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We construct a second order elliptic equation in divergence form in R3, with a non-zero
solution which vanishes in a half-space. The coefficients are a-Holder continuous of any order
a<1. This improves a previous counterexample of Miller [1,2] Moreover, we obtain
coefficients which belong to a finer class of smoothness, expressed in terms of the modulus of
continuity.

Introduction. The aim of this paper is to improve a counterexample due to Keith
Miller {1,2). Part of the results presented here belong to the author’s PhD thesis
(3,§3.41

The first who constructed an elliptic second order equation for which the Cauchy
problem does not have the uniqueness property is Pli§ [4]. The first and zero order
coefficients of his equatiop are smooth, but the leading coefficients are only a-Holder
continuous of any order a < 1. This result is optimal, since for Lipschitz-continuous
coefficients we have allways uniqueness in the Gauchy problem (and even stronger
results, see [§ ]).

Miller was concerned with the non-uniqueness in the Gauchy problem for the elliptic
equation in divergence form

>, 9,a,0,u=0, @

o u= z 9, ay aj u. (2)
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On a counterexample concerning unique continuation for elliptic equations

Here the matrix of coefficients (a,.j) is supposed real, symmetric, continuous and uni-

formly positive, i.e.,

n
z ;% %= C |x|2, C >0, for any x € R".
iLj=1

The interest of the equations (1) and (2) comes from the fact that the first correspond to

symmetric operators in L? (R" ) and the second is the evolution equation for such ope-
rators. They have also a physical meaning: (2) is the heat equation in a medium with
specific heat 1 and with the termic conductivity given by the matrix a; . See [2] for
further comments.

Our example is better than the one in [2 ] in the following ways:

1) It allows optimal regularity by a precise choice of the parameters used in the
construction. We obtain Holder continuous coefficients of any order a <1 whereas in
[2 ] Miller obtained only the order & = 1/6. We obtain also a finer result:

Suppose that w : {0, ») = [0, =) is concave, continuous, non-decreasing, w (0) = 0,
w (1)>0and w satisfies: ’

m(w,
0

Then we can choose the coefficients of our equation such that their moduli of continuity
are majorated by w.

2) It makes an interesting rephrasing of the problem into a system of inequations for
sequences of numbers. The inherent limits of the construction below suggest that the
unique continuation property for the equation (1) might hold under the assumption that

a,ewhl
ij
3) There is a simplification in the technical part which allows us to give explicit
(though complicated) expressions of the coefficients.

Theorem 1. There exist a smooth function u, smooth functions Izll , b12 , bl 3 and
continuous functions d , d2 defined on R¥s (t, x, y), with the following properties:
i) u is solution of the equation

2
0 u+o ((b,+d)o u)+ Oy(b12 9, u) +

+0, (5, 0,u) + 0, ((byy + dy) 0, u) = 0. 3

(ii) Thereisa T >0 such thatsuppu = ( — o, T | X R
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(i) u, bij and dl. are periodic in x and in y with period 2.

(iv) For any t € R, u(t, - , ) satisfies the Neumann boundary condition on (0, 27:)2
with respect to the equation (3) (seen as an equation in the variables x and y).

) d1 and d, do not depend on x and y and are Holder continuous of order a for all
a<l, )
. 1 dy+ by, b

d,+ by,

12 <2 on RS
12

Furthermore, there are also functions as above, satisfying conditions (i-vi) except that
(3) is replaced with the parabolic equation:

dpu =0, ((by, +dy) 0, )+, (b, 0, 1) + 0, (b1, 2, 1) + 0, ((byy + dy) 0, 1). (4)

R em ar k. The equation (3) can be seen, given the periodiéity condition (iii), as an

abstract equation for an LZ(Rz/ 2n22)~valued function:
u"= A(tu.

Here A(?) is an elliptic operator on the torus, which is positive in LZ(RZ/ ZnZZ). Thus our
theorem asserts the existence of an A(?) such that the Cauchy problem for the above
equation does not have the uniqueness property. The interest of the point (iv) of the
theorem is that the above A can be replaced with an elliptic selfadjoint operator on
Lz((O, 27!:)2), with Neumann boundary condition.

