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We are interested in questions of the scattering theory concerning the asymptotic
behaviour of some Schrodinger evolutions. More precisely we present some results of the
asymptotic completeness obtained by the method of Deift-Simon wave operators recently
developed in the theory of N-body systems. We consider here only the 2-body case, treating
a class of general time-dependent hamiltonians, e.g. H(f) = Ho + V{1, x) with Ho being a

second order differential operator with constant coeflicients and ¥V (#, x) decaying suitably
when | x| — .

1. Introduction

The idea of Deift and Simon [DS] to modify the wave operators with suitable cut-oft
functions in the configuration space is motivated by the analysis of Schrddinger operators

H=Hy+ V@), o oan
with Hy=-A and V(x) being the operator of multiplication by the function

Vi, ..., xy)= Z ij (xj — X, ), describing the potential of the N-body prob-
1<j <k<N

lem, where the nature of interactions is clearly different in different sectors of the
configuration space RM, The use of some microlocal cut-off functions was the main
tool of the first proof of the asymptotic completeness for short-range N-body systems
given by Sigal and Soffer [SS1]. Further developments of the approach are due to Graf
[Gr] (a new proof of the result of [SS1]) and Derezinski [De] (the proof of the asymptoptic
completeness for long-range N-body systems, cf. also [SS2], [Z2}).

The aim of this paper is to present an approach based on Deift-Simon wave operators
in the case of 2-body scattering, i.e. the interaction potential V (x) decays when
{x|— oo,

Let us note first that under a suitable assmhption concerning the decay of V (x) when
x| — oo, it is well known (cf. e.g. [HG], [DKY], {Sim], [Um], {MZ], {Ar]) that the
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asymptotic completeness holds for H, = p(D) being a differential (or pseudodifferential)

operator satisfying some conditions on critical points of its symbol.
From this point of view the 2-body case is totally different from the general N-body

case, where the hypothesis Hy = — A is.essential (there are no general results in scattering
if H is not a Laplace operator). Similarly, by now the method of Deift-Simon operators

has been used only in the case H,= - A and below [the points A) and B)] we first

describe known results and ideas in this case (following [Gr] and [De]). In the point C)
below we formulate our result of the asymptotic completeness -and in D) the analogical

theory is described for time-dependent hamiltonians H(r) = Hy + V (¢, x) for H, = p(D)

being a suitable differential (or pseudodifferential) operator and V (¢, x) decaying
suitably when | x | = co.

We would like to note here that the ideas presented in the point D) should not be
considered as a trial of developing a more general abstract theory, but as the ideas having
applications in practical scattering problems. In fact, they have turned out to be a
fundamental tool of an analysis of some time-dependent many body quantum models
studied in a subsequent paper {Z3] (cf. also [ZI]).

A) Deift-Simon wave operators and the asymptotic velocity

Let H be the Schrodinger operator on L? (R d ) of the form (1.1) with H0 =-Aand .

assume that the potential V can be decomposed in a sum of the short and long range
part,

V=Vt v/ © 1)
where V° V £ are bounded measurable functions on R ¢ going to 0 when | x | — o and

3C, £ >0 such that | VS ) |+]VVimlscU+lxD 7%  .2)

Such a decay hypothesis allows to obtain easily the basic spectral properties of H via
Mourre estimates, e.g. the fact that the only possible accumulation point of eigenvalues

is 0 ([ABG], [BG])). Further on for an open set 7 < Rd, C‘(’; («) denotes the set of
C* functions with compact support in 7. Following [Gr] we may affirm that for
Je P (R?) the limit

I"H(J)(p=limei’HJ(—)t£)e—i"Htp, (1.3)

I ~—>» 00
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exists (in the norm of I? (Rd )) for every ¢ € L? (Rd ). The formula (1.3) defines a
linear operator FH (J): L? (R d) Ny (R d) which will be called the Deift—Simon
wave operator.

Note that if J is a continuous functions on R & going to 0 when | x | = oo, then using

a sequence of functions from. C 3’ (Rd) converging to J 'uniformly on R d, we check
easily that the limit (1.3) still exists. Since the limit tl.?:) exists trivially if J is a constant
function, we may denote by 4 the algebra of continuous functions on R having a limit
when | x | —c0 and we may define a family {T',,(J)} , . 5 being a subalgebra of

B (Lz_ (Rd )) [the algebra of linear bounded operators on L* (R d )], because
Fy(d+,)=Ty(J)+Tu (L and Ty (J,J,) =T (J; )T, (J,) due to the
chain rule :

(U T, 0) 0=
. X\ —iHy i X\ —i
=l|me"HJI(7)e i hme"HJ?_(?)e ”Hcp:I"H(.IlJz)cp.
! —> ® {—>

- It is shown in [Gr] that the following union of linear subspaces of L? (R d ), -
Dy=\U{RanT,(J):Je CPR?)} (1.4)
is dense in L? (Rd). If ¢ € D, then ¢=Tp4(J,) v for certain \VGL2 (Rd),
Jye CgRY)and for J € CF (R) satistying J, =) we get =Ty (J) y =
=T (D)) y=T () Ty(J)y=Tx(J)g,ie.
d :
Dy={9el? RY):3JeCTRY), o=T,(J) o} (1.4)
Ifoe Dy, 1<j<dand =T, (J) ¢ then there exists the limit
aH i %
W e lim o H L =uH . iH o X\ - itH (1.5)
I/jq> lime™ T e ¢p=lime™ TJ()e ¢
£ -3 © 1>

’ o 3
and it is easy to check that ¥y = (%] , ..., ¥;) is a family of commuting self-adjoint
operators, called (following [De}) _t_?e asymptotic velocity. Indeed, if Z is a compact set
of Rd, then we may define E,, ( ‘I/H) as the orthogonal projection on the intersection
of the family of subspaces {RanT, (J):Je C((’)O (Rd), J20, J(A) =21 for
A € Z}, which will be denoted '
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EZ(;} ) =inf { T}, (J)--JeC""(R") J20, J(M)=21 for AeZ} (1.6)

and for any Borel set B C R, define Eg( ‘l/ ) as the orthogonal projection on the

closed linear subspace generated by the family { Ran E,( 'I/ ): Z is compact and
ZcB}, denotmg

E, (‘V )=sup { E, (’I/ ):Z is compact anchB} ' (1.6).

Then E 4(7/) 1, B~ (Eg (’I/ )cp,\y)xsacomplex Borel measureofRdfor

every @, y € L2(R%), and Ty (J)=J( ’I/H) holds for J € A, where

- ' -
(J(Vy) e, ‘V)=IJ(11 s eve s ld)d(E;,l,_._,kd( Vy) e ¥).
R¢ ‘

. —-) .
SettngBj( ’l/j)=E{ Gy i)k € B) ( 'VH)bforBorel setsBch, 1<j<d, we
have '

: -
Ele.._de( 'VH)=EB, #) ... EBd('Vd)

and ‘7/1 may be defined as the self-adjoint operator given by the integral representation
(J(¥) o, w)=IJ(X)d(Ex(7§) P V)
R

for a Borel functionJ on R, y € L? (Rd) and ¢ in the domain of J (‘Vj ).

Finally let us note that if ¢ € L2 (Rd) is an eigenvector of H associated with the
eigenvalue A, i.e. H ¢ = A @, and J € 4 is such that J (0) = 0, then for ¢ — oo we have

le™T(3)ye ™ol=lle™T (e ™ o217 (3 )cpll-+0

due to the Lebesgue dominated convergence theorem (the family of operators

J (x/t) converges strongly to 0 when t—>w), i.e. T (J) @=0. This implies
_)

ER"\ (0} (%) ¢ =0 if @ is an eigenvector of H or more generally if ¢ € ?{ H),

where ﬂ{ (H ) denotes the closed subspace generated by all eigenvectors. Therefore

?{ (H) cRan E; o, ( ’I/ ) and following [Gr] we may affirm that the last inclusion
appears to be the equality and we have
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- -
H,(H)=Ran E o ( V), H, (H)=Ran Epa, o\ (V). | 1,7

where }/ (H ) is the continuous subspace of H, i.e. the orthogonal complexﬁent of

ﬂ{ (H ). In other words, the eigenvectors may be characterized as the states with zero

asymptonc velocity and the vectors from the continuous subspace of H may be
characterized as the states with non-zero asymptotic velocity. -

B) Deift-Simon wave operators and the asymptotic completeness
We are interested in the formulation of the asymptotic completeness in the spirit of

[BG], [ABG], comparing evolutions e -, ande i'HZ, where (H, , Hz) is a paii‘ of
Schrodinger operators of the type considered in A): '

_ s 4 _ N
H,=Hy+V,+V, for k=1,2, (1.1
with Hy = - A, V,sc ,V ,i bounded measurable, going to 0 when | x | = o and satisfying

[VE@I+IVVL@ISCA+]x)™ 7% with € > 0 for k=1,2.  (1.2)

If the long range parts of considered Schrodinger operators are equal, i.e.
V%=V, then (cf. [BG), [ABG] or [Gr]) there exist the limits

Q , e=lime #Hy o = A, ¢ if ¢ e A _(H)), ' (1.8)
HZ_ | 1 —> 00
. uH —iuH, :
QH H\y=hme" e "2\41 if e (H) .(1.8)
1’72 t—> o ’

Q = .
and H . H, }[ H,)~> }[ (H, ) is an isometric bijection with QH2 o, QHl o,
The last statement will be called the asymptotic completeness and Q , will be

2’7
called the wave operator associated with the pair (H,, H, ). In other words, if the

asymptotic completeness holds then for every y € 7 (H,) there is ¢ € #_(H,)

. HIp,which implies[[e-"H2 \|/~e-ilHl(p]|—->0whent.—+oo.
2

Let us describe how the asymptotic completeness can be proved if we know that for
every ¢, v € L2 (R?) and 7 € 4 such that 7 (0) = 0, there exist the limits

satisfying ¢ = Q

Hz' t— ©

Q o (De=lime"™ 7 (£)e (L.9)
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; itH, - itHy \, (1.9
Q (JYy=lime *+ J ( )
H, H e ‘

Following [Gr], the operators Q W, (7), Qﬂ, '”z_(j) e B(L* (R?)) defined by
(1.9), (1.9") will be called the Deift-Simon wave operators.

