Matematicheskaya fizika, analiz, geometriya
1996, v. 3, No 3/4, c. 231-260

Garding domains for unitary
representations of countable inductive
limits of locally compact groups

Alexandre |. Danilenko

Department of Mechanics and Mathematics, Kharkov State University, 4, Svobody Sq.,
310077, Kharkov, Ukraine

Received October 9, 1995

Let G be the inductive limit of an increasing sequence of locally compact second
countable groups G, © G, C ... . Given a strongly continuous unitary representation U
of G in a separable Hilbert space #, we construct an U-invariant, separable, nuclear,
Montel (DF)-space F which is densely (topologically) embedded in % and such that the
restriction of U to ¥ is a weakly continuous representation of G by continuous linear
operators in #. Moreover, ¥ is a domain of essential self-adjointness for the generator of
each one-parameter subgroup of G, and all such generators keep ¥ invariant.

0. Introduction

Modern analysis on functions (and spaces of functions) of infinite variables (see,
for example, [BK]) leads naturally to studying the groups of symmetry of infinite
dimensional topological vector spaces and their representations. Many of these groups
of symmetry are the countable inductive limits of locally compact groups or contain
them as dense subgroups. We note that the class of topological groups that can be
represented in the form of such inductive limit includes the infinitely dimensional Lie
groups, the groups of finite H-currents on a countable set, the group of step H-cur-
rents on the segment [0,1] with discontinuities in the binary-rational points, etc.,
where H is a locally compact group.

The purpose of this paper is to construct a Garding domain possessing a number of
additional "good" properties for a unitary representation of an arbitrary countable
inductive limit of locally compact second countable groups. Such spaces endowed
with the natural differentiable structure proved to be a powerful tool in studying
representations of the groups and their Lie algebras (in a generalized sense).
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The author’s need for Garding domains with the special "good” properties became
apparent during the course of work on point realization of Boolean actions of non
locally compact groups [D], where the linearization approach of A.M. Vershik [V]
was used. So, the present work can be also viewed as preparatory to [D].

Let G be a topological group and U a strongly continuous unitary representation of

G in a separable Hilbert space #. The family of all one-parameter subgroups of G
will be denoted by g. For each 0={d)|te R} e g, UO) wil stand for the
self-adjoint generator of the unitary one-parameter subgroup { U(&(#))| t € R }. Fol-
lowing the concept of G.C. Hegerfeld [Heg], by Garding domain for U we shall mean
a subspace of # that is U(g)- and U(d)-invariant, g € G, 0 € g, and, besides, which
is a domain of essential self-adjointness for all U(0). As it was shown in [G], if Gis a
Lie group, then a Garding domain consisting of co-differenitiable vectors for U exists
for each continuous unitary representation of G. This result was later extended to
arbitrary locally compact group [Ka]. However the situation is different for non
locally compact groups (see [Sa, § 2.5] for a counterexample). The main difficulty

arising is the lack of Haar measure on G, which was used explicitly in the construc-
tions of [G, Ka]. Nevertheless P. Richter [Ri], Yu.S. Samoilenko [Sa] and A.V. Ko-

syak [Ko] provided Garding domains for some co-dimensional Lie groups. In this

paper we generalize and refine this to arbitrary G = inj lim G, for an increasing
n-—»x©

sequence G; < G, < ... of locally compact second countable subgroups.

Main Theorem. Let U : G> g — U(g) be a strongly continuous unitary repre-
sentation of G in a separable Hilbert space H. Then there exist a separable nuclear

Montel space F and continuous one-to-one linear map J . F — H such that the
Jfollowing properties are satisfied:

(i) F' endowed with B( F', F ) is a separable Fréchet space;

(ii) Im J is dense in #,

(i) U(g) Im J =Im J for all g € G;

(iv) UO) Im J cImJ and ImJ is a domain of essential self-adjointness for U(0)
Jor all 0 € g; ‘

WI YWgJeL(F F) for all ge G,

232 Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, No 3/4



o .. .
Garding domains

vi)G> ¢ —>J 1! U(g)J € £ ( F, F) is a continuous map, where L ( F, F) is

the space of continuous linear operators on ¥ endowed with the weak operator
topology.

We shall call such # (respectively Im J ) a strong Garding space (respectively
strong Garding domain) for U. Note that under the above assumptions on G there is a
natural structure of Lie algebra on g. So, it is relevant to call g the Lie algebra of G.

To prove the theorem we first define the space 2 (G ) of "basic functions” on G as
the inductive limit of 2 (G, ), n € N, with some compact canonical embeddings

(depending on U). It should be noted at once that the elements of 2 (G ) are not
functions on G in a proper sense, but they are the sequences of functions on G, ,

n € N. Then the strong Garding space for U appears as the locally convex direct sum
of a countable family of some quotient spaces of 2 (G ). The main technical tools
used here are the Gleason—Montgomery—-Zippen structure theorem for locally com-

pact groups [MZ] and the theory of (LN*)- and (M")-spaces developed by J. Sebastiao

e Silva [SS] and D.A. Raikov [Ral-Ra3). Finally, we define a strong Garding domain
for U as the linear span of the set

jfn(gn) U@g,) h, d2,@,) | f,e D(G,), nkeN|,
G

n

where A is a left Haar measure on G, and {h, ,| n, ke N} c A is a special

compatible collection of vectors.
The paper is organized as follows. The first section contains background on
topological vector spaces. Here our attention is mainly focused on the properties of

(LN*)- and (M*)-spaces. The second section is devoted to the proof of Main Theo-
rem in the most important case: all the subgroups G, < G are Lie groups and

dim G

n+1
Gleason—Montgomery-Zippen theory to the inductive limits of locally compact

groups. Then we use these applications to adapt the argument of the previous section
_to the general case.

