 1,
f

Zy+w Izll
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w('z)
F(Zl , '2) 2.21‘81' (21 _IL‘!’<’Z)) 'z},

j= .
where B]. (z,, 'z) is a function Borel associated to bj (z,, 'z) with respect to z,
i=1, .., w(z). Since bj (zl , 'z) is of degree zero in z, ,4Bj (z;» 'z) is holomorphicin z, on
C* = C\ {0}. Hence F(z,,'z) can be holomorphically extended as a function of
z, from G, 1o the whole C except a finite set A('z) of points #;(2), .. P ('2).
If follows (see {8 1, alsc [9, 16 ]) that F (z) can be holomorphically extended as a function
of 2, ,..,2, t0o Q= C"\y, where y is an analytic set in C". Since analytic sets of
dimension < n — 2 are sets of removable singularity, it can be assumed without loss of
generality thaty is a set of pure dimension n — 1 and therefore there exists such an entire
function ®(z) that X = {z &€ C": P(2) = 0} and the multiplicity of zero of ®(z) is equal
1o 1 at every regular point of X. It is obvious that the set

X('2)={z: (z,, "2 €X}

consists of a finite number of points for any 'z € E. It follows (see [11-13]) that

D(z) = e 8 p(z), where g(z)is an entire function in C" and

h(z) = hy ('2) z‘l“ +o.+h ('2)

is a pseudopoiynomial whose cocfficients hj ('z) are eatire functions in C" ~ ! In view of

the above assumption on the multiplicity of zeros of ®(z) the discriminant of the pseudo-
polynomial A(z) is not identically zero. Furthermore, (16) implies the boundedness of
X ('z) and therefore without loss of generality we can assume A ('z) = 1. Denote by

A, ('2), ..., A, ('2) the zeros of the pseudopolynomial. Their numeration is arbitrary. It is

clear that [ 4. ('2)| =« |'z| Py %, . Therefore

! t —l j
h.('2)| < const-(k, |z [P+ k)
and hence hj ("z) is a polynomial of degree deg hj <jl-1),j=1,..,w. Respectively
h(z) is a polynomial in z of degree

degh< max {w+jlp—2)}=max{w,wpE~-1)}.

l<j<w

Now et us return 1o the initial function f (z). Taking into account the above established
propertics of F(z) and the known (see, for example, {5, 7]) correlation between entire
and associated functions, we conclude that the representation (4) takes place, where the
coefficients are entire functions of z, of degree zero. Now let us consider a point 'z % not

belonging to the discriminant set of the pseudopolynomial. As it follows from the known
properties of pseudopolynomial, for any small enough & >0 there is an £ >0 such that
B, (’zo) cQ, = {'z: D, ('z) #0}, and by the proper numeration of zeros /11 s oee ,lw ,
the corresponding functions Av=ACz'27), - o ., /lw (z)=2, ('z;'z°) will be
holomorphic in B, ('zO) ={'z|'z-'2%| <e}, and ] ).j('z) =4;(z27)|>25, Y=,
and | Aj ('z) ~ ,1], (z%y]<d, ¥ j, z€ B, (’zo ). In this situation the terms
a; (z;, 'z) exp {.lj (‘z) z, } in (4) are defined as follows:
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On entire functions of n variables being quasipolynomials in one the variables

. ' ' l ’ ;Z
el](z)zl ai(zl, z)=-2-;-t7 f F(C, Z)e ldC. ®)
| 1£-2,¢z% 120
Itisobvious thattheset{z: | z, -}.}. (’z° | =4, e B, (’zo)}does notintersect the

zero set of the pseudopolynomial 4 that coincides with the singularity set of F. Therefore
it follows from (8) that this term and hence also 4 (z, , 'z) are holomorphic in B, ('z 0 ).

The proof is complete.