Infact, if =Ty (7) Pwith @ L R 4),7 € AandJ (0) = 0, then the existence
of the limit '
Q ‘¢ = lim e””’e_im{l lim eaﬂ‘j(f—)e-au“T’:Q (7)‘7’

Hz’Hl X t~>® H:'H!.

is a consequence of the existence of the corresponding Deift-Simon wave operator.
But the set of vectors ¢ € RanT, (J) with J€ .4 and J7(0)=0, is dense in
1 .

\ {0}
Replacing H, by H, in the above reasoning we get the existence of (1.8') for every
v e (Hy).

- . .
Ran E_ 4 (’I/Hl ) = (H, ), hence the limit (1.8) exists for every ¢ € A (H, ).

C) Formulation of the result for time independent hamiltonians

We want to compare evolutions e - itH, for k; 1, 2, where Hk are self-adjoint
operators with the domains D (H,) =D (H, ) = D, being Schridinger operators of the

form (1.1'), where H, = p (D) is e.g. a second order differential operator which is not
necessarily elliptic, but having its principal part non-degenerated.
More generally we assume that Hy = p (D) is a self-adjoint operator with the domain

D (Hy)=2, where D=(-id_,...,—id, ),pe C®(R?)is real, satisfying
1 d
supdsa"‘p(g)mm for « € N¢ such that |a |22 M)
£EeR

andfork=1,2,H, =H,+V, ,where V, = Vs+ V[withtheshortrangepart V’being

an H-bounded operator defined on 2 (not necessarily a multxphcauon operator)
, satlsfymo

I eizny @ ViEgey H) e L (1; ); dr), for every 7> 0, ()
the long range part V,i being a multiplication operator by a real function

V,i (x) e L” (R d )suchthat[i V ,{ ), VJ. p (D )] defines a bounded operator satisfying
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1Y jepary @EVE®, V;p@ NIl €L (U1 );de), for j=1, .., d, L)

. (o o]
where F (t) € L ([1; ©); dt ) means J'IF(t) |dt < oo, lg (-) denotes the charac-
1

~ teristic function of ® R and for symmetric operators 4, B with the intersection of
domains 2 (4 ) M D (B) dense in L? (Rd ), [i4, B} is considered as the quadratic
form given by :

(liA,Blo,¥)=iB @, Ay)~iA¢p,By), for ¢, ye DA)YND(B), (1.10)

(-, -) being the scalar product of 1? (Rd ). Clearly it defines a bounded operator if and
only if

sup [{lid,B]lo,y)| <o .
QveDUINDB)lelisL vl

Finally, we consider for k=1, 2 and every h € C‘(’; (R) the following compactness'
hypotheses
h(H,)-h(H,) is a compact operator, - ()

(1+1]x) V',:h (H,) is a compact operator, (H,5)

the quadratic form [i.xj V,i x), V,,p(D)]
defines a bounded operator and lix; V,C ®),V, pDNh(H), ~
V,i(x) h (Hy) are compact operators for j, m=1, ,d. (Hy0)
We have

Theorem 1.1. Assume thar H,, k=1,2, are given by (1.1'), the hypotheses

M, - H, ) are satisfied and V{ =V g holds. Let & be an open subset of R such that
Ae X < 38 >0, inf [Vpe)| >0, (1.11)
{E:A-8<pE) <A+d}
where Vp €)= (VP ®), o, Vgp ©) =@ P ©), ..., & p (&) Then the fol-
lowing limit exists
- itH, - itH ' -
s—lime " 2e " lEc(Hl)EJ’{(Hl ). 1.12)

t— ®©
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Remarks. 1° If R\ Zis finite or countable, then E_ H)E (H) E (H,)

and Theorem 1.1 implies the existence of (1.8). Interchanging H, and we get the

existence of (1.8") and the asymptotic completeness holds. In the partlcular case when
p (D) is a second order differential operator and its prmcxpal part is a non-degenerated
quadratic form, it is clear that the set R\ £ has only one element (the critical value of
p).

2°. The hypothesis (H, ) is chosen to fit easily with the structure of the cut-off in

x/t. If |p ()| —> o when |§|—> o, then it can be seen that energy cut-offs

[_- 71 (H, ) allow to forget about the hypothesis (H, ). A more general approach

avoiding the hypothesis (H, ), will be presented in the second part of the paper.
3°. The hypotheses (H, ), (H; ) are formulated in the way we use in the proof and
we give some comments about them in Appendix. Here we note only that it can be easily
seen that (H2 ), (H, ) are satisfied if e.g. (1.2) holds and Ho is a second order differential
operator with its principal part non-degenerated (cf. the compactness results of {DM]).
4°. We note that (1.2’) is a very weak condition on VZ (x), because it involves only

its first order derivatives. If stronger conditions are imposed on V: (%), then it is possible

- itH . . . .
to compare ¢ k=1, 2) with a suitable evolution generated by a modified
time-dependent pseudo-differential operator with constant coefficients (independent on
x), cf. [E2], [HO], [M1], [M3], [KY], [Co] (1t], [Sig], [Pa]. According to [DG],

conditions on second order derivatives of V (x) can not be avoided in this construcnon
D) Formulation of results concerning time-dependent hamiltonians

"Let #/=L*(RY), Hy=p(D) withp e C®(RY) real, satisfying (H, ) and let
D denote the domain of H) with the graph norm || @ || ,, =l @ || + || ~H0 ¢ ||. We shall
say that the family { H () } ,, ; of self-adjoint operators in H is H-admissible if '
H (r) is Hy-bounded (hence defined on 2) and there exists a family { U (t, s)}

125
of unitary operators in A such that

a) ¢ U (t, s) ¢ is continuous [s ; 0 ) — H for every ¢ € 7
b) @ — U (z, s) ¢ is continuous [s ; © ) —> 2D for every ¢ € 2,
¢) ¢ —> U (t, s) ¢ is continuously differentiable [s ; 0 ) — # for every ¢ € 2 with

i%U([,S)(p:H(:)U([,s)q), UGs,s)p=¢. (1.14)
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We want to compare evolutions U, (¢, s ) for k = | and 2, associated with H-admis-

sible families of Schrodinger operators { H, (1) } of the form

t2s

"4 H (t)=Hy+V,(t) with V,(1)=Vi@)+Vi(), (1.15)
the short range part V; (¢) being an H-bounded operator defined on 2 satisfying

I8 g 120y @ Vi@ Il € L1 (1; ); d), ®,0)
the long range part V,{‘(t) being a multiplication operator by a real  function
Vi@, x) e L (R?) such that the quadratic form [i V£ (, ), V,p (D)} defines a
bounded operator satisfying

3C, 60> 0, 1 4120y @ IV,p @), VECGINSCe ™' ™%, forj = 1,..., dCLH)
We have

'Theorem 1.2. Assume that fork=1, \2, {H, (t) } . > . are as above, the hypotheses

12s
(H, ), (H, ) are satisfied and V { (¢) = V5 (¢ ) holds. Let] & A be such that ] (0) =0,
where we have denoted A={J e C(R?): lim J (%) exists } as before. Then
the following limit exists

x|

Q, l(7;:;‘)=s—limUz:.(t,s)‘:7(§)Ul(t,s). (1.16)

- t—®

Y x| = o (¥) exists, then using Theorem 122 in the

IfJ e C® (R?)is such that lim

case H, () = H, (1) with J = J - J (0) we get the existence of

T (J;9)=s=-1mUg(t,s)' J (7) Up (6, 5) =
t—>®

=s=1lim U, (,5)" T ($) U, ¢, s)+T O, (1.17)

t=>®©

fork=1, 2andasbeforeon? , = {RanT, (J;s):J e,.C:‘(Rd) } we may define
- - ' :

v & (8) such that J ( vV & ) =T, (J; 5) (note that we do not have any energy estimates
in general and it is possible that 2, is not dense in L2 (R#). Following the analogy

. -
with the situation described in B) we define # ;‘mm () =Ran E, }'( Y, (s)) and
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H3 (s) as the orthogonal complement of 7™ (s) in H=1*R?), ie.

H ;“osc‘“ (s) is the intersection of the family of subspaces

{RanT (J;s):J e CE’(R“), J =1 in a neighbourhood of 0 },
and

H zca' (s) is the closure of

U{RanT, (1-J;9):Je€ Cy ®R%), J =1 in a neighbourhood of 0 },  (1-18)

Following the analogy with B), we state the asymptotic completeness as

Theorem 1.3. If for k=1,2, { H (D}, | are as above, the hypotheses (H, ),

(H', ) are satisfied and V{ (= Vg (9) holds, then for every ¢ €. H ‘;cat (s), the limit
Q,  ®)e=lmU,(t,s) U (t,5)0 (1.19)
e

exists and belongs to H 5™ (s). The JSollowing application is an isometric bijection
Q, (A T ) o 25 (s). © (120

Note that & Zc‘“ (s) are not necessecarily orthogonal complements of bound states in
a classical meaning (cf. [Ya], [Ho]) and another definitions were introduced in [KY],
[If]. However all definitions coincide in the case when H, (1) = H, does not depend on

t, due to

Theorem 1.4. Assume that for k=1 or 2, H k &) satisfies (H | ), H 2 ) and
H, (1) = H, does not depend ont. If (Hy) holds and R\ R is finite or countable, then
A () =H (H,).

Let us also note that we have chosen not to look for the formulations of hypotheses
as weak as possible. For instance without any changes of statements and proofs, 22 can

be a densly embedded Frechet space with the topology not weaker then the graph
topology of the domain of H, (and there is no need to assume V, to be Ho-bounded).

Also some hypotheses may be replaced by other ones, e.g. the hypothesis that Vi ®

are bounded in the region |x |21 (or | x| 2 Iy ), connected with the fact that we have
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no energy control. In fact, if one knows e.g. that { U (¢, 5) } is a bounded family

tzs

of operators 2 — D, then the norm {| - |} in (H '2 a) can be replaced by the norm of 2.