/G, > 0, n € N. The final section begins with some applications of the
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The author thanks Prof. K. Schmiidgen for helpful discussion of this work. I am
also grateful to the referee for pointing out an error in the earlier version of the proof
of Lemma 2.1.

1. Preliminaries

In the present paper we consider vector spaces over the field R. Without explana-
tions we shall use standard concepts and facts of the topological vector space theory

[P, Sc]. Given a locally convex space Z, we denote by Z' the (topologically) dual

vector space, namely the space of continuous linear forms on £ with values in R. The
notation (%, #) means a duality system, i.e., two vector spaces Z and ¥ equipped
with an irreducible bilinear form (. , .) on the product Z x #. As usual by o( £, ¥)

and B( Z, ¥ ) we denote the standard topologies on Z: the weak one and the strong
one respectively.

Given two locally convex spaces Z and ¥, we denote by £ ( Z, # ) the space of

all continuous linear maps A: Z — #. The weak operator topology on £ ( Z, ¥ ) is
determined by the following system of seminorms:

L(Z,F)> A—>(4de,f)l,ec Z feF',

where (. , .) is the ndtural bilinear form on # x #'. Everywhere below £ ( Z, ¥ ) is

endowed with the weak operator topology, unless another is stated explicitly. Given an
operator A € L( Z, ¥ ), we denote by A" : ' —> £’ the adjoint operator. Then

A e L(F',Z')if #' and £’ are endowed with B( 7', ) and B( Z’, ) respec-

tively.
The following two definitions were introduced by J. Sebastiao e Silva [SS] and
D.A. Raikov [Ral].

A locally convex space £ is said to be an (LN)-space if Z = inj lim Z, for an
n-—» ©

increasing sequence Z, < Z, < ... of Hausdorff locally convex spaces with the com-

pact canonical embeddings Z c £, ,n€ N

+1
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A locally convex space ¥ is said to be an (M’)-space if #=proj lim ¥, for a
n-— w

sequence ¥, «- ¥, < ... of Hausdorff locally convex spaces with the compact ca-
nonical mappings ¥, < ¥,,, ,n€ N.

We remind some basic facts concerning these two classes of locally convex spaces.
For more information and proofs see [SS, Ral-Ra3].

Every (LN*)-Space is a complete, Hausdorff, Montel space. Moreover, Z is a free

union of £, , ne N, i. e, an arbitrary (not necessarily absolutely convex) subset
AcC Z is closed if and only if ANZ is closed in Zn for all n € N. Every

(M')-space is a Fréchet—Montel space. It follows that an (M')-space is separable [Sc,
IV, Exercise 19(d)]. A closed subspace as well as a Hausdorff quotient space of an

(LN‘)-space ((M*)-space) is an (LN')-space ((M*)-space). The strongly dual space to
an (LN')-space ((M‘)—space) is an (M')-space ((LN')-space). ‘

2. Case of infinitely dimensional Lie groups

2.1. Let G be a Lie group, g the Lie algebra of G, and % (g) the universal
enveloping algebra of g. For every functional space Z on G we denote by Lg and Rg R

g € G, the operators of left and right shift respectively:
L)) =f(g~ 'n), (R, f)) =f(hg), h e G, fe E.
Given a compact subset K — G, we set
DG, K)={f:G>R|fe C®(G) and SuppfcK}.

Then 2 (G )=V e YCD (G, K) is the space of compactly supported co-differenti-

able functions, where X stands for the family of all compact subsets of G. For each
function f € 2 (G ) and an element 0 € g there exists a uniform limit

0f=lim t~ 1 (Ry, f~f) € D(G), @.1)

t—>0
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where (f) = exp (¢0), t € R. We see that (2.1) determines the structure of % (g)-

module on 2 (G ). Note that each O remains invariant any subspace 2 (G, K ), :

KeX, andaL =L aforeverygeG

It is convenient for us to introduce the standard nuclear topology on 27 (G ) in the
following way. We choose a left Haar measure A on G and a basis { 9,, ... , 9, } of g.

Now consider the sequence of norms on 2 (G, K ) defined by

IFAFEDN é‘*{" éakf”f) @p s 0 € {1, ., n}),

k<l
feD(G,K), l€ N,

where || - || is the norm determined by the inner product in LZ(G; A). The completion
of D(G,K)by| | lwill be denoted by Vf’zl (G, K). Since themap G= g —> Lg is

a weakly continuous unitary representation of G in Lz(G, A), it follows that
Gy )L, € £ (W, (G, K), W, (G, gk ) forallg e Gand K € X;
(i, ) themap K> g > L € £ (W) (G, K, ), Wj (G, gK,)) is continuous for all
K1 ,Kze _’ICwithKK'1 cK,.
Since ||- ||, <1l- I, <..., we have a sequence of canonical continuous embeddings
of separable Hilbert spaces:

WP (G, K)> W} (G, K)> W2 (G, K)>..., @.2)

where ﬁ”zo (G,K)={fe L2(G, M| f(g)=0 fora.e. g & K}. It follows from the
embedding theorems for Sobolev spaces that M, li’z’ (G,K)=2(G, K). Now we

endow 2 (G, K ) with the projective limit topology of the sequence (2.2). In other
words, 2 (G, K ) is a countable-Hilbert space and its topology is compatible with the
family of Hilbert norms || - [} ,, 7 € N. It follows from the Sobolev spaces theory that

there exists a sequence [ < 12 < ... such that the canonical embeddings

Vi’zlm (G, K)o Vf’zlmﬂ (G, K) are nuclear operators, m € N. Hence 2 (G,K) =
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- ol . . .
=proj lim W)= (G, K) is a nuclear space. Furthermore, since a nuclear operator is
m—» ©

compact, 2 (G, K ) is an (M")-space.
Denote by Vi’z'l(G, K) the dual vector space for Vt’zl (G,K),le N KeX.
Then we have an increasing sequence of separable Hilbert spaces

W2 (G, K)c W, 1(G,K)c Wy 2(G,K) ...

with the continuous canonical embeddings. This sequence is dual to (2.2). Then
D (G, K ) endowed with (2 (G, K Y, D (G, K)) isa (LN" )-space and 2 (G, K )’ =
=inj lim Vt’z_’(G, K). By [P, Theorem 4.3.3] 2 (G, K)' is nuclear. Note that

>
D(G,KY =V, nW; (G K) as a set. It is straightforward that 2 (G, K )’ is
separable. Now we deduce from (il ) and (ii1 ) that

(iz)LgeL(@(G,K),ZJ(G,gK))forallge Gand K e X ;

(ii)) the map K> g '—>Lg €L (D (G, K)), P (G, K,)) is continuous for all
K, K, ,K,e X with KK, CK,.
Note that for each 6 € gand f € 2 (G ) there exists a limit

df=limt™ Ly, f-f) € D (G).

t—>0
Moreover,
(iii, )0 L(D(G,K),D(G,K))forallde gandK € X .
Now we introduce a topology on 2 (G ). Consider a sequence { K p } ;°= , of com-

pact subsets of G with Up c NKp = G and Kp cInt (K p+1), where Int (. ) means the
topological interior. Then we have an increasing sequence

D(G, K )cD(G K,)<D(G Ky)c ... 23
such that all the canonical embeddings are homomorphisms [Sc, IV. 1]. It follows that
there is a Hausdorff locally convex topology on Z) (G)= up < N2 (G, Kp) such
that 2 (G) = inj lim 2 (G, Kp ). This topology is unaffected if we replace

p—>x
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{ Kp } :’= L by another sequence with the similar properties. By the definition, 2 (G ) is
an (LF)-space. It is nuclear, since every 2 (G, Kp) is nuclear, p € N [P, Theorem

5.2.4]. By [Sc, 1V, Exercise 19(a)], D(G) is a Montel space. Consider the dual
sequence for {2.3):

DG, K ) DG K,) DG, K)) ...

Note that all the canonical projections in this sequence are onto. Furnish 2 (G )’ with
B(D(GY, D(G)). Since 2 (G, Kp ) is a reflexive Fréchet space for all p € N, it
follows that 2 (G )’ = proj lim 2 (G, Kp ). Hence 2 (G ) is a separable nuclear

po®

Montel space. We deduce from (i2 ) - (iii2 ) that
(i, )Lg eL(D(G),D(G)) forall g € G;
(i, ) themap G> g —> Lg € L (D (G), D (G)) is continuous;
(i, ) 0 € L (D (G), P (G)) forall D € g.

2.2. Let H be a closed subgroup of G with dim (G/H) > 0, JLH a left Haar
measure on H, and J the Lie algebra of H. Denote by ¢ the identity of G.

Lemma 2.1. Let W< G be a compact neighborhood of e. Then there exists a
nonnegative function ¢ € D (G, W) such that for each neighborhood V< G of ¢
there is g € G with

B#{heH|chg) >0}cV.

The linear operator C: C(H) — C(G ) given by
Cr(g= J-f (B)eth =1 g) dhy (h), fe Cy(H),
H

is one-to-one and L,C = CL, for allh € H.
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P roof. We denote the quotient space H \ G by X and the quotient map G —» X

by p. It is well known that there exists a Borel cross-section s : X — G of p. Thus the
map

m-HxX> (h,x)—>hs(x)e G

is one-to-one and onto. Moreover, s may be chosen in such a way that for some open
subset Oy < X and open neighborhoods O, and O; of ¢ in H and G respectively we

have: m restricted to Oy, x Oy is a diffeomorphism onto O, (remark that X endowed
with the quotient topology is a «o-differentiable manifold). Without loss in generality,
we may assume that O, W. Let { W, } be a fundamental system of neighbor-
hoods of ¢ in G and {Xn } , be a sequence of nonempty open subsets of X with
Cl(uv Xn )c Oy and Cl(X,l )N Cl(Xm ) = @ for all n, m € N, where Cl means the
topological closure. One can choose nontrivial functions fn :X—>[0,1] and
l'l : H->[0,1] such that f,l e DX, Xn) , ln e D(H, Wn M H), and the function
¢ : G > [0,1] defined by