Idea of the proof. We start from the operator A = 9 12 + Axy , and from its solutions

e M cos Ax and e~ * cos Ay. It is convenient to view the operator to be constructed
(appearing in (3)) as a perturbation of A. The above solutions of A decay with ¢, the
bigger is A the faster is the decay. We will "glue" an infinite number of them, cor-

responding to the frequenciesd =4, , such that 1, > ask - . In this way, as
t T the solution will be, for shorter and shorter intervals of time, proportional with

e M cos %> then with e “Heri os 4 + 17 and so on. In these intervals the equation
is afu + Axy u = 0. In the gaps between them, we will modify the coefficients such as to
fit a prescribed solution, which passes smoothly from ¢ s cos A xtoe “hea 1 cos k41
Choosing suitable 4, and suitable lengths of the intervals and of the gaps, we obtain a

smooth solution which vanishes in finite time. In fact the solution is decaying also in the
gaps and we can choose intervals of length zero.
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The first part of the proof consists in constructing generic functions v, Bij’ Dl.:

{0, Sa] x RZ> R, i, j= 1, 2, which describe the solution and the coefficients in a gap.
They depend on the following parameters:

a > 0 gives the length (in time) of the domain of definition,

A>1/ais the old frequency,

A’ > A is the new frequency, and

p € (0,1/1") is a technical parameter.
These functions satisfy the equality

2 -
3 v+a (B, +D)oyv)+a, (Blzayv) +9, (By,00) + 9, ((B,, + D,) oyv) =0
(&)
on [0, 5a]xR2, and do the required job of gluing, i.e. ,there is an € > 0 such that

B‘.j=<§ij,D,.=0fortE [0,e) U (5a — ¢, 5al,

v(t, x,y)=e tA cos Ax fort € [0, &),
v(t, x, y) is proportional toe ~ 2 cos A'y fort€ (5a — ¢, 5al.

In the second stage of the proof we will construct the functions u«, bl.j , d i R R,

that satisfy the conclusions of the theorem. This is done putting together an infinite
number of instances of this generic construction, with appropriate values for the para-
meters.

Construction of the generic v, Bij » D;. Lety: R - [0, 1] be a smooth function with

x(®) =1 in a neighbourhood of [1, ) aud x(f) = 0 in a neighbourhood of ( — «,0].
Each of the intervals [(i — 1)a, ia], with i = 1,..., 5 (henceforth called steps) will have a
precise job. We will describe the functions v, Bii and D, in each of them.

The first step serves to a smooth decay of B, + D, from 1 to pz:
v=e McosAx,B, =B, _=1,B. =D =0,D, =¢|+|(p*-1) ©)
Rt Bt/ R BV I T e A ) AN :
Since v does not depend on y, the last term in the Lh.s. of (5) vanishes and therefore (5)
is satisfied for arbitrary D, .

The second step is the "seed” step and serves to introduce a tiny component of the
solution oscillating in y.

v=e—’1tcoslx+E‘x(t;a)e_p}“’tcosl'y. M

The constant factor
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_def 2 -3 )
c=e :

serves to make the two components of the solution (one oscillating in x and one in y) of

equal amplitude at 1 = :izﬁ , the middle of the third step. We put
= = -2 _
Bzz-l’ Dl-O, Dz—p 1,

def —~
and we construct below B, = 1 + Band B,, . The equation (5) reads:

2 —it ~_l__,,t_a__2_,t ’
A% cosly+c(a2x ( - ) ax( )p/l +x(

- ‘-
+ax((1+3)axe tcoslx)+6 (312 ) x( -

) 21’2)0 PRt o5 Ay +

a) e PAcos l’y) +

o =AM 2, 7 [1=a) -pit ol =
+9, (Blzdx‘ coslx) +a, (p aycx( ” )e cosly)—O.
After reductions:

E(;%X”(%Q) _%PA'X'(L.}(_{))Q“pA’rCOSA'y‘F ax(—-Ee"“sinAx) +

‘ ~ (t-a
+0x(-812('x( P

Simplifying this equation by e ~ M and using the notation

7() =LA =pie (azx,,(t;a) _2p x,(ﬁ-a))’ )

a a

we obtain the equivalent relation

40) cosl’y=/1€)x(§sinl X)+

+A'cy (r—a) ,(A=p k! )'smlyo B, +lsin1xay312

If we choose first B, then from the above relation, B A sin Ax has to be the primitive of

some function (depending on y and ¢ as parameters). But this is possible only if that
function has zero integral from kx/A to (k + 1)n/A, in order to allow the primitive to
have zeros at x = kzr/A. To this end we take