2. Basic propagation estimates

Further on we denote &= L2 (R d ), (- , -) is the scalar product and || - || is the norm
of # or the norm of B(#), the space of bounded operators on #. In this section we
assume that Hk satisfy (Hl ), (H2 ) for k = 1, 2, and we drop the index k, writing simply
H=H,+ V instead ot‘Hk=Ho+ V,c .Foroe H,te R, we write e""’”cp=q>‘ and
set X=H® R?) with

H°RY)={oe C°R?): V aeN? 0%¢e #). @.1

The subspace X is useful for algebraic operations on differential operators with _
constant coefticients (functions of D) and operators of multiplication by functions of

class C °b° (Rd) (all derivatives bounded on RY ). Using the usual notation IK for the

restriction to A7, we may treat f(D )IJ'&' and multiplication operators J (x)lk with

Je C‘: (Rd) as linear operators on X . If 4, B are linear operators on X, the
commutator [4, B] = AB - BA is a linear operator on X as well. If 4 extends to a
bounded operator in 4, || A || denotes the B (4 )-norm of this extension. If © € R,
A(t), B () are operators on X for ¢ 2 1, then we write A(f) = B () + O(¢ -6 ) when for
every 2 1, A(r) — B (¢) extends to a bounded operator on A and that there exists a

constant Csuch that || A0 -B @ || Ct~ % for alle>1.
It A, k=1,2, ... are linear symmetric operators on X [ i.e. (Ak ¢, ) =(p, 4, ¥)

for ¢, y € X] then A| A, +hc denotes the symmetric operator (A, A, +4,4,)/2and
more generally

Ajdy . Ay +he=(A 4, A +A A, | .. 4)2 2.2

is the symmetrizatidn of a product of n symmetric operators. Finally, the notation
A; <A, means that (4, ¢, @) < (4, ¢, @) forall p € X
In sections 2 and 3, we make the following additional assumption

|p(E)|— o when |§|— o, } .3)

Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, No1/2 : 179



Lech Zielinski

which simplifies the exposition because of Ran E[ R (Hy < X for every 7 > 0,

allowing to consider all the time only linear operators on A. Later on, in the section 6,
we will discribe the possibilities of extensions by means of quadratic forms, allowing to
recover all results without the assumption (2.3). :

For a self-adjo'int operator A, F, (4) and F_ (A) is the positive and the negative part
of A when we define F,_, F_ to be real functions defined by
F.(W)=2 Yo, w) .(:k), F (M)=-X l(_m; 0] ). 2.4)

The result of this section can be stated as follows

Theorem 2.1 (Basic Propagation Estimates). If 7, r_, r.€R,
J0 € C;’ ((r_, r+)\ {0}), then there exists a constant C such that for all
¢ € Ran E[ 7;7](H)’

0

dt 2, %5 :
j? | Fep @) =) 20 ()| P<Cllolf, j=1, . d @5
1

The notation £ means always two seperate statements: replacing * by + everywhere in
(2.5,), we get (2.5, ) and, replacing + by — everywhere in (2.5, ), we get (2.5_).
Setting

M -—lJ 5 F.(V.p(D J %
i(f)—t 0([) i( JP( )—ri) O(T)ly{', (261)
we may reformulate (2.5, ) as tollows
T
VT21, f dt (M, (1) 9, 9,)<CllglP, @.5,)

1
Note also that since || ¢ + v [I?“ <2 |12 +2 v HQ, it suffices to consider the cases
supp J, © (0; o) and supp VN (= oo0; 0) separately.
Proof of Theorem 2.1 inthe case suppJ, < (0; ). There exist
r’>r_andr’ <r,_,suchthat supp Jy < (r_, ' ) M (0; ) and it is possible to
find J € C;O(R), J 20, supp J < (0; ) with the derivative J' such that J' 20,

supp J' < (r'_, r’,) and 2J7 2J 7. Then we can find g_, g, € C (R) such that
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0<g <1, 0<g <1, g M=1 for A2r,, g (=1 for Asr,

supp g+c(r; , ), supp g_< (-, r' ), and define M:(t): X->K by

ME=21(L)g,(v,p@) (3 @,)

Mo@W=2J(7) 8 (VipONI () g Ty
FortpeRanE[_F;n(H),te(M:(t)%,(p,)isCIon(o;oo)and

j‘-(M ®e,0)=(MTO+MFO) e, ) @28,)

where :

Mf(:)=nHoM§(z)=g—,M§(:)+[iHo,Mf,(:)]: KoK,  @9,)

is the Heisenberg derivative with respect to H,, and

M>O=iVMe()-iMz@OV: X4, @9,)

where M : (2) is the extension of M : (¢) on the whole .

We shall obtain (2.5'1) as an easy consequence of the following two lemmas
Lemma 2.2. There exists C > O suchthatM , () S CM I (0)+ Gt~ 2, forall £2 1.

Lemma 2.3. One has (H) M3 (®) E (H) || € LY ({1; o); do).

("l

-F77]
Indeed, using Lemma 2.2 and (2.8, ), we have for ¢ € Ran E[ E ]

j'dr(Mi(w,.w,)scfdz(Mfm,cp,.m,)+CIdrr“2<w,,w,)='
1 -1 1

=Cj'dtgdt‘(M(i)(t)‘p,uq’l)_CIdt(Mg(})q)l’(p’)+cjdtt‘2((‘)”(p’)s
1 1 1

SCIMz®) @, 01+
+cJT'dr(|| E .0 BYM3OE _ _-,(H)||+:“2)n‘<pnz, @.10,)

1
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giving (2.5'i) due to || M g(t) | < C allowing to estimate easily the first term

and due to Lemma 2.3 allowing to estimate the second term of the last line.
To prove Lemma 2.2 we need

Proposition 2.4. Assume that J € C, (R) is such that the derivative J' € C§ (R)

and v e C® (R?) is such that the derivatives 0% e C:’(Rd) if la|21. Then

there exists a constant C such that: a) we have the following estimate of the norm of the

commutator .
| .
\ [n(D),J(T)J

b) we have the following Garding type inequality:

<ct™! fort21, j=1,...,d 2.11a)

X.
N20, J20=>nD)J () +hez=-C71, for 121, j=1,...,d; 11b)

¢) if p satisfies (H,) then

[iP(D),J(?)}:%J’(?)Vjp(D)+R‘, ‘ (2.11c)

with | R < Ct™2% for 121,
Note that in the case when 1 and p are symbols of the degree 1 and 2 respectively,
ie.
1% @) s +18) o pey s e+ 12T for an
aeN d,

then (2.11, a, b, ¢) follow easily by standard arguments of the symbolic calculus. The
proof of Prop. 2.4 under the general hypotheses considered above is discribed in the
Appendix.

Let us note that since (d/dt)J (xj ==t (xj /t) X /t 2, we may express the

Heisenberg derivative of J (xj /t) with an error O (¢t~ 2 ) in our notation:

X X; X
DHOJ(TJ)=5;J(7])'f[iHO,1(7])]=
X; X; X; X;
:%J'(;l)[vjp(n)—%%0(:‘2)=-}[vjp(b)—7’jf(%)+0(t‘2):

(2.12)
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Proof of Lemma 2.2. Using (2.12) we may write °

Mi@p=+% -"("L)(VP(D)—iJgi(Vp(D))J( Y+he+0 (™ 2).
.13,
Ifn (§)=gi(VJ.p(§)), thend%n e Cf(Rd)for ala € Nd, hence (2.11a) implies

X;
that the commutator of g, ( Vj p(D)) andJ ( f )isO (¢~ 1 ) and using the decomposition

Vjp(D)- P Ll +(‘7jp(D)-ri), 2.14,)
we may write
MI@O=M O+M],O+0@"?), @.14)
with
t 2 v xj '’ xj ‘ N
l(:)=¢7u(7)(ri-7)gt(VjP(D))+hc, @159
X
0= 2 (LYY pD) - 1y) 8, (V,pD) +he. 216

Using (2.11b) with n(D)=gi(Vjp(D)) and £JJ' (xj /t)(r’i—xj /t) instead of
J (xj /t), we have
o % %j -2
+JJ (7) r:t 7 (Vp(D))>O=>M 1(t)Z—Clt ,
for a certain constant C, . If 'q(E;.)=(V.p(§)—r:t)gt(V.p(§)), then
0%n e C (Rd)forallla | = 1 and using2 JJ' - Jo instead of J in (2.11b), we have
200 =72 020,
£(V,pD)-r}) g, (V;pD)20=>M7T ,(02M7 ,®-C;t77,

where

it n=+ly2(4 , -
Mllg(t)"itjo(t)(VjP(D)"ri)gi(Vjp(D))'*'hc"

—

1y, p0) - r) g (VpON I o (D +0?). @ty
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Since there exists ¢, > 0 such that £ A-r 't~) g8 (M) 2¢, Fi‘(k -1, ), we can see that
for certain constants C, ,.C, , G5,

‘M’;(t)sz,,_(:)—clt‘zzM'f,z(:)—sz‘zzc'oMt(z)—c3':‘2. W (213

Proof of Lemma 2.3. Clearly

x.
+ s r K]
”Mo(:)v E[_FH(H)" SC”J( DHviE,

e L1 ([1; «o); db),

H)

-77]
and due to the estimate Lemma A.1 of Appendix,
[yt ¢ %

v, M;@1ll<2 " {gi( V,pD), V ) J ( )] “ s

<264 (8,) e L' ([1; 0); dr). W

[ v, pD), v/ () I (2 )]

Proof of Theorem 2.1 inthe case suppJoc(-oo;O). Letr’,
" r' .8 ,8, beasbefore. Sincesupp Jo< (r”, r ) M (= o0; 0), it is possible to find
Je Cy (R such that J<0, J' 20, suppJ c(~;0), suppJ' c(r; ri), and
20 =7 g . Since now JJ' < 0, the reasoning analogous to the proof of Lemma 2.2 gives
nowM , ()s-CM T O+Ct™ 2 fora certain constant C > 0and to complete the proof

itsufﬁcestoreplacer,Mg ande by -Mf, —Mg and —M,j in (2.10,).