3 £ Lk if g=hs(x) € O
@)=y " _
0, otherwise

is co-differentiable. It is clear that ¢ € 27 (G, W ). Given a neighborhood V < G of ¢,
we find ne N with W cV and take x € X such that f(x,)#0. Then

c(hsix, ) =f(x,) 1 (k) for every h € H and the first conclusion of the lemma fol-
lows. To prove the second one we suppose that there are a function fe C (H), a
neighborhood V < G of ¢, and h; € H such that f (g) >0forallge h,V. Then there
is g, € G with

def

@#0 = {heH|chg)>0}cv™ L

Since 7LH (N 1 ) > 0, we have
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Cf(hogo)= J-f(h)C(h_lhogo)le(h) >0,
hoo" :

as desired. A routine verification implies LhC = CLh for all h € H. O

2.3. In this subsection we consider a sequence of Lie groups G, G, c G, < ...

such that G, is closed in G ne N, and G,={e}. We furnish the group

n+l

©
n=1

G=U G, with the inductive limit topology. Then G is a separable, complete,
o-compact, Hausdorff topological group. Note that G is not metrizable, unless there
is Ne N such that G, is open in G, , for all n > N. Since G is isomorphic to

inj lim G for each increasing sequence n; < n, < ..., we can assume, without
m—»>wo M

loss in generality, that one of the following is satisfied:
() dim (Gn+1/Gn) >0 foralln e Z+;

‘(I1) G is a Lie group.
Here we consider only the case (I). The main purpose of this subsection is to produce
the space of "basic functions” on G, namely an analogue of the space of compactly

supported oo-differentiable functions on a Lie group. We assume that a strongly
continuous unitary representation

U:G> g~ Up)
of G in a separable Hilbert space # is given. Let A, be a left Haar measure on G, and
let g, be the Lie algebra of G, , n € N. Notice that the Lie algebra g of G can be
identified naturally with the inductive limit of the sequence g, g, ... . Denote by
B ( ) the unit ball of the algebra of all bounded operators in % It is known that the

strong operator topology on B, ( H') is Polish and compatible with the metric r :

r4,B)=Y 2" A4~-Bh |l 5. A4, BeB(H),
k=1
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where {h |k e N} is a dense subset of the unit sphere of 4. Moreover, the

following two maps are continuous:
0, 1] xB(H)xB(H)> (a,4,B) > oA+ (1 ~a)B e B (H),
B(H)xB(H)> (A4, B)—> ABe B (H).

Since U: G- U(g) € U(H) is a strongly continuous map, there is a compact
neighborhood W, — G, of ¢ with

r(U,N <0.127" for allge W , ne N, 2.4

We apply Lemma 2.1 to the triple G,_, < G, . W,_. Denote by ¢, € ZXG,, W ) the

function with the properties asserted in this lemma. Without loss in generality, we
def
may assume that || C,llg = II c(8|dh (g)=1,ne N.. Weset
G

n

0,= [eave,) 1, ).
G

n

Then @, € B,(H) for all n € N. It is easy to verify that

r@A+(1-o)B,C) <ar(4,C)+(l -a)r(B, O
foralla € [0, 1] and 4, B, C e 81( AH). So we deduce from (2.4) that r (Qn, H<
<0.12 "foralln e N,

-
Lemma 2.2. The infinite product H Q,=0,0, ... isstrongly convergent.
ne N

Proof. We have to show that a sequence of partial products is fundamental:
r@,...0,9...9, .. Qp)s NQ, .- Q,lird, Q,,, - Qp )<
<rd, Qn+1 )+ r(Qn+1’ Qn+lQn+2 )+ .+ (Qn+l Qp—l’ Qn+l Qp )s

<01 " Y+ +27P) O
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: —
It follows from Lemma 2.2 that the operator P, = n Q, is well defined for
k>n

every n € Z _ . Note that r (P, I') <0.1. Since r (1, 0) = 1, we have Py#0. It is
also easy to verify that 0 < || P ||<1forallne Z .
Now we select a sequence { E, } f=1 of subsets of G such that the following

properties are satisfied for all n € N:
(@) E, < G, is a compact neighborhood of ¢ ;

O E cE,c...,and U, E,=G;

(©) By Epyy
) EW,CE,,, ifm<n+1.
We set D (G )=2D(G,,E MNG,) for m=n. Then Q(G”) =inj lim @m(Gn)
m—»

for every n € N. We define linear operators C, : 2 (G,) = 2 (G, ) by setting

(C, [N,y ) = If (8, sy & 1 8,, 1) dN(8,) =
G

n

= j f, )(LgnC,,+1 )8, 4 ) drh(8,),
G

n

fe D(G,), ne N. Let us verify that C_is well defined and continuous. For this, it
suffices to prove

Cn( ﬂm(Gn )< @m+l(Gn +1 ), @.5)
C,e LD (G,), DG, 1)) (2.6)
for all m = n. Actually, for a function f € Z)m(Gn ), we have

Supp (C, f) < (E,, N G,)Suppc,,, c(E,W,,)NG, ,cE, N G, -
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Since Cpsp € @(Gn it follows from (i) (see Subsection 2.1) that

),

+1

Lgﬂcn+1 €D (Gr’n+1 ) for all g, € G, , and hence Cnfe D (Gn+l ). So (2.5) is done.
Now given an element 0 of the universal enveloping algebra I (g, ), then we have

for every fe D, (G, ) and m 2 n:

16(C, f) 1l o< jlf(g,.) [10Ly oy ll g dh, (8,) =
G

n

= f Ifg) 0L, 0 ¢y llgdh, &,) =
G

n

= Ilf(g,,) |y @) 18 €y g <UL VM(E, NG ISl
G
n
One can easily deduce (2.6) from this. Moreover, it follows that C takes the neigh-
borhood { f e D GIHIfllg<1 } of zero onto a bounded subset of D, +1(Gn +1)-
Since the closure of each bounded subset of 2 ‘I(Gn + ) is compact, Cn is a compact

m-

operator. By Lemma 2.1, Ker C_ is trivial. It is straightforward that the following
infinite diagram is commutative:

Dy(Gy) —— Dy(G,) > > D (G,)

c ¥ c,{ 4

Dy(Gy) — Dy(G,) > > D (G,) @.7)
c, v c,{ ¢,

Consider the diagonal subsequence:

ﬂl(G1 ) 2> Dy(G,) > Dy(Gy) > ... ..
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This is an increasing sequence of Frechet spaces with the compact embeddings, since
the product of a continuous linear operator and a compact one is a compact operator.