2sinAxsin A’ Yy a0

B, (1%, y) =% (1) Yy
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Then the above relation becomes:

2sinAxA'cosd'y
UI

A _(Bsinldx)=g(1)cos A’y — Asin AxF (1)

1y (t;a) eGP Gin a7 () ﬂcosj:’smz y

and this yields further simplifying by A:

1 - 2sin®Ax _

ax(Esin Ax)y =3 () cosA'y :

~ [t— i)t 2cOS Ax sinZ A’
-—cx( aa)c(l p/-)'x(t) A y

and since f (1-2 sin? Ax) dx = sin Ax cos Ax/A + C, we obtain integrating from 0 to x

with respect to x and then simplifying by sin Ax:

an

~ ’ o . ) — 229
Bty x, ) = 7(1) cos A ycosl.\_g(,(g_l,,),x (t a) 2sin“ A’y .

12 a 22
The third step has the coefficients
- = - o =52
B, =1,B,=D=0,B,=1,D,=p"~1,

and the solution is

— At

i
v=e McosAx+ e "

1 cos A'y.
This step serves to propagate the two components with different speeds. Although the
second term (depending on y) has a space frequency A’ > 4, its decay rate is smaller than
that of the term depending on v, sincep 4’ < 4. :

The fourth step is symmetric to the second one and the construction is similar. Its
purpose is to remove the component of v oscillating in x, which has become small rela-
tively to the other component.

da -1y - ~ ok
v=y e Meosdx + Ce PR Cos Al y.
- a

Herc the roles of x and y have changed. We have

- = =52
B, =1, D =0, Dy=p’—1,

def =

and B, , B,, = I+ B are computed below.
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The equation (5) gives

2(, (4a—1t) -u ~ —pit ' ) da—1t\ i ,
9 (x( = )e cosAx+ce P cos}.y)+6x(l axx( - )e coslx)-i-

t

+0,(B v)+9 (B v)+6y((p2+§)ayé"e-”“cos).’y) =0,

12 % 129

(we substituted the actual value of v only in the terms which are subject to reductions)
and we obtain after reduction

1 ,(42—-1 24 ,(da-1t - 4a - -
(:ix (—a—_) +=2y (—-a——)) e McosAx+ 9 ( lzx( — ) l’axcoslx) +
~ —pA't ' = —-pA't ' —
+0, (Blzce aycosly) +9, (B Ce aycosly) =0.
Simplifying by ce ~” At and using the notation

LPY ANy (4a— g\ 24 ,(4a—t
_efh” 7 (4a—1t) L 24 ,(4a—1t (12)
F70) = (2x(a)+ax(a))'

the relation becomes

4a—t) Lt -1yt

£ () cosAx = 3, [an ( ; ).sin,lx] +

¢
+A'sind'yd B, +9, (B A sinl'y) .
We choose

z(t) sin Ax 2sinA'y (13

’

B, =% 1 Iy

and taking the second term in the r.h.s. to the left in the above relation we obtain the
equivalent relation

Fcos Ax(1 — 2sin®A'y) =
sinAx 2sin A’y (4a - t) LPA =4yt
A X =

=9, B Xsind'y+ 5 (0

I p" A sin Ax) .

¢
Since aygﬂ/l%fﬁsﬂ =1-2 sinzl'y, the following relation ensures that (5) is
fulfilled for ¢ € [3a, 4a) (after simplification by sin 1'y):
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On a counterexample concerning unique continuation for elliptic equations

z Y_ 7 = in’ — 1\ Lt =)t
fcosAxCOSly=Bl'+f(f)zsm, lxx (4aa t) : ~ ,
C
that is,
= Xz(l) _ ,(f’)-"—l)t
B="7 (CoSlxcosl'y—Zx (‘“‘a ’) ———sin®Ax|. (14)
’ v c

The aim of the fifth step is to increase the coefficient By, + D, from the value p2 tol,
in order to get back to the values B|, = B,, = 1 and B|, = D, = D, = 0 (this ensure the
continuity of coefficients in the final construction). As in the previous steps, it is simpler

to choose first v and then construct the coefficients accordingly.
t

Let us define x, (¢) = fx(s) ds. Then we have y, (1) = t +x, (1) — 1 in a neighbor-
0
hood of {1, ) andx, () = 0 in a neighborhood of ( — e, 0. The solution is

v =ccosd'yexp ( = A" pt = A'(1 = p)ay, (t —-a4a))'

The coefficients are

Bll=822=l,Blz=Dl=0and
2 2
8,"v 0, v
D, = tz i tz -1
0 v A'%v
t—4a\\? 1 p ,(t—4a 15)
= - . L - (
(p+(l p)x( p )) L x( p ) 1.