3. Existence of wave operators of Deift—Simon type
In this section we make the same hypotheses on H, as in the section 2.
If &, € C‘:(Rd), m=1,...,d, then g=®gm denotes the function of class
C% (R?) given by
EA LAy, ) =8 (M) g (Ay) g, (). G.1
Theorem3.1. Let J,g € C,) (Ryand g=® ¢ with g € C, (R), g >0and
g,€CoR) form=1,...,d Fixr, 7>0, je{1,...,d} and assume that
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supp &; M [~ r, r]=0,7 =0 in a certain neighbourhood of 0 and supp 7 ' < (- r, 1.
Then the following limit exists

. X . s
s~ lim E #H,) ™7 (L) g (IpYe " 3.2,

tswo [-T7]

Proof Letje C;°(R) be such that supp J~’ c(-r, r),]ZO,.;=0 in a certain
neighbourhood of 0 and J = 1 on the support of 7. Then setting

- X - X; .
My ©=T ()8 (VPONI (Plges 33

. . w1
we note thatJ = J J and recall that[g (VpD)), J ( TJ ):l =0t~ 1) due to (2.11a), hence

x —~
721 (L) g (VPO =My @+ 06" . 3.4
Thus it suffices to prove that forany 7’ > 0, ¢ € Ran.E[ —FLF] (H, ), lim Q, pexists,
1 —> o
where
itH, - itH, '
Q,(p=E[_7;7](H2)el ?Mo(t)e . (3.5

We shall check the Cauchy condition estimating || Q» ¢ - €2, ¢ || by

sup fdz ld’ sup G5t 9, W)

hwii<t? weRanEl _;;](H)H\VIISI ’
(3.6)
Gt o) =Idt [CACT ST} 67

t! '

where(ptl =e—ilHl P, wf=e-i’H2\p and
: d .

M ()= DHo M, 0= Mo 0 +[iH, , M, (9], (3.8)

M, =iV, MO -iM,()V,, 3.9

M, (1) being the extension of M, (¢) on the whole 4/
We complete the proof of Theorem 3.1 by showing the following lemma
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Lemma3.2. Fork=1, 2, sup Ce 2, ", @, y) > 0when
VeRmE . . (H ).||W||51

t',t oo,

» . + _ . . - 4+ .
Proof for k=1.Letg, =g for m#j and write 8=8;+8; with
suppgj'c(—oo;—r), suppg;c(r;w). 'I'heng:g_+g+wheregi=®g:‘ and
gt - + - .
MI—M1’1'+M1,1+M1’2+Ml’2thh

_x; L x |

MT, 1 =(DH0"(TJ')]8 4 ( VP(D))J(%), | (¢.10,)
t,0=7(F Vp(D 7 (4 G.11,)
2(0=7(5) 8. (VpD)) Dy J () A1,

Introducing J, € C g ((=7; '\ {0}) such that Jp2 0 and J,= 1 on the support of
J' and T, we may write.7=.-1—’Jg I =T 12 and

Mf,x(f)=i1'( )M(I)J( )+0(t‘2), (.12,)

=

k M, 0= +J (M t)J'(l)+O(t‘2) (3.13,)
with

Nl;—-\

M, ()=¢ (—)(V P(D)-—)gi(Vp(D))J ( ’)+hc+C 172, (.14,)

Set r,=r, r_=-r. Then as in the proof of Lemma 2.3, due to (2.11b),
£J 50 /0(ry=x; /120 and £ V. p(D)=r.) g, (V pD))2 0 imply that it is
possible to choose C in (3.14, ) such that M, (¢) 2 0. Thus the Schwartz inequality for

the quadratic form M 4 (1) gives

(1,03 (yol T (2yv2)| <

- - X; X _ X 5

) \I(Mi(w(—‘l)(p'l A el M 07 (T ()w]) - sy

Replacing J by a constant C such that J < C [due to (2.11b) as in the section 2], using
£ (V;pD) - ry) 8, (VpD) € CoFy (Y, pD) - 1),
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and M, being defined by (2.6, ) with r,_=r, r_= - r, we may estimate
~ - X . 2
(M. 0I(Pref Te)s

< &((Mt ®+t"%) ¢, o ) < C((Mt ®+t72) !, o} ) . (.16y)
An analogous estimate holds with 7 instead of .;, hence by Cauchy-Schwartz inequality,
' "

Idrl-(Mf, O TE
¢

< C‘/I:Z'dt(«M_+M,,)(t)+r‘2) of o) [1la_+ M) +12) v, w?)

and clearly the same estimate holds with M ‘lt o instead of M f 1 lit suffices to replace

JandJ by J' andJ in (3.15,),(3.16,), ( 3.16 )]. To complete the proof it remains
to use the propagation estimates (2.5, ) for H=H, ,k=1,2. &

Proof of Lemma 3.2 for k=2. It suffices to note that
] M, (3] elL! ([1; o); d¢) in an analogous way as in the proof of Lemma 2.3. B

4. Minimal velocity estimates

In this section H is H, or H, given by (1.1) and satisfying (H, - H; )

Theorem 4.1. Let F, r> O.. Then for every 0<r's<r/2, every
JeCy(( —r'r')) such that 0<J <1, J=1in a certain neighbourhood of 0 and

every ¢ € 7L (H) such that ¢ = h(H)¢ foracertainh € C 5 ((~T; F)), one has

T— o

T

. 1 X 2 ’

lim sup det[l hv(-rn (VPO (el s el
1

j=1,.,d @.1)

Proof. We consider separately Z_=(— co; - r) and Z_= (r; ) proving
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lim sup Tjdt% 0o, 0)SC5 q,u2 @.1,)
T—> o
where
M n= J( )l (Vp(D))J(,)Ix @.2,)

We use the observables
c= £7(2 )x gt(Vp(D))J( )Ix+hc @.3,)

where g, € Cy (R), 0<g,<2/r, supp g, < (r/2; ), supp g_c (=;~r/2),
g, (M) =1/Afor A2r and g_(A)=-1/A for A<~r. Then

%\Wﬁ(‘) ?,9)=((MI+M3+M3)D 9, 9,) @.4,)
where
TP, R % 4.5
MT@0=%J () iHy, %184 (V;pONJI (L) +h, @s,)
ME(=22(D, J(Z)|xg. (V.pO)I(L)+h @.6,)
2_(’)—— H, (I)ngi( jp( )] (‘)"’ Cy e
Mi@O=ti(VMg@)-M3OV), @.7,)

M % (1) being the extension of M } (1) on the whole %, Hence

Hamtoo,e)=
1

T
1 1
=7.|:(M§(t) P 5P, ]1 T,[ t((M +M% 3O, e). 4.8,)
1
We note that
Lemma 4.2. One has Mi < Mf' (® and

T ' '
lim sup T[W ® e, 0 )] <G lel? 4.9,

To o
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and M, being defined by (2.6, ) with r_=r, r_= - r, we may estimate
- - X . 7
ACHIEST A IE T E

< E:((Mi(z) +t7 ) g, <p})s c((Mi(z)u‘z)'«p} .9 ) (3.16,)
An analogous estimate holds with 7 instead of .;, hence by Cauchy-Schwartz inequality,
t ”

Idtl(Mil(t)(p},wf)lS
4

<N [ A+ MO0 +12) 6 00 [+ M0 1) v w2

and clearly the same estimate holds with M:f , instead of M f , [it suffices to replace

Jand s by J'and 7 in (3.15,),(3.16,.), ( 3.16 )). To complete the proof it remains
to use the propagation estimates (2.5, ) for H = H ,k=1,2.1

Proof of Lemma 3.2 for k=2. It suffices to note that
M, @)l e L ([1; 00); dr) in an analogous way as in the proof of Lemma 2.3. |

4. Minimal velocity estimates

In this section H is H, or H, given by (1.1) and satisfying H, -H,).

Theorem 4.1. Let 7, r> O.A Then for every 0<r'<r/2, every
Je Cg’ « ~r “r')) suchthat 0<J <1, J=1ina certain neighbourhood of 0 and
every g € }{c (H) such that ¢ = h(H)¢ for a certainh € Cg’ ((=F, 7)), one has

T

. 1 %j 2 'y
lim sup 7. dt || g\ (V20N T () 0| <G 5 eI
1

j=1,..,d. @1

Proof. Weconsider separately Z = (- o; - r) and Z = (r; =) proving
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lunsupTId:(M O 9. 9)<C Nl “.1,)
T » }
where
i =1y (v.p0) 7 (3| “.2,)
s O=J(7) 1 (V;p () g 2y

We use the observables
MEQ =21 ()58, (G000 (F) gt b, @.3;)

where g, € C‘:(R), 0.<.gt52./r, supp g, < (r/2; ©), supp g < (-w;-r/2),
g, M) =1/Afor A2r and g_(A)=-1/A for A<—r. Then

GME0e,0) =M+ MF+MI)D 0, 9,), 4.4,)

where
ME@R=tJ( ’)lz Hy, %18 4 (V;pD)J (3 5yt he, @.5s,)
I % v Wi @.6,)
M3 @ =22|Dy J(7)|X8 4 (V;pDNJ () +he, 6y
M;@O=+i(VMi@®-ME@V), “@.7,)

M g (9) being the extension of M g (¢) on the whole #. Hence

Hd:(M‘f(z)w,,(p,h
1

lr{(M ® %,ﬂ J de(M3+M3)D @, ). 4.8,)
1
We note that

Lemma 4.2. One has Mi =< MT () and

T r' 2
lim sup r[(M O e, @ )] G lelR @9,)

T— »
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Proof of Lemma 4.2. Indeed,ili(t)SMf(t)followsfrom

t1iHy , %185 (V;pD) =+ V;p(D) 8 4 (V; p(D) 2 17 (V;p(D))
X:
and (4.9, ) follows from Ixj /T|<r’onthe support of J ( % ), which implies
1 .+
T(MO (1) Pr> ‘PT)S :

| X X 1
s(J(-%)r'gt(vjp(D>)J(7;)«pT, w,)qc»,,’gfr,, @.10,)
[due to (2.11b)] and the first term of the right hand side of (4.10, ) can be estimated by