So there is an (LN)-space 2 (G) ’with. D(G)=inj lim2,, (G,). Since

n-— ®

D, (Gn) is nuclear and separable for all n € NN, it follows that 2 (G ) is also
nuclear [P, Theorem 5.2.4] and separable. In view of (2.7), 2 (G ) = inj lim D (G )

n—»

(with the canonical embeddings Cn , n € N). Moreover, 2 (G) is a free union of
ﬂ(G'l ), ne N, ie., an arbitrary subset F € 2 (G) is closed if and only if
FND(G,) is clesed for each n e N. By the duality theorem (see Section 1),

2 (G) endowed with B( 2 (G ), D2 (G)) is an (M')-space. Furthermore, by [P,
Theorem 4.3.3], 2 (G ) is nuclear. Since C, commutes with Lg by Lemma 2.1 and
Lg elL (D (Gn ), D (G"n )) (see (i, )) for all 8, € G,and n € N, it follows from (¢)
that ,

(i,))L, € L(D(G),D(G)forallgeG.

Furthermore, since the map G, € g — L e € L(D (Gn ), D (Gn )) is continuous

for each n € N (see (ii; )) and 2 (G )’ = proj lim D, (Gn )’, we have that

n-—» o
(ii, Jthemap G e g Lg e L(2D(G), D(G)) is also continuous.
Thus the space 2 (G ) of "basic functions" on G possesses a number of "good"

properties of the classical space of compactly supported co-differentiable functions on
a Lie group. But unlike the classical case, now 2 (G ) depends on U.

2. 4. This subsection is devoted solely to the proot of Main Theorem for countable
inductive limits of Lie groups. Suppose the hypotheses of this theorem hold. We use
the notation of the previous subsection and consider only the case (I).

Assume first that there is a unit vector & € % such that Pk is cyclic for U, i.e.,
the linear span of the set { U(g)Pyh|g € G} is dense in . We define an operator
R, : D(G,) - # by setting
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R.f= [ 806, B\, 6, )P, 1 f e P(G,), neN.
G

Since

R, fll 5 < J’f(g,,)U(g,,)dK,,(g,,) NP Al <
G

n

S‘[If(gn)ldln (8,) <IIflly VA, (Suppf)
G’l
for all fe D (G,), it follows that R, € L ( 2 (G, ), #), n € N. Now we prove that
R ,C,=R foreachne N:

Rn+1Cnf = j (Cnf )(gr H )U(gn+1 )d)"nﬂ (gn+1 )Pn+l h=
G

n+l

= J If (gn )cn+1(gn‘ ! 8n+1 )U(gn+1 ) d)"n(gn ) d;"n+1 (gn+1 )Pn+1 h =
G G

nl " n

= o f (gn ) ,[ Cn+1(gn+1 )U(gn )U(gn+1 ) d}"nﬂ (gn+1 ) dxn(gn )Pn+l h=
G G

n n+1

- .[f(gn") e, ) dh, (8, )01 Pri =Gy f
G

for evéry function f€ 2 (G, ). So a linear operator R : 2 (G ) —> J given by

def
D(G)>D(G,)> f>Rf =R f

is well-defined and continuous. Moreover, since
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U@R, = If(g,, ) Ugg,, ) dh, (8, )P, h = ff (™ '8,) Uk,)dr, (g,)P, k=
G G

n n

- [a, 0, ve,) ., @,)P, =R L f
G

n

forall fe 2(G,)and g € G, it follows that
U(g)R = RL, foreach ge G. 2.8)

Next, for each fe 2 (G,) and 9 € g, , we have

lime~ 1 (U@®) - T)R f=lim¢ ™1 I(La(,) -1)f(g,)d\, (g, )P,h=R2f,
t—>0 t—>0 G

where &(f) = exp (20). It follows that
UO)lmR cImR, 2.9

for all Oe g, , n € N. Denote by ¥ the quotient space 2 (G )/Ker R and by §:

D (G ) > ¥ the canonical projection map. Then R can be decomposed as R = JS,
where the linear operator J € £ ( F, A ) is one-to-one. Since Ker R is a closed

subspace of a separable nuclear (LN")-space, it follows that # is also a separable
nuclear [P, Theorem 5.1.3] (LN')—space, as desired. Then the strongly dual -vector
space ¥ ' is an (M™)-space and the property (i) of Main Theorem follows (see Section
1). Furthermore, it follows directly from (2.8) that Lg (Ker R) c Ker R for all
geG. Since LL~ 1= I, we obtain L, (Ker R) =Ker R for all g € G. So the linear

operator ig : F > F given by

ZgSf= SL,f, fe D (G)
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is well-defined. We deduce from (i, ) that Lg € L(F, F)forall geG. It follows
from (2.8) that U(g) J =J L 2 for all g € G, which yields (iii) and (v). It is easy to
derive (iv) from (2.9), (iii3 ), and the fact that g = inj lim g_. Since by the assump-

n—®w

tionJ (S¢,) = Rc, = P h is a cyclic vector for U, the property (ii) follows. Finally, to
prove (vi) we observe that # ' can be identified with the polar

def
KerR) = {eD(G)|{f,)=0 for all fe Ker R}

endowed with the relative topology B( 2 (G ), 2 (G)) | (Ker R )° [P, Theorem 5.1.9].
Then for all fe D (G)and § € F', we have