We will eliminate now one of our parameters. The constant p is very sensitive in our
construction; in fact 1 — p2 is the order of magnitude of the coefficient D, . In the steps
2 and 4 there is an eprnenﬁal factor in #(f) and in J (f) which will manage to make

the coefficients Bij (more precisely, Bl.j - 6,.1. ) small at little expense. Therefore, since
we have the restriction p < %, which gives 1 — p2 >1 - (/1//1')2, we cannot do better
(modulo a multiplicative constant) than choosing p = (l/l’)z. We have then

1 —p%=2(1 — (A/A")?) for A/’ close to 1. In order to keep formulas to a reasonable

complexity we will continue to use the constant p, substituting A2/2'2 10 it when needed.
We can express the solution in a single formula:
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4a—~1t\ -,
va‘l,l,(t.x,y)=x( ) e *cosAx +

a
(ma) e (- (B ren (15
+Cy ( e ) e ' cosA'y. (16)
Let us notice here that
~-At . .
e cos Ax in a neighborhood of 0
v (L x,y) = T R Y)
ati (b5 {a(a,l,l’)e ¥(=59 ¢o5A'y in a neighborhood of Sa.

The constant a(a, 4, 1') is given by (8) and (16) with ¢ = Sa:
2 ’ ' 2 r2 ’

a(a,1,A") = e = S5a(A+A7AN2-- (1 = A7) A ag (1) <e” 501/2. (18)

Estimates for the derivatives. We compute now the size of the derivatives of v and B

if
constructed above. For D, only the first order derivative is needed in the proof of

Theorem 1, and we give a bound for it.
Let k, 1 and m be three natural numbers, k + [+ m >0. Then during the second
step, B, = 1 + B, where B s given by (11) and we have

kolam akalaompy
0, axay B, =9, axay B=
' 0290
akogpy Al amCOSAYCOSAX ko~ yqA-2p) [t—a) . 1.m2sin"Ay
=0, %(8)0, 9, P T (ce X\T5] 0,9, Z a9

The k-th derivative of § is (see (9))

k 21!
. ~ K\ i (1—=pn it (- pA
teo=eh [ e et ()
!=

a

and its absolute value is bounded by

&
~ (A=-pA')t k - nJ
ce j;o(j)(/l pA) %

. _ 2p1 . _
% __7(___1__4___2 X(k-—,+2)(t a) Pt MCEIES) t=a) |}
a®"! . a4 a®"/! a
Let us set ka= suplx(’j(t)[.Using,bpl’ and recalling that E=e'5"(‘_”“/2,
’ i<k
tER
we infer that
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Tet(A=pd) g ,=a(A=pA)2 o0 any fE [a, 2al.
Now we use 4 > 1/a and obtain:

k-~ ~(),-—p).‘)tk k 1 1:] 1/ k~j _l__c .z_e_l_l_c <
latx|5ce 'Zo j (A-pd')/ (1/a) az x,k+2+ a HLEk+1 )~
j=

sE'e(""")'(1+%)k312C <e~tA=pA)2. 3 okc 24+ 2 20)

xk+2 Xk +2

The same kind of computation will give

kevn~ (A= p)t l—a
9, 7@ ce Pty (—a—)

. 2 Al
-2 k N i 22-payeajll ,,(t-a) P .(t—a) h (t:a.)
c J ad, e d - 0
i+]§=k(”h) £ i\ 2%\ e a *\"a t*{"a

sgtAA-pit (l.’.‘h) A-2p2) /a)! x
i+jth=k \*/
2p 1"