2[;1 I cpll2 because of 0< g, <2/rand0<J<1. M

The end of the proof of Theorem 4.1. Using (4.8, ) and Lemma

4.2, we can see that it remains to prove that for k£ = 2, 3, one has

T
%—‘_"dt(Mt(t) ®,,%,)—>0 when T— o, @4.11,)
1

Proof of (4.11,)fork=2. Wehave
1 1, % X\ X X;
7M§<t)=i;1({)(Vjp(D)—T,’-)%gi(vjp(n)m;’)+
+ he + O(t.1 71 ), (4.12,)

hence introducing J, € C°0° ((=r; )\ {0}) such that J, = 1 on the support of J', we

may write J' = J'J g and repeating the reasoning of the proof of Theorem, 3.1, we get

1StST=-CM,()-C 2 spMEi@saM, @+ a2 @13)
where M, (¢) is given by (2.6, ). Then the propagation estimates (2.5, ) imply that for
any € > 0 we can find T, such that

T

J.dtC((Mi(t)+t—2)(pt,(pt)<g : (4.14,)

T
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for all T2 T}, and it remains to note that%, dr (M § ®Oe,,9)>0whenT—> . B

n—-t——.cﬂ

Proof of (4.11,) fork=3. It is based on RAGE theorem (cf. [RS], v. 3),
which states that for every compact operator K, one has

T

1

Tjdt “ KEC (H) P, " —> 0 when T — oo, 4.15)
1

Indeed, the operators K= (1 +|x )V * h(H) and K ‘= V{h(H) are compact, hence
RAGE theorem allows to estimate easily

AV, My @, 9) ISCIK E . (H) o, Il ¢,
then [xj s 8+ ( Vj p(D))] being bounded, we have

e v iv!
(7)1, 8. (V;pPDOMI () Vg, 0, || S

<CIK'E,D oMl ol +CIK Q-IX L) ol gl

hence RAGE theorem allows to estimate easily the first term of the last line, while the
second term tends to O when f— oo, because (1 —J )(xj /) = 0 strongly and K /

compact imply the norm convergence || K /(1 -J )(xj /1) || > O whent — oo, It remains
to estimate

£, %
([XJV J(_tl); gi(vjp(D))] h(m (p’,(thl (4.161)
Note that
xj xj Xj -1
J
is uniformly bounded, hence the same can be said about [xj vy (xj /0, Vjp(D)] and

due to (A.2), about [x; V ‘y (; /1), 85 (V; p(D))] as well. Since h(H) - h(H,) is
compact, we may replace A(H) by h(H; ) in (4.16) and (A.1) allows to estimate

<

X:
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X;
{ % VII(F), Y, p(D) ]h(bfo )@,

because h(H,, ) commutes with Vj p(D). Using (4.17) we can see that RAGE theorem

<C 4.18,)

b4

allows to estimate the right hand side of (4.18), because V [h(Ho) is compact and

X [V, 9, O h(Hy) = Ix; VY, Y, p(D) h(Hy ) - 5, , V; pO)] V¥ by )

is compact as well,
5. Proof of Theorem 1.1

The idea of the proof consists of introducing a suitable cut-off g( Vp(D)) between
two evolutions in order to be able to use Theorem 3.1 and 4.1.

It suffices to fix A e€X and to find 8,> 0 such that for every

he C°(’)° (A =845 Ay +38,)), the limit 5 - lim Q, exists, where
l—> ®©

Q=e"e ™R @) E, (@, ). 5.1)

By the definition of & , we may assume that

3 r>0VEeRY, A-58,<pE) S +8,= | VpE) |2 2rd. (.2)

Lemma 5.1. There exists a partition of unity { & } g Jormed by functions

j=0,1,..

g€ Cy R?) such that 0 < g1, =g  with g}’m € Cy (R) satisfying the
conditions

SUpp &g ,, S (=2r;2r) for 1<m<d, (5.3

supp g; ;M\[-r,r]=0 for 1<j<d. (5.4)

Proof.Letge C : ((—2r; 2r)) besuchthat 0 < g < 1 and g = 1 in a neighbourhood
of [~ r;r]. Denoting g=1-g, we take g, (A)=3 (%, ), &M =g )ZM,),
8 M =g R )g)EM) g M =gA)gR,)... g(y_ g fordsj<d
and gy (M =g ) g (A,)... g Ay ) g (A,) M

We shall check the Cauchy condition for Q, ¢ decomposing for 0 < r'<r/2,

Qt(p=Qr,,?(p'+'Qr,,t<p, (5.5
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where

i X .
Q,, ,=e™nt) Y T, (L) g (PONMH, e E, @), 6.9
1<j<d ;

- iH, % -iH

Q. =" ThH) 1= Y T .()g(VpD) | WH,)e “VE (H,)

1<5j<d ’ .

6D

and J,=1-J,, with J,,& Cg((-r';r")) such that 0<J,<1,J.,=11ina
neighbourhood of 0.

Lemma 5.2. The limit s - lim Qr, ' exists.
t—o>0o

Pro o f. Theorem 3.1 gives the existence of limits analogue to (5.6) but with
h(H,, ) instead of h(H, ) in front of T (xj /t). However li(H1 ) - h(H, ) is compact and
J. (x; /1) > 0 strongly, hence (h(H, ) - h(Hy ) T . (xj /)= 0 in norm when

t > .l

Lemma 5.3. There exists a constant C, > 0 such that

im[|Q,. ,ellsC N7 |el. "6

1o

Proot. First we note that the limit in the left hand side of (5.8) exists. Indeed,
Lemma 5.2 still holds if Hz = hll , hence the limit

. - itH - % - itH
lime ™ “vhEH) 1= Y T, (L) g (VpOY) | b e o=

> [ 15jsd -
itH

2 . - - Xj -
=R H)e- Y tme” a@E)T, (L) g (VpO) AH e g

1<jsd 2%
exists. Thus it suffices to check that for ¢ € ]{‘ (H, ), one has

T

. 1 - _ '
lim sup 7 j dellQ. , eI <Cy el (5.9)

T o 1

However, { & '}j =0 1... g being a partition of unity,
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— X; X;
I- 3 7,.(7)&(VPD) =g (VD) + Y. J,.(5)8(VpD)) (.10
1sjsd 1sjsd

and (5.9) follows immediately from Theorem 4.1 and from RAGE Theorem applied to
the compact operator g ( Vp(D))h(Hl ). Indeed, for & belonging to the support of
8o (VP(E)) we have | Vp(E) | < 2rd, implying h(p(€)) = 0 due to (5.2). Therefore
8o (Vp(D)h(H, ) = 0 implies that g, ( Vp(D)h(H, ) = g, ( Vp(D))(h(H,)- h(H,)) is
compact. &

The end of the proof of Theorem 1.1. Forany € >.0 we choose
r' > 0 small enoughto assure C, Nr'/r ||l < £/4 in the right hand side of

(5.8). Then there exists ¢, such that for ¢’, t"2t, we have

I!ér, ,"(p—flr, cellslQ. M el+1Q,. . ¢ ll<e/2 due to Lemma 5.3 and
”Qr, e t,(pil < &/2dueto Lemma 5.2. W

6. Genaralisation

If X, X' are Banach spaces, then B(X; X ') denotes the Banach space of linear
bounded operators X — X' and B(X ) = B(X; X).
Let X be alinear space, M a function X x X — C and denote the value of M on vectors
¢, v € X by (Mg, y). Then M is a sesquilinear formon X if forall ¢, ¢’, y € X,
o, pBedC,
(M(op +Be), ¥)=a{ Mo, yv) + B(My', y),
(My, ap +Be' )= al My, ¢ )+ B My, ¢ ).
If moreover ( My, ¢ ) =( Mg, y ) for all ¢, y € X, then M is quadratic form on

X. If X is Banach space then Q(X') will denote the Banach Space of all bounded
sesquilinear forms on X, i.e. all sesqulinear forms on X satisfying

1Ml )= sup (Mg, w)| < o. 6.1
eveXfiol,s1, lvll,s1

Let A be a real interval and assume that M(r) € Q(X ) for every t € A. Then we write
t—->Mp)ew- ck (A; Q(X)) if for every ¢, y € X, the function t = { M), ¥ )
is of class C *. We note that for 1 < J £k, there exists (d/dt)j M(¢) € Q(X) such that

(@/d))? (Mg, v )= (d/di) M(D)e, w), if ¢, yeX.
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Remark 61. Ift'—> ?,. t'— v, are continuous A — X and
(t > M) € w- C(4; Q(X)), then the function (¢, ¢, ¢" ) = ( M(9) ®, P, Y is
continuous on A x AZ,

Indeed, we may assume that Z&, A are compact, hence t'— || . ”X s
t" >y, 1> I M@) || o0x) 3re bounded (due to the Banach—Stainhaus uniform
boundedness principle) and & 0= {M(t+9) ®,., P )= (M@ PP ) uni-

formly with respecttoz’,t" € A.
Let the Banach space X be a continuously embedded dense subspace of a Hilbert

space . Then every operator M € B(X; #) defines naturally (M- , - ) € Q(X) by the
formula

where (-, -) is the scalar product of #. In particular we can identify B(#*') and
Q(#). We denote by || - || the norm of # or the norm of B(#') = Q(H).

IfA, A Be B(X; #), then we define adﬁ2 1 B € O(X) setting
(ad§ 7 Be, v) = (49, By) - (Bo, Ay) 6.3
Opn_.q@ .
and denote adA B= adA' 1 B.

Assume that (1 — M(D) € w— C' ((0; ); B()) and { H(1) } ,, , is Hj-admis-
sible in the sense defined in the section 1. Then setting

D g(,) M(f) =i ad g(,) M) + (d/doM(p), (6.4)
we define (t— D1Q1(z) M) € w— C((0; x); Q(D)), where D is the domain ofHo with
the graph norm || @l =il @ || + || Hy @ |I.