(LSFEY=(L£5), g€
So the map

Gog— (L, f5)eR

is continuous for all f € ¥ and C € F'. This is equivalent to (vi). Thus ¥ is a strong

Garding space for U.
In the general case # can be decomposed into an orthogonal Hilbert sum

H = @iv _1H,, Ne NU{oo}, in such a way that the following properties are
satisfied foralln=1,...,N:

(1) # is an U(G )-invariant closed subspace of % ;

(2) there exists &, € % such that Pjh € # is a cyclic vector for U(G) F}{n . Let

¥, be a strong Garding (LN")-space for U(G) F}{n , n=1,...,N. Then
def
F = @f:’ =1 fn is a separable nuclear [P, Theorem 5.2.2] Montel space (but it is

not, in general, an (LN*)-space), where O means the algebraic direct sum. Further-
N

more, ' =11 F is a separable Frechet space. Now one can easily deduce (ii)-(vi).
n=1

Thus Main Theorem is demonstrated for the infinite dimensional Lie groups.
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Remark 23. It follows from the proof that # is an (LN*)-space if U is
irreducible. '

3. Inductive limits of locally compact groups

3.1. Let G be a locally compact second countable group. By the Glea-
son—Montgomery-Zippen theorem [MZ] there exist an open subgroup O — G and a
sequence N, DN, >... of compact normal subgroups of O such that

M~ N, ={e}and O/N, is a Lie group for all n € N. The family { O; N, | n € N’}

n=1"n
will be called an L-system for G. We will use the following properties of L-systems:
Lemma 3.1. [Ka, Lemma 3.1]. Let { O; N, |n € N} be an L-system for G. If
there are an open subgroup O, < G and a normal subgroup N < O, such that O,/N
is a Lie group, then N> N, for some n € N.

Lemma 3.2. Let { O ; N, |n € N} be an L-system for G and let H be a closed
subgroup of G. Then { O "H; N, N H | n € N} is an L-system for H.

Proof. We first observe that N M H is a compact normal subgroup of O M H,

n € N. By [HR, Theorem 5.33], the groups (O M H)/(N, " H) and (O N H)N,/N,
are topologically isomorphic. The last one is a closed subgroup of the Lie group
O/N, , since the natural projection O — O/N, is a closed map [HR, Theorem 5.18].

It follows that (O M H)/(N, M H) is a Lie group. The rest of the properties of
L-system are evident. (J

Now we remind the definition of the Lie algebra of G [L; Hey, 4.4.1-4. 4.5]. Let
g, be the Lie algebra of O/N, and let exp, : g — O/N, be the exponential map,
n € N. Denote by p, and P the canonical homomorphisms O — O/N, and

O/N,— O/N, , n > m, respectively. It is evident that p, = p

m’npnforalln > m.

Then we have a projective system of Lie algebras

dp, dpy,
8, — 8 — 8. G.1)
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Notice that all the homomorphisms d p,, , : 8, = 8,, are onto. By the Lie algebra of

G, namely g, we mean the (algebraic) projective limit of (3.1). Note that there is a
one-to-one correspondence between g and the family of all one-parameter subgroups
of G. Moreover, there are a map exp : § - G and a collection of (onto) homomor-
phismsd p, : § — g, such that

pnoexp=expn°dpn,anddpm,ndpn=dpm

for all n > m. Note that g and exp are independent of the choice of L-system [L].

We define a dimension of G by setting G = dim g. Let us generalize the notion
"dimension" to homogeneous spaces of locally compact groups. We need an auxiliary

Lemma 3.3. Let G be a locally compact group, H a closed subgroup of G, and N
a compact normal subgroup of G. Then there is a G-equivariant (topological) isomor-

phism of the homogeneous space (G/N)/(NH/N) onto G/(NH).

We omit the proof of the above statement, since it is a close analogue of [HR,
Theorem 5.35].

Now let H be a closed subgroup of G and let { O; N, | n € N} be an L-system for
G. It follows from the proof of Lemma 3.2 that (O M H)/(N, M H) can be identified

with a closed subgroup of O/N,. Denote by X the homogeneous space
(O/Nn )/((O NH)/(N, N\ H)). By Lemma 3.3, X is isomorphic (as a topological

O-space) to O/((0 N H)N, ), n € N. Moreover, a routine verification implies the
commutativity of the infinite diagram

{e} —— (ON BN, NH) —— O/N, > X, > {*}
0 0 0

{e} —— (ONH/(N,"NH) —> O/N, > X, 5 {x}),
t 1
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where each line is a short exact sequence and each vertical arrow is an onto map.
Now we set

def
dim G/H = lim dim X, = lim [dim O/Nn - dim (O M H)/(N’l N H). 3.2

n—» o n —» ©

. [o o] . .
Note that the sequence { dim X } ~_, is nondecreasing.