From the criterion, when a function belongs to the P-quasipolynomial class cited at
the beginning of the note, it follows that set of the points 'z€ C*~ ! such that an entire
function f (z, , 'z) is P-quasipolynomial in z, either coincides with C"~ Yor is a union of
a countable family of analytic sets {'z€C"~': J, (z,;/)=0,V z €C}=C"" L
Therefore the following version of Theorem 1 is valid:

‘Theorem 1'. Let a set E C C" ™! be not representable as a countable union of analytic
sets in C* ). Further, let f(2) be an entire function of finite order p =P being P-

quasipolynomial in z, for any fixed 'z € E (with coefficients, spectrum and number of
terms in general dependenton'z). Then f (z; '2) is P-quasipolynomial in z, for any fixed -
'z. For any 'z the spectrum Af( '2) of the P-quasipolynomial coincides with the
corresponding zero set of the pseudopolynomial h(z1 , '2) satisfying the conditions of
Theorem 1. Under a proper numeration the coefficients f, that are polynomial of z,, are
locally holomorphic in 'z on Q,= {'z D, ("2) = 0}.

Now let us consider the case when a set E satisfies the conditions of Theorem 1’ and
an entire function f is C-quasipolynomial for every 'z € E. Then all the statements of
Theorem 1’ are true for £, However, concerning the coefficients.of (4) we can state more
than that they are locally holomorphic.

Theorem 1'". Letaset EC C" ™ ! be not representable as a countable union of analytic
sets in C* Y. Further, let f (2) be an entire function of order p p=p <o and let it be a

C-quasipolynomial in z, for any 'z € E. Then it is a P-quasipolynomial in z, for any

'2€ C"~ ). The spectrum of it coincides for the same 'z with the set of zeros of a
pseudopolynomial h(zl , '2) satisfying the conditions pointed in Theorem 1. Then locally

with respect to 'z in Q) the representation .

Z A (D)2
S = 3,000 60 o
. 7=
takes place where '11' ('z) and g ('z) are holomorphic. Furthermore, a, , ..., a  are zeros of
a pseudopolynomial g(zl , 'z) with meromorphic ’coefficients, whose polar sets are
contained in the discriminant set of the pseudopolynomial h.
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Proof. Firstof all note, thatin view of Theorem 1 and above connection between the
degree of a P-quasipolynomial and the determinant 7, , only the last statement of
Theorem 1’' should be proved. '

Let us consider the representation (9) in a small €énough ball B, ('z~ ) € Q, . Set for

brevity
, _ a"lf
'fm=fm(z)—a_z—771 zl=zl' 10)
1
It follows from (9) that the functions a;are the solutions of the system
a1+...+am=f0
alll + ...+ awlm =/
w~1 w-1 _
a A tota AT =
and hence
V:
=7 i an
aj v ji=1,..,w,

where Vj = Vj(’z; ’zo) and V=V ('z;'z”) are determinants constructed from
/11 5 een ,Am andf ,....f, according to the Kramer rule. In particular, V is equal to the
Wandermond deierminant W(/l1 s oo ,lw ) of valueszll ) e ,/‘Lw .

It follows from (11) that an elementary symmetric function ‘l’k (a1 s @) of a rang
k in a ,..,a, is a quotient of ‘I’k (Vl s eens Vw) and V". It is obvious that a change of
numeration of }{1 s e ,Aw changes correspondingly only the numeration of the coefficients
ag, s a, . Therefore the function ‘I’k (a1 y eee ,'aw ) is correctly defined in Qh : ifs values

neither depend on the choice of 'z nor the way of numeration of 4.. Set

’ fflk (z5y=W,(a,('2), ..., a,('2). Since a; (‘z; ’zo) are holomorphic on B, ('z"),
‘TJk ('2) is holomorphicon Q, . Letus show that W, ('z) is meromorphicin C" = ! We shall
use that

w(w— 1)
V=WA,e2,)= (=D 2 [T¢-4)
J<k
and
- 2
Dh_ (Aj—,lk).
<k
Therefore
k
T 0 _‘Pk(Vl""’Vm)_V 1I’k(V,...,Vw)
k(z)_ k = P
14 Dh
and hence
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On entire functions of n variables being quasipolynomials in one the variables

vEw, (v, ... ¥,) =T, (2) D, (2).