Let X, X' be Banach spaces and X  a dense subspace of X. We shail write

A€ BK(X; X ") if A is alinear operator A — X' such that

” A ”B(X‘ X'): sup ” Ao ”X' < 00, 6.5
’ ek lels1

IfAde BX(X; X ') then the extension by continuity, 4 € B (X; X'), is uniquely
determined and gives the natural correspondence between elements of B?C (X; X' )Yand

B(X; X'). We say that 4 is the closure of A in B(X; X ' ) and A is the restriction of 4 to
KXGe A=A IYC in the usual notation).
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We write M € QFC (X)) if M is a sesqulinear form on X such that

WM gy = sup | { Mo, y )] < oo. 6.1)
o,ve X, lol,st,llyl, st

If Me QYC(X ) then the extension by continuity, ‘M 2X) ¢ 0X) is uniqu'ely
determined and gives the natural correspondence between elements of QﬂC(X ) and

O(X ). We say that 7 2%) is the closure of M in Q(X) and M is the restriction of
M%) o x % e M=MAXN ). For M: A Qu(X), we write
> M) ew-C(4 QX(X ) if for every ¢, wyeX the function
t = { M(#)p, y ) is continuous and ¢ — || M(¥) || o(X) is locally bounded. Note that

(£ = M) € w= C (& Qre (X)) & (£ > MB) @¥e w- C (4 0X)).  (6:6)

Indeed, if ¢, , y, € X fort’ > Oandt' > 0= ¢, > ¢, € X, ¥, > Yy € X
in X, then applying the reasoning below Remark 6.1 we get

{ M(t)Q(X ) Py 5 Vo Y= lim ( M(t)cp, » W, ), where the limit is uniform with respect to
t'>0

t € A for any compact A.
In order to prove Theorem 1.1 without the hypothesis | p(§) | > « for | § | — o, it

suffices to show that Theorem 3.1 remains valid. We take A= H * (R d ) and state first
Remark 6.2. If M, () is given by (2.6, ), then
=M, @) e w=C([1; ®); Qg (D))

Proof. Note first thatif J, € C ;5 (R), g, is bounded, then

(:»Jo(ff)go(vjpw»fo(?)] & w= C([1; ); Qg )
S w= C([1; ); 0x (D).

Consider now g € C” (R) such that g € C‘: (R), £ =0 in a neighbourhood of 0

and J € C;’:(R) such that J'=J g. Using the boundedness of the commutator

[J (xj /1), &( Vj p(D))] (cf. (2.11a)) and applying (2.11c) we can see that for every
t2 1 there exist R, (1), R, () € BYC(}[)’ such that
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% Ny_,2,.% - . ~
Ty (L) (%, pO) 1y (F)=72(F) V,p(D) 5, piD) + R, () =

- [z’tﬂo (239, pD) ] +R, (),

where Z;(k) = g(l)/ A is bounded and thus it is clear that both terms of the last line belong
to QFC (2). It remains to note that £ — {J, (xj /Hy(v f pD) J, (xj /1), V) is continu-

ous for every ¢, y € X7, because t —> J, (xj /t) is continuous from (0; o) into the

Frechet space H® (R?). B

We reformulate propagation estimates as follows

Theorem 2.1 reformulated. If 7, r_, r e R, Jj € C;° ((r_,r IN{O0}) and
M, (#) is given by (2.6, ), then there exists a constant C such that for every
¢ € Ran E[_ 7] (H), one has

4]

Jazz<Mi<z)Q<”’<p,,cp,>scuq=n2 (6.7,)
1

(note that the integrated function is continuous due to Remark 6.1 with X = 2).

Proof. Let M,f () be given by (2.7, ) and (2.9, ) for k=0, 1, 2. Then clearly
Mi@) e By (%) and ME@) e Oy (D), because

IVEPN -2 I gt p O
MEI@)e?) =D goMg(t), MI@O2P) =adEMEqw.
Note that the proof of Lemma 2.2 and 2.3 are valid and we may state them as follows

Lemma 2.2 reformulated. There exists C > 0 such that for all t 2 1,

M) P <emin 9 va?l 6.8,)

Lemma 2.3 reformulated. One has
D
NE 7.7y HYMFO PPV E L o (H) g, € L' (11 w0); ).

Then instead of (2.8+ ) we may write
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M0, 0= T (Mi©2 g, 0, 6.9,)
1<ks<2

and instead of (2.10+),

T T T
fdz<Mi(:) e?) g, )< C_[dr<Mf‘(z) Q‘”’cp,,<p,>+CId:t‘2u<pn2s
1 1 1

T
T —
< c[(Mf;(n ?» 9, )]1 + Cfdr'u M5O 2P Y ypy Il Ho+1)e 112+
1

T
+CIdtt'2||¢|;2, (6.10, )
1

which easily implies (6.7+). W
Proof of Theorem 3.1 withoutthe hypothesis (2.3). Since
d —— —_——
dMo0e ,v)= ¥ (M, 0% g,y (6.11)
' 1sks2
if ¢, v € 2D and M, are defined by (3.3), (3.8), (3.9) for k=0, 1, 2, we have (3.6)
with
t"
G, @, W) =J'dz KM, 08P gl w2l (6.12)
t!

Clearly the proof of Lemma 3.3 holds and it remains to prove Lemma 3.2. Following
the beginning of the proof of this statement in the section 3, we get

| (M, O, W) | S

<CV(M_+M O+t )0, @) (M _+M O+t 2 )y, y), 613

for @, v € X . Hence for ¢, y € 2, we have

KM, (%P g w2)|s
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sCW@M_+M )0 2P 41720l @ WM _+M )0 2D 417 )y 2, v )

and we complete the proof as in the section 2, applying Cauchy-Schwartz inequality for
integrals and propagation estimates (6.7, ).

‘7. Propagation estimates of the second type

In this section H(s) = H, (¢) or H, () satistying the hypotheses of Theorem 1.2, we
assume s = 1 and denote ¢, = U(t, 1)o, for ¢, € 7.

We shall write M(¢) € G (H()) if (t > M()) € w- C{{1; ®); Q(2)) is such that
M(¢) is a quadratic form on 2 and there exists a constant C such that for every
P, € Dand T21,

T
Id:<M(t)cp, o)< Cllol> .
1

Note that the integrated function is continuous due to Remark 6.1 with X = 2.,

Theorem 7.1 (Propagation estimates of the second type). If J, € C‘; RV{O0}
and

X: X;
M0 =1y (3)|2-9,00)

%
Jo(?)l_ycy 7.2

then M(t) 2P e G (HQ)).
At the beginning of the proof-of Theorem 7.1, we state
Remark 72 Let f=g,+g with gy € C,(R) and g € C* (R) such that
g" e Cy (R)and set
v 0=L0 (A Eov o s (E @.3)
M0 =770 (FI| 7= VD) o (Pl ‘

Then (t—%Mf(t)) e w- C([l; ); QYC(@))’

P ro o f. It suffices to follow the proof of Remark 6.2, using 8> & and § with the
argument X /t— Vj p(D) instead of Vj pD). m

198 Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, No 1/2



Wave operators of Deift-Simon type

Thus, taking f(A) =|A| we get (t—)Mf(t)) ew-C([1; x); Qx(m)). Taking
FO)=\ or f=F, we know that t->M () and t—>M (1) belong also to
w = C([1; ®); Qs (2)), where

~ : ' X; .
M(r)=%10<’—?)(i,’—vjp(o))lo<7’)l,c. a4

Mo=2rE)F (ﬁ-v. ® ) G 1.
L O=3Jo (7)) Fi | 7-V,p0) |Jo (Flge- (1.5)
Since £ Dy J (/0 =+ M@)+ O™ %) if J & C (R) is such that J'=J 3, itis
clear that + M (1) 22 € G (H(p). Since | A| = 2F, (1) - A, we have
Ij(T)Q@):zme)_ﬁQ(ﬂ)_ (1.6)
Hence it sufﬁcestoprovemqﬂ )e G (H(?)) instead of M_(t—) D) ¢ G (H(D). Set
Y. M =7, (A 7e)/e for € >.0, 1.7
where v, € C ¢ ((~ 1; 1)) is such that y, 20, Jyl =1, take f, € C (R) being C* on

R\ {0} such thatOsj;)sl,f(')zo,fo(l)v=F+()~)forJLS%,fb(l):lfor A1,
and define : '

Si=h* y:_ p for 121 [where 7,—3 )=t B Y, (¢ B Ml (7.8)

with B > 0 fixed small enough.
To prove M _ () 22) ¢ G (H(®), we may consider separately the cases
supp J, < (0; 00) and supp Jo © (= o0; 0), using the following observable

(B %
Mo(t)=—J(—t-)j; T—Vjp(D) J(T)'ﬂc’ (7.9
where in the case supp J, < (0; ) we take J € C f(R) such that /20, J' 20,

supp J < (0; ), 12213 , 2.]]’2]%, and in the case supp.loc(—.oo; 0) we take

JeCF (R)suchthatJ<0,J' 20, supp J'< (~00;0),J 2272, ~2/7 272 Then
we have

Lemma 7.3. There exist constants C > 0 and € > 0, such that for all t 2 1,
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M, ()< CDy My () +Ce™ 1= = (7.10)

Lemma 7.4. One has || [V (), My O] || € L! ({1; ); db).

As before, Lemma 7.3 and 7.4 allow to follow the reasoning based on formulas
(6:9 ) and (6.10 ), proving that M, () @) € & (H()). Thus it remains to prove
Lemma 7.3 and 7.4. "

Proofof Lemma 7.3. WehaveDH M0=M1+M2with
) Xj '
M, @0=-J(7) Hf —-VP(D) J( )lx, (7.11)

==2 4 5 \% 73 7.12
M,@®=- DHOJ(t)f; i jp(D) J(t)lehc. (7.12)
Step 1°. We define

f,)= Alrry f M\, (7.13)

% %j
=152 )f,(T—V,p(D))J( Yo .19

and check that M OsM O+C" 1= for certain constants C,e>0.