Propesition 3.4. dim G/H does not depend on the choice of an L-system for G,
and dim G = dim H + dim G/H. (M mean© + n= o foralln € N'\U { o }.)

Proof. Lettwo Lsystems for G be given: I)={O,; N, |ne N} and

n=1""n

) ={0,;M,|neN}. Since \_ N,=M, _M,={c}and N,, M, are
compact, we may assume without loss of generality that N, < O, and M, < O, for all
n € N. Then, by Lemma 3.2, one has that the families (III) = { 01 NO,; N, } and
av) = {0, NO0,;M,} are L-systems for the group O, N O, as well as for G
(since O; N O, is open in G). Denote by d; - d}, the dimensions of G/H with
respect to (I)-(IV). It follows from (3. 2) that d, = d;;, and d}, = d};, . By Lemma 3.1,

there is an increasing sequence n; < n, < ... such that an c an c Nn3 c M"a e

Then {0, N O, ; an , an , an , ...} is also an L-system for G, and hence

dpy = dypy . That proves the first part of the proposition. The second one follows
directly from Lemma 3. 2 and (3.2). O

Corollary 3.5. Let H be a closed subgroup of G and let { O; N, [n € N} be an
L-system for G. If dim G/H > 0, then there exists me N such that
dim (0 NH)/(N, N H) < dim O/Nfordin > m.

3.2. Let O be an open subgroup of G and N a compact normal subgroup of O such

that O/N is a Lie group. Denote by #» the Lie algebra of O/N and by M (9) the

universal enveloping algebra of o. There is a unique structure of co-differentiable
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manifold on the homogeneous space G/N with the following two properties [Ka; Hey,
4.4.1-4.4.5):

(1) its restriction to O/N coincides with the co-differentiable structure of the Lie
group,

(2) for each g € G the transformation G/N= x +—> gx € G/N is a diffeomor-
phism.
Thus one can define the spaces 2 (G/N) and 2 (G/N, K ) in a usual way for any
compact subset X of G/N. Notice that G/N is not only left G-space but also right
O/ N-space. These actions (left and right) are mutually commuting and the second one

is oo-differentiable. It follows that 22 (G/N ) is an # (v)-module and 5Lg = Lg 3 for

all g e G and 0 € U (v). Furthermore, 2 (G/N, K) is U (v)-invariant for every

compact subset K € G/N. We need to introduce a nuclear topology on 2 (G/N ) like
it has been done for the case of Lie groups. To this end let us choose a left Haar

measure A on G and a basis { , , ... , &, } in 9. Denote by A the projection of A onto

G/N. Since N is compact, A is ‘a G-invariant measure. Consider the increasing
sequence of norms on 2 (G/N ) defined by

1Al =3 é“{" 5akf|| @, ..., €{l,...,n}), fe D(G/N), leN,
ksl

where || - || is the norm determined by the inner product in L*G/N, & ). Then

D (G/N, K) endowed with {| -1} le is a nuclear (M’)-space and the natural

analogues of (i2 )-(iiiz) from Subsection 2.1 are satisfied. Next, having a countable

exhaustion of G/N by compact subsets, we furnish 2 (G/N ) with the inductive limit

topology. 1t is easy to make sure that the analogues of (i, )-(iii ) are also satisfied.

Given a closed subgroup H < G, we set Oy = O M H and N, = N M H. Notice

that there is a one-to-one H-equivariant continuous map from the homogeneous space
H/Ny, into G/ N such that the diagram
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0y /Ny ——> O/N
2 ol 3.3
H/Ny, ——> G/N

is commutative. Moreover, this map is closed and hence H/Ny, is a closed subset of

G/N.
We need to obtain some generalization of Lemma 2.1. Denote by p and p,, the

canonical projections G — G/N and H — H/ N, respectively. Let P’ and P;i be the
linear operators associated with p and p,, , namely

P':(G/N)> f— P'(f)=fope QG),
P} : C(H/Ny )= f> Py f) =fo py e CH).

Let us also denote by A, a left Haar measure on H.

Lemma 3.6. Let W < G be a compact neighborhood of the identity and N c W. If
Oy /Ny < dim O/H, there is a non-negative function c € P'(D(G/N)) with
Supp ¢ = W and such that the linear operator C: Pi{Co(H/Ny)) = P (C((G/N))
given by

(Cf)e) = I F®h™ 1 g) dhfh), fe PiCLH/N)),
H

is one-to-one and L,C = CL, forall h € H.

Proof. Since NcW, it follows from [HR, Theorem 4.10] that there is a
compact neighborhood W < O/N of the identity with p ~ 1 (W)  W. Let us now

make use of Lemma 2.1: there exists a non-negative function ¢ € 2 (O/N, w )

such that for each neighborhood U < O/N of the identity there is 0 € O/N with
@#{h €0y/Nylc(ho)>0}cU. (3.4)
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We define the function ¢ € P*( 2 (G/N )) by setting

¢ (p(g)) for ge O
10 otherwise.