From the last equality it follows that @, = viw (V1. V, )asafunctionof 'z forany
k is uniquely defined and holomorphic in Q,. Further, it follows from the definitions of
V, ¥, and the inequality max Ilj (‘2] = rél Lz|P~ 4+ x, thatV and V; are bounded

on every bounded subset of &, . Therefore every function ®, ('z) is also bounded on

bounded subsets of €2, and hence it can be holomorphically extended from Q , on to the
whole C"* ~ L. Thus

B viw (v,, ...V, ) ®,(2)

w

- k

Dy

and \T'k ('z) is meromorphic in C"~ ! as a quotient of two entire functions. According to
the form of T « ('2) the coefficients a; are the solutions of the equation

' -1 aJ ’
~T (" .+ (DT (2)=0
The Theorem is proved.
The above reasoning implies also that the entire function f(z,, 'z) from Theorem

1"’ is uniquely defined by the pseudopolynomial A and the functions fo» (see

) o — 1
(11)). The following Theorem is a more powerful and in some sense a converse statement,

Theorem 2. Let h(z, ,'z) =27 + h ('2) z Ty + h,, ('z) be a pseudopolynomial

in C" with discriminant Dy, #0 and let fo y v s [y _ | bearbitrary entire functions of 'z. Then

there exists an unique entire function f (zl , '2) such that
ak
|z c0=0 (2 k=0,.., 01,
and for any fixed 'z€Q pr IS a quasipolynomial of z, with spectrum
Az = {z1 :h(zl ,'2) = 0). Furthermore, iffo s e s [, _ 1 are of finite order <p, and
hl s eeny hw are polynomials of degree < Py» then f (z) is an ertire function of an order
Pss 1 +max (p,,p,).

- Proof. If such a function exists then locally

"l

Z pr] S m=0,1, ... ' a2
/—1

Here /Ij. are the exponents of the qua51polynomia1 (they are also solutions of the equation
h(z,,'z2) =0) and a; are its coefficients. Therefore it is natural to look for a function f
in the form
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[=

m
1 ’

?Ms
5';»

0

aregivenand f,,f, . ,,... are defined by the equalities

zal"l >

j=1

where fo N R

with functions a; obtained from the same equalities considered form =0, 1, ...,w — 1 as
equations with respect to a;. There arise problems whether f are correctly defined,

about their holomorphic property and estimates.
Let us fix any point 'z Oe Q,, and consider functions 4, , ... ,4  holomorphicin a ball

B, ('z") € Q, which are the solutlons of h(z,,’'2) =0 w1th respect to z, . We define
functions a /] in B, (z 0 ) as solutions of the system of equations

a +..+a, =va ,

alll + ..+ awAm =fls a3

w~1 w—-1 _
AT AT =1 .
Since B (z")C Q , » the determinant of this system W (,1l y oeey lw ) is not equal to zero

onB_('z")and hence a; ('z) are correctly defined and holomorphic. The functions 4 ; as
the solutions of the equation A(z, , 'z) = 0 can be holomorphically extended along any

curve L starting at 'z and belonging to Q . Together with 2. the functions a; can be

holomorphically extended. Note that if at the end § of L we get holomorphic extensions
By oo By, of,ll 5 sees /Iw then by extending along any other similar curve L we get the

functions u L3 By, again but the numeration differs from the original one. This is
naturally valid for the extensions of a; too and the numeration difference of the resulting
extensions is the same as for A iz From what was written above about extensions of 4 j and

g it follows that forany m =z w X a jA’;’ can be holomorphic extended along any curve

LCQ e The result of extension depends only on the end of the curve and is independent
of the curve itself. Thus a holomorphic function is correctly defined in , . We denote it
by f,, - It is clear from the definition of f, thatin a small enough neighbourhood of any
¢ € Q, thefunction f, ('z) canbe represented in the form

(14)
I (D= Ea(’ 04 (z0),

where 4, ('z;8),...,4, ('z;8) are the holomorghic solutions of the equation h(z, , '2)
and a; ('z; §) are the solutions of the corresponding system (13). Let us solve the system
(13) and substitute the expressions obtained for a; into (14). We get:
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On entire functions of n variables being quasipolynomials in one the variables

Fu (= }_j A (D502,

where
1 w1
| AL et
w
_ 1 ’ m m _u,jvm
Am =W A) Lo =W (13)