Indeed, we remark first that | Hd_t SiM <Gyt 1-p [cf. (A.7c) of Appendix], hence
X; X
i e d i -1-
DHof,(T—VjP(D))—([lH > +3§)f,(;-vjp(l))) lg=,+ O Py=

=4 je- ')"f( Vp(D)) KMo woem1P). aas

s=t

But
is Xj
eH°ft(}J-—Vjp(D)) o= f,( 5 (7.16)

and since % A (xj /s)=~ ft (xj /5)/s, we can see that the first term of the second line
- of (7.15) equals

L il - X% H 1=(%
g€ 0f(Lye °{s=l=_?ft(7-vjp(b)} (.17
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Thus for a certaine > 0,

M, ()= —J(?)ﬁ(?~\7,p<v))1<4)lx+O(t"‘s)
X; (X )
=—}-12(°;L)f;E—-tl—Vjp(D))|yc+O(t_l"e), (7.18)
and
oon=Lr2 8VvE( 5 -1-e
My @ =3d0(3) | 7~ V;pD) || g+ OC ) (7.19)

due to (A.2) allowing to estimate

[J( ’)f[ VP(D))]“ Smo(m“[u?),vjp(m}

where we have used

B =17 Vs g0 <1 e g llv(k) I g <GP 0 020

<cbP-

(note that f 6 e L (R) because f, € i (R)). Using (A.9), (4.6"), we get

2(5;')213(?),/5[?-";17(0)]20:541 O<M @+a17"

Step 2°. We define

£ =Af M), (7.21)
v oLy (KiyE(Y %j
Mz(t)" tJO( i )f; T'VJP(D) Jo(—t‘)lx, (7.22)

and check that M 2 < M, O+C™ 1= for certain constants C,e>0.
Indeed, using (2.12) we get

+he+ O(@~ )=

M, (H=5 J'( ’)f,(——Vp(D))J( Mg

A N AR - —1- .

=3 (t')[f,(‘;-VjP(D) +Cyt B | g+ he + OC £).  (7.23)
Due to (A.9), (4.6") and (7.20), for B > Qémall enough and C, as in (A.7b) there is
€ > 0 such that x: x°
200 (Fyza5 (),

=[ X, . : ~
ﬁ(%—Vjp<u>)+cof“‘20-—>M2<t>SM2 @+ci7
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Step 3°. To complete the proof of Lemma 7.3, we remark that the assertions of steps
1° and 2° give
L (ﬁ)(i+f’>(ﬁ—v p(D)]J' (D<M, O+ My @0+ Ce™ 1%, .20
tT0t ¢ t t J 0N X~ 2 » M
while (A.7d) gives the existence of ¢, > 0 such that
S (% Loz 5 (% -1-p |
tF+ t—Vjp(D) %t<ft+ft) t—Vjp(D) +Ct .| (.25
Proof of Lemma 7.4. It suffices to proceed as in the proof of Lemma 2.3. Il

8. Proofs of Theorems 1.2, 1.3, and 1.4

Proof of Theorem 1.2. We proceed in a similar way as in the proof of
‘Theorem 1.1, but using the propagation estimate of Theorem 7.1 instead of the estimate
of Theorem 2.1. It suffices to prove the statement for a class of functions J linearly

dense in A with respect to the uniform convergence topology. Thus it suffices to
(]
consider 7€ C°(R?) such that 7=0 in a neighbourhocd of 0 and
supp Vj.7c { x; € (=r; )\ {0} } for a certain » > 0. Denoting
X
Q,=0,0 97 (5)U, @ 9, 8.1)

(p,1 =U, (1, 5) o, \y% =U, (¢, )y for ¢, w € D, we may write (6.11) with

o 8.2
My ) =T (Plges &-2)

M, (2) given by (3.8) and

. -, X L5 X
M, (1) =iV, (t).l(—[~)—zJ(—t—)V1 ([)]YC‘ (3.3
Let ¢ € 2 and check the Cauchy condition estimating || Q. ¢ =€, ¢ || as in (3.6)

and €, given by (6.i2). The same reasoning as before gives

sup Cz (¢, t", o, 9) >0 for t',¢t"” — o and to complete the proof it remains
fwii<1

to show that sup L, @t", 9, ¥w) >0, whent’, t" — 0. Now
veD, |y|si
1o =, x (% ~2
1<jsd
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and since supij7c{xje(—.—r;r)\{0}}, it is possible to find
Joe CY((=r;)\{0}) such that VjJ(x)=(Vj:7)(x)J§(xj) for j=1, ..., d.
Setting

- X . X
Mf(r)=%lo(f;)1’i(f}—'Vjp(D)-)Jo(Tf), ®.5,)

we get

|<A'4 9, V,7 (X))

<N E W, 9) G 0 VT (3w, v, T (5w,

for @, ¥ € X, and using (A.8a) we have as before estimates

(CHERAEN Vﬁ(%)w))s CAEQ+ ) v w. 68
Thus denoting
X
N

- - _ ~ x; | x;
M0)=M; @) +M] @ =1, ()| 7= V;pD)

we get -for ¢, y € D, the inequality

(M, 02 g, W)l

<c X W(WQ‘”’)H'%},sp,‘><.<:i4,~(z) o) 4172y 42, w2

1<j<d
and we complete the proof as before using Cauchy-Schwartz inequality*and the
propagation estimate 1{41 ® QP72 ¢ G(HD). =

Proofof Theorem 1.3, Itsuffices to prove the existence of the limit (1.16)
on vectors. ¢ of the form

o=1lim U (59" T(5)U, ¢ 99, (8.8)

t—>

whereJ=1-J,J C‘: (R?)suchthatJ=1ina neighbourhood of 0. Hence

lim U, @, $)* Uy @, $)o=lim Uy (1, 9* T () U, (t,5) @ (8.9)

1> t—> o

exists due to Theorem 1.2. If Jis such that J=0 in a neighbourhood of 0 and J=1on
supp J, then N
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Q, = lim U,,9* T(HI U G =

1>

- °
=lim U, (5, 9)" T(F) Uy (9) tim U, (9" T(7) U (4 9) 9,

t— § >
hence 2, ,(s)p € Ran (7). ThusQ, (s) is an isometric injection of # i"’“(s) into

H ;m(s)‘and an analogous reasoning shows that for y € A ;ca‘(s),

Q, Ov=lim U, (9" U, 9)v (8.10)

t—>®©
exists, defining an isometric injection of #5*(s) into AT™(s). Since -

v=Q, (5 Q) Oy for every ye H scalt(s) it is clear that Q, () is also
surjective. W

Proof of Theorem 1.4. We assume that k=1 and prove first that
J{i“‘DJ{C(H] ). Let ¢@eX _(H) be such that @=hH)p with

he C: (= 8gs Ao +85)), Ay € X and 80 chosen such that (5.2) holds with a certain

r>0 If Jr,eC°o°((—r';r')d), J.,=1 in a neighbourhood of 0 and
Jr,=1-J',,then

o=lim e T . (Xye ™igriime™ 7, (X)e Mg @1

t—»®© t—» e
Since the first term pn the right hand side belongs to ﬂ{icat , it suffices to show that for

any € > 0 we can choose r ' such that the second term on the right side of (8.11) has
its norm smaller then €. Since the limit exists, it suffices to prove the existence of a
constant C, such that for 0 <r'<r/2,

lim sup T_’-dtnj ( ) ’1(p||_2gc0f.r_”(p”2, (8.12)

T— o

But the decomposition of unity from Lemma 5.1 allows to apply Theorem 4.1
and the compactness of go( Vp(D)h(H, ), implying (8.12) exactly as in the proof
of Lemma 5.3.

To prove that 7/ R }[ (H ) =0 denote by I1; the orthogonal projection on
an eigenvector of H, and remark that

204 Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, No1/2



Wave operators of Deift-Simon type

. -H — —- d
Iye = lim e 1H01(§)e UH"P=0,

§—>

because IT; is compact and J( % ) = 0 strongly, hence I, J( -’} ) — 0 in the norm. &

Appendix
Lemma A.1. a) Let 7 be a Hilbert space, B, A, A self-adjoint operators in H
and X a dense subspace of # , contained in the intersection of domains of B, A, A i.e.

K< DB)N D (A) N D (A)and let fe C™ (R) be such that the Fourier transform
of its derivative f 'e Ll(R). If adf 4 B extends to a bounded form on # , then for

P, veX,
Cadl iy, 1y B W)=
= I ol ® I"“ (@d?  Be Mg, o~ =NA 78)
2n ; A, 4
Consequently ad? , }( )B extends to a bounded form on H and |
- e
I adf(A) £ B < "f M | LR, 4% Il a dA 1 B]. (A.2)

b) Assume moreover that X is a Frechet spac ¢invariant with respect 108, A, A and for
Jj € N\ {0} let ad] - BI_,,Cdenow linear operators on K defined by induction as follows

adA’/-iBl]C = adA,ABlyc =BA-A4Bly,

itlp _(ad) . Ty,
ad/* 1 Bly (ad B;X)mx A(adA EBIK). (A.3)

Assume also that A —> e * <p, Aoel <p are continiuous functions R — X for

every ¢ € K. If n € N\ {0} is such that ad ; +,-!1 Bextends  to a bounded operator on

Hoand £ e L\R), then we may write
n

£9%a)y A%
f(A) s Blec= ) jr—adl S Blg+R,, A9
o :

where the remainder R, extends to a bounded operator on 7 , and
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IR I<5, (A llad " B with 5, (D =Uf T D D 1 - @)

Proof. We assume first that f(j) € Ll(_R) for all j € N. Then, for ¢, y e X,

=

O | D7) (e Mg, By) - Be, e~ My))
Introducing for ¢, y € X,
v (0,4, 9, ) = (Be®™M g, e~ -IM

we have
gi’(“» A, @, \v)=ik((ad§’23)eicu g, e M-y

and (A.1) follows from
1

(e Mo, By) - (B, e~ ‘uw) =[v(o, Ao, W= I do g:; (o, A, o, ).
0

Under the hypotheses of b), o = v (g, A, @, y) is C * and
3 v g g i =0, g ] oM
aCJ (U, 2’9 P, \P) = (ix) (e (ad A,Z B) e P, “’)'
Using the Taylor formula of order n at 0 for v (-, A, @, y) to express
[v (o, &, @, Vg , we get (A.4) with
1

i L (nh+l) jc"dc i(1-0d,,  n+1 ioh
R"(P—J'an (l)o a1 € (adA’i Be ?,

for ¢ € X, which implies clearly the estimate (4.4’ ).
To complete the proof for a general f; it suffices to pass to the limite — 0 in estimates

for the sequence of functions f(x) y(ex) withy € C (R), v(0)=1. W

Corollary A.2. Let A, B satisfy the hypotheses of Lemma A.1b), A=Aand

. (Wdeh
ad’A By = adf"ABL,,Ce BFC(}[) for j € N. (A5)

A If f eL'(R), then
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(def)
k _ ik , (A.6)
“ g Bl = 9 g, yon Blac Bx ),
lad £, Blgell B () llad ® Byl (1.6")

with o (f)asin(4.4').