1 h
x (?Cx’“ﬁ—ﬁ——a cx'k“) (/a'c, =

~2 2AA-ph)t 2\ k 2
@2 HATPN A+ 2" 3.22C, 4, ,C, S
semaUGopdd2 3. gkpht2 Q@n

Now we can estimate the derivatives of B,, (see (19)), using (20) and (21):

kol
| 9, 0x6y'"B“(t,x,y)| s

<o a(h=pX)/2 3 ok Ak+zl’1'"‘

ok +2 2z T

2m +1 A:m

2

—a(A-pk) A2 Ca. gk qk+2
+e Cx,k+2 3-4%2

—a(A=pA)2 k+! qm 22
se eUmet2e, AT, 22
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Here the constant 'Cx: km depends only on y, k and m. For the coefficient B,, the
computation is simpler and we obtain in view of (10) and using the estimate (20) and
A >A:
P _ - , A IAlm
|0f0f0 B y(t x,3) | se” PR 3.9k “21"”2 s

-a(). pl )/2 ” k+! qm R
C) o mA et A, (23)

For the fourth step the estimate is similar. We use that

t(pA =) ,
E——.,—- <e~ @ (A=pX)2 g4, any t € [3a, 4a],
¢
and obtain in view of (12) that

[ 7 () | se 2A=pA)2. 3. 2k¢ x,“zzk”

The computation goes in the same way, and we obtain that B,, satisfies (22) (replace
By, by B,, and [a,2a] by [3a, 4a ) and B, satisfies (23) for any ¢in [3a, 4a] (and any
x, Y€ R). Since Bii = 6”. during the first, third and fifth step, we conclude from the
relations (22) and (23), that we have for any ¢ € [0,5a]:

k51 A=pd)HYI2 ~Am k '
|ofo o B (t,x,y) | se”*hpt) ClmA A Q24
Now we turn to the derivatives of v. We have from (16):
8tk6 6 v=29 x(4a ) '”a 9, ™ cos Ax +
- —pAt—(1-p)ia -
+ 3th (———t a) e PRI A ax (i 4)ala'”cos}l’y. 25)
a xy
We take care first of the ¢ derivatives. Using that 7 = 0:
lofx@--t/aye ™| <

‘“2( )(1/a)/c Ak—i<e= 2k k_(u) c, (26)

By induction we prove the existence of a constant C ko depending only on ¥ and &,
such that

l alc',e-—p}.’z‘-—(l —p)l'axl(t/a——4) | < C 1k 27
t = T kT
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This is true for £ = 0 since the cxponent is negative. We prove that if (27) holds for

k=20,1,...,m, then it holds also, for a ccrtain (‘_/ a1t fork =m + 1. Indecd,

23

|0m+1(

—-pit—ql —/:)).'(l;(l(l/tl—4) l =
t

= | 0tm( —p X' = (1 =p)A' y(t/a — 4)) t‘—")'" - (1 ‘/n)l'uxl(t/a— 4) | <

m \ , . , ,
=2y (”‘) | (3/(-p - —p)x(r/a-4)))0,”"!0‘/’“'(' =) ag (a9 o
0

n
' m f ~ m—f ~ m+ 1
sajzo(j) l(/a)'c, ;C, A | <C, e A"

We used 1’ > 1/a. Applying (27), we obtain

| Oth(t/a— l)e—pl’t—(l —p)/l’uxl(l/a-4)| <

k ~
/ k j pd ok~ j = ok as)
szj;)(j) |(/g)’C, ;C, ;A I =C, A"
Using (25), (26) and (28), we conclude that
Iatka\fa’"v[sc'" kl'k+"'ll. 29)
Xy X

There is left to estimate the derivative of DI. . The function D, is identically 0, and 02

is constant during the second, the third and the fourth step (i.e., on [a, 4a . We have,
in view of (6) and (15):

lo, Dyl =C, (1 -pt Yas2C,  (1-p)la

forany t € [0,al,

2
2p(1=p) ({- 4a 2(1 - p) At - 4a\ (1 - 4a (1 -p) (1= da
e x a + a X a Zl a ) X
a A’ a
< --,o)(ZCx‘1 la+ 2CZ‘ 1 G0 la+ ¢\ 2 la) < SCx‘2 (I =pYa
for any ¢ € [4a,5a], and we can conclude that
|o,D,1 s5C, ,(1 - (A a Q0
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foranyt € [0,5¢}. -
Boundary conditions. The function u satisfies the Neumann boundary condition for

the equation (1) in the open set Q C R" if and only if

2 n;a; a/ u(x) =

Li=1
for any x € 9Q. where (n,, ..., n, ) is