«(g)

Then Supp c < W. Let us prove that C is one-to-one. Suppose that there are a
function f € Cy(H/Ny ), an element hy € H, and a neighborhood V c Oy /Ny of
the identity with

f(hy©) >0 forall v e V. 3.5)

We deduce from (3. 4) that there is ¢ € O with

def
%M = {h €0y/Nylc(ha)>0}cV!, ¢-9

where a = p(a). It follows from (3. 3), (3. 5), and (3. 6) that

CPy f (hga) = If @y W)cth ™ 'hya) dhyy (h) =
H

[ £ @y 00 & G hy) & )y 8 = [ £ ) & (5 e ) g ) > 0,

hOOH A

since the integrand is strictly positive on the set

def
A=theH|py(h~hy)eM}={heH|pyh 'h)leM 1}=

=theHlpy(hg 'WeM - '}y={heH|h  'py(eM 1}=
=theH|py(WehM '} cthe H|py () ehyV },

(we use that b ~ lho € Oy ). Moreover, since

CP}, f (gn) = f £ P ()l ™ 'gm)) dhyy (B) = CPy £ ()

HnNgo
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for all ge G ahd ne€ N, we deduce that CP;{ fe P'(CO(G/N )) for every

fe C(H/N,, ), as desired. The last assertion of the lemma is obvious. (J

3.3. Now let a sequence G, G1 c G, < ... of locally compact second countable

groups be given so that G, _, is closed in G, , n € N, and G, = { ¢ }. We furnish the

group G=U), . n G, with the inductive limit topology. Without loss in generality,
we may assume that one of the following is fulfilled:

dim (G, /G,_;) > 0 forall n € N;

dim (G, /G, ;) =0 forall neN.

In this subsection we prove Main Theorem for G which satisfies (I). Let U:
G — U ( #A) be a strongly continuous unitary representation of G in a Hilbert space
. We first choose a compact neighborhood W, = G, of the identity such that (2.4) is
held. Then using Lemmas 3.1 and 3.2 and Corollary 3.5, we proceed by induction to

[e ¢}
n=1

(1) O, is an open subgroup of G, and N, is a normal subgroup of O, ;
(2) 0, /N, is a Lie group;

construct a sequence { O, , N, } such that

@) Int (W, )SN SN,

n+l a Gn;

@ dim (0,,; N G,)/(N,,; N G,) < dim O, /N, ;

+1 nt+l?

[OYal

m=n

(N,NG,)={e}.

Denote by g, ., m2n, the Lie algebra of the Lie group (O, N O, )/(N, N G,)
and by g, the Lie algebra of G, . Then we have the natural projective system

gn,n « gn, nt+l e—gn, n+2 "

with proj lim g, ,, =8, (compare with (3.1)). Moreover, the following infinite
m—» «©

triangular diagram is commutative:
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8,1

1

81, — 8,

1 1 3.7
8,3 — 83 —8;

0 0 0

Consider the increasing sequence of Lie algebras g, — 8, < ... . By the Lie algebra of

def
G will be meant g = U

[0 0]

n=1 8, It is straightforward that g can be identified with

the family of one-parameter subgroups of G; moreover, the natural exponential map
exp : § > G is well defined and exp ) g, =exp,: g — G . We need some notation.
Let '

p,:6,—»G, /N, ,

qn: Gn_) Gn /(Nn+1 M Gn)’

t,:G,/\N,,, "G,)—> G, /N,

be the canonical projection maps, and let
P: : G, /N,) > C(G,),

Q. : C(G,/(N,,, N G,)) - CG,),

+1

T':CG,/N,) - CG, /N, NG,))

+1
be the associated one-to-one linear operators respectively. Then the homomorphism
8, 1 8 is exactly dtn (see (3.7). It is obvious that P: = Q; Tn*. We endow
the space P)( 2 (G, /N,)) [respectively Q'( 2 (G, /(N,,, N G, )] with the to-
pology such that the restriction of P: to D (Gn/ N,) [respectively Q; to

D (G, /(N,., NG, )] is a homeomorphism. Then P:( D (G, /N,)) is a closed sub-
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space of Q( 2 (G, /(N,,; N G,)). It is straightforward that T,)( 2 (G, /N, ))
<D (G, /W, NG,)) and T, (@, @) =0 T, forall de g, ... From this we
deduce that '

T' € L(2(G,/N,), D(G,/(N,,, N G,)

Denote by A, a left Haar measure on G, , n € N. Let us make use of Lemma 3.6:

there exists a non-negative function ¢, € P;( D (G’l /N, )) with Supp €, C W,l and -
such that the linear operator

C,: QUCHG, /Ny NG ) 2 fr> Cpf € Pop (CHGryy /Ny D),

determined by

( énf)(gnﬂ )= If(gn )Cn+1(gn— 1gn+1 )dxn(gn ) 8ne1 € Gn+1 ?
G

is one-to-one. One can prove by a slight modification of the argument in Subsec-
tion 2.3 that én (Q;( D(G,/ (N, , NG )< P;+1( 2(G,,,/N,,;)) and

n+l

C,e L(Q(D(G,/(N,,, "G, P, ,(D(G,,,/N,,.)). Now we define the

operator C, : P( 2 (G, /N,)) > P, (2 (G,,,/N, ., )) as follows:

n+l” “'n
CP,f)=CO\T, f), fe D(G/N,).
Then C, € £ (P,( 2 (G, /N,)), P( D (G,,,/N,,,)) and Ker C,= {0 }.
Now we select a sequence { E, } ;"H of subsets of G such that the properties

(a)-(d) from Subsection 2.3 are satisfied and pn' 1 (p”(En ) = E forallne N. It

follows that p.~ * (p,(E,,)) = E,, for all m > n. We set

2:(G,) = Py( G, /N, , p(E,, N G, ) c P)( D (G, /N,)).

Then we have:
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