b) If fA” eL! (R) and f' € L™ (R), then (A.6) still holds, but (A.6' ) should be
 replaced by

lad 7 Blll S @y () + 1 llo ) max [ladd, Byl 6"

) ® 7 i<

Proof. For k=1 the statement results from Lemma A.l1a) with 4 =A4. In the

following we drop IK and note that ad ) ad{1 = ad{4 adf( A which holds for j =1

duetotheJacobiidentity and the obvious induction extends the equality to arbitrary
jeN.
Then, by induction with respect to k we may write

k+1 k = k k
Bl = Bl < =

=00 (f)llad , ad% Bl <B, (f) @y (f)llad  ad” B|)=

= (N adk* By,
To getb) for k= 1, we use Lemma A.1 withn=1and 4 = ;1, which gives
ad g B=f'(A)ad (B+R,, IR <0, (f)llad} B,
and clearly || f' (4) ad ABl=If IIL(,o l ad , B ||. Then as in the proof of a), we get the
desired result for every k € N by induction with respect to k. |

Lemma A.3. Let ft and f0 be such as in the section 7. Then there exists a constant

C, Gindependent ont2 1, € R) such that

1,0 -f, W 1< P, (A.7a)
|2 ;j;}; (A =2 f’i LM |sCumh, (A.Tb)
| Zidiﬁ W< Gt~ 1-B (A.7¢)
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avc0>o, xf,(x)+X%J;(x)zcop+(x)-coz‘f’; (AT
Proof. By the definition of f we have
(f ;fo YA) = j (oA +X)—fM)y -p A} dN,
A ZI%L (fi-f)M) = I fo (? AL MMy -p M) aN,

;}i;_f, 0y =;,d;(j§ —ﬁ,)(M=I(fo (7»+?J)—fo(l))g;yt_ﬁ(l')d?»’.

We get a) using the fact that f; is Lipschitz continuous and estimating
LSRN < lek' l7,-s (A) dN' = CC; : B

Also A — f (A) A is Lipschitz continuous, hence

J(fo' A+ M)A +R) = ff WDy (V) dN| <CCpa™ B,

and we get b) noting moreover that

fu:; A+A) Xy () dN| < wa v s ) an=cc, 1P,

To get ¢) we use fact that f; is Lipschitz continuous and

d [ - 1] - ! [
G- =pP Ty @ Payepe Pty Py P,

hence the first term may be estimated by the same integral as before and the second term
gives an estimate by the integral

cjwﬁ rf‘“y‘_a(w)dxecczt"‘ﬁ.
Sincesuppfl(l)c[—t"p; ), we have A f, ()\)ZCt'Band using b) we have
d ' P “B. . 1
LM =h oMo Py =F S+ 007" it Asq,

hence d) holds for A < —}i; finally we complete the proof of d) estimating
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1/8
1 1 . 1
A2 7= Mf ()2 M () 2 A, with c1=§Jyl>0. n

0

Lemma A.4 (Nirenberg-Treves). There exists a constant. C (independent on
operators A and B) such that

lad w2 Bl<C|BIY?|ad, B3 (A.82)

F, (4)

llad% 12 BUSC2UBI* )2, B2 ad] B, (A.8b)
+

It is possible to give a proof using the Cauchy resolvent formula (cf. [H&], § 26.8),
but here we present a slightly different proof.

P r o o f. Using the same Y, as above, we may estimate

[FEL* Y- FLM IS

S.[IF+(>~+?»' )’—F+(7»)slvs(7»')d7k'$jll' Fys W) dN = C ¢,
if 0 < s§<1, hence

lad , Jv2Bli<lad v Bl +2C, ,, &% || B||:

F, () METRIO)

A

Since (F i/ 2)’ is homogeneous of the degree — l, we have

”(Fi/z,{(el SC’S-—I/Z’

L

=1/
w2 BISC e 2 lad B+ C e 2 B,

due to (A.2). We get (A.8a) setting € = || ad, B ||/|| B ||. Finally

|| ad 12 ad 12 B| S C|lad @

172 -
F,W) 7 F, ) 2 B||“ | ad, ad r

F, (A)
3 1 1

SCZ|B|*|lad Bl¥llad_  12ad,B|"?s

F, (4)

1 1 1 1 _
<C?|[B|*|lad, B[*|lad, B | add B |*. m
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Clearly the estimates hold also with F_ (4) or | 4 | = (F, + F_)(A) instead of F, (4).

Corollary A.S. There exists a constant C such that for any operators A, B,

A20, B20 = AB+hc2-C?||B|"*|ad, BI"?|ad} BIM.  (A9)

Proof. The desired lower bound results from (A.8b), because
AB+hc=F+(A)B+hc=

1 .2 1 .2
=F, (AY?BF (A)*+5ad%2 ,,B>xad 2B B
+ + 2T F @7 2% F W

Proof of Proposition 2.4. To get (2.11a) we use (A.2) with.
A=A =Js./t, B =n(D), f=J, noting that [in(D), x; /1] =an(D) /t= O(t'l ). To

get (2.11c) we use (A.4) withA4 = A= x; /t,B=pD), f=J, K= H°°(Rd ), noting that
~[pD), x; /1), x, /11 = [i V; p(D), x;1/12 = V2 p(D) /¢ 2 = 0¢ ™).
To get (2.11b) we use (A.9) withA =n(D),B=J (xj /t) and it remains to prove that

X;
[n(D), (@), J ( )1] =0¢™?). (A.10)

Using the expression (A.1) with 4 = A= x; /%, B=n(D), f=J, we can see that it suffices

to show the existence of a constant C such that for all # 2 1, the estimate

o X. .
[T‘](D),el(l G)kﬁ/‘[n(D),fiL]ewMi/t] ~SC|A|1‘_2' (A1)

holds. But n(D) e “ = & “in(D + se;), hence (A.11) follows from
(@ + (1 - ) Aey't) - (D - ohey/0) V, nDV/t | < C[ A Je 2,
being a consequence of the Lipschitz continuity of n, i.e. [n(§ + V) - () S Cy|v]. B

Remark concerning (H,).Let ® € L ([1; o0); dr) be positive, decreasing
and assume

(I/O(x D) VL E (H) extends to a bounded operator, (A.122)

[-%7]

10%VE@ < C, (xDx [P witm p > 0, I<|a|<N,. (Al2b)
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Then (H, ) holds and following [HG] it is possible to decrease Np modulo additional
short range terms. If p is quadratic then (H, ) is reduced immediately to the condition

|V V@) |<Cx). (A.120 )
Note that (H,a) appeared in [E 1], but many papers consider only the case

d(@)=Ct~ 1 ~f &> 0. Note also that V,{ may be a (pseudo) differential operator

(especially when | p(§) | > « for | § | = oo, cf. [HG], [If] with suitable decay properties
of coefficients.

Remark concerning(H3).prsatisﬁestheconditionlp(&)l+|Vp(§)|—->oo

when | &| — o and inequalities | @ % p(§) | < C, 1+ [pE)Y|+1VpE) D, then it is
proved in [DM] that (H, a) holds for every V| being H,-compact. The same hypotheses
on p imply (ctf. [DM]) the compactness of f(x) h(H,, ) for any bounded functions f, h

such that £ (x) = 0 for | x | o0 and h(X) = 0 for | A | = 0. Using f, g as before and
assuming that f is positive and A(1/f)}(x) extends to a bounded operator, one gets
Ah(H, ) compact.

If & is decreasing and integrable on R then ®(f) = o(f ™ 1 ) for t — oo hence (4.125" )
[or (A.12b] implies (1 +]|x])|V V;;(x) | >0 [or (1+|x)o® Vi(x) — 0] for

| x| — o. Then (H, ¢) holds if V,C(x) — 0 for | x| = cowith (A.12b) [or (A.12b") if

piis quadratic J* satisfied and with p satisfying estimates formulated above,
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Bonuosble onepatopul Tuna Hdeitidra-CaiiMona uist oanoro Kiacca
nponaratopor Hlpeaunrepa. I

Jex 3emmHcku

HMccaenylores BOTIpOCHI TCODHU PACCESHUA, CBA3AHHbIE C aCHMITTOTHYECKHM
NoseseHUeM HeKOTopbiX L peiiIepoBCKIX NIPONAraTopOB. A HMEHHO, NPEACTaB-
JE€HBI PE3Y1bTATHE 06 HX aCHMITTOTHYECKON MOJHOTE, KOTOPHIC TIOIYUCHBl METOIOM
BOIHOBLIX ontepatopos Jerdra-Calimona, pa3sBUTLIM B HacTOs e BPEMA B TEOPHH
N-tea. Pacomarpusaered Ciyqad 2-X Ted A Kiaacca OOWIMX, 3aBUCALIMX OT
BpeMeHM TaMIIBTOHMAHOB H(f) = Hy + V (I, x), moe Hy - muddeperimanbipii

OTepaTop BTOPOIG IICPAAKA C NOCTOARNBIMIL KO3 duiuteRTaMy, a V (1, x) yObipaeT
nput | x| — oo
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Xeunvosi oneparopn Tuny Heiidra-CaiiMmona os oaHoro Kaacy
nponararopis Ilpeninrepa. I

JIex 3eniHchki

HocmimxyoTscsa NUTAHHA Teopil po3ciioBaHHA, MOB’A3aHi 3 aCUMITTOTKYHOIO
noseniHkolo Aeskux LpenuHrepoBix nponaraTopis. A caMme, MpeJCTaBIeHO pe3y-
JIBTaTH NPO iX aCMNTOTHYHY NOBHOTY, SIKi OZepXaHi METOLOM XBMILOBUX OIlepa-
Topis et dpra-CaitMoHa, POIBUHYTHM B HaHWH Yac B Teopil N-tin. Posrmstnaerbest
BUMAfoK 2-X Til JUIS Kiacy 3arajibHMX raMimbToHiaHiB H(f)= H,+ V (4, x), wo
3ayexaTh BiX Yacy, &e Ho ~ mMbepeHUIANPHHI onepaTop ApYroro TOPANKY 3

NOCTiHKMH KoediuieHTaMu, a ¥ (I, X) cnagac Npu | x | — <.
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