1
PEARNI YA

lw*l ;{w”l
. P

Note that ‘Aj n is a polynomial in 4,,..,4, . This follows from the fact that
Wi m @, -.,4,) vanishes when /lj =1,,Jj # k, and that
ow-1)
W(Al,.,.,,lw)=(_-1) 2 H(A

j<k
Also it follows from (15) that Aj @A, ..,4, ) is a symmetric function of 4, , ... , 4, and
hence by the equalities .
4; (2= 4; m @A (28),...,4, (%)), '2€B,6)CQ,
the holomorphic function A m is well defmed in Q, . Since the highest coefficient of the
pseudopolynomial A4 is equal to 1 then the soluhons of the equation h(zl , 'z) are bounded

on any compact setin C( 2 ! It follows that Ai m ((2) are bounded on any bounded subset

of Q.. Therefore thev can be holomorphically extended to the whole C" ~ !, In order
to estimate their growth we represent A}. @S a quotient of two entire functions, namely,

1 oy Mem®i (s 8y s A, (BEY WA (5L, s R, (5) Wy W
. z = .
Sm : . w? Gy (28)s sk, (530)) D,

' (16)
It is obvious that

! : ‘ w(w—1)
| W@, ,..,4,) | < const (m?x 14;1) 2, an
oe=1

7 tm=i

| vvj,m(ll yeesA,) | < const - (mz}x | lj D (18)
' J

Set
M 4 (R) = max | &(2) |.
lz] <R
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It is known (see, for example, [5], Lemmas 1.3.1, 1.3.2) that if a quotient of entire
functions ¢ and ¥ is itself an entire function then for any k> 1 and some constant C
dependent on ¢, k and n the following mequahty D s valid:

k

W(R)<c[M (kR) M (kR)] k=T v Rr>0. (19)
Note also that lj as zeros of the pseudopolynomial A can be estimated through its

coefficients hj in the following standard way:

max|l|<2|h|

j=1
We conclude from this and (17)-(19) using (19) that

}(J'*m)k—f—i' 2
R 20)

M (R)sCl[ max ZIh(z)l

jm kR j=1
where C; and y areconstants dependenton w and n only. It follows from this estimate
that the series
© _1— wil Z m_
3 a1 S Awsferese

converges and f (z) can be estimated as follows:
max { | f(z,,'2) |: |z, | =r, |'z| SR} =

"% - 1
< C (max M, (R)) - | max 2|h(z)| X
- i |'z] <kR j'=}
X exp max h.('2) |
l |’ z|<kRJZI| (2) ] @n
Under an additional assumption that the order of functions fo y e s Sy, _ IS DOL larger
than P andh, ..., h,_, are polynomials of degree < p, » taking into account that k

is arbitrary, it follows from (21) that the function f is of order = max (p, ,p,) with
respect to the totality of variables z, , ..., z, . Hence f is of order <1 + max (p, ,p,)
with respect to all variables Zi s 2,

In order to complete the proof of the Theorem let us note that, as it follows from the
construction of f, for any fixed 'z€Q , the function f is of the form

f(z,'2)= Za e %1 where a=a ('z;&)and /1 /1 ('z; §) are the same as above. The
j=1
Theorem is proved.

D In [5] the corresponding inequality is given in a somewhat different form.
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O uenbix GYHKUMAX OT 72 NEPEMEHHbBIX, IBASIOUUXCA KBAZUNIONMWHOMAMMU
No OJIHOM N3 NEPEMEHHBbIX

JI.W. Poukunu

Ycranosned oSwmit sup uenoit pyuxumnu f (z] 12,2 € c 'zect ”1, KOHeu-

HOTO NOPSIAKa £, KOTOpas NPU (PUKCHPOBAHHBIX ‘Z M3 HEKOTOPONO HEMUIIOPUNONAPHOTO
mHOXecTBa E xak (yuxkums or z; =BAseTCH M-KBA3UNONMHOMOM, TO e€cTb

m

f(z,'9) = E a; (zl )e oA 1, rae m, }. ua; (zl ) anpuopu NpoHIBOALHO 33BHUCIT OT
J —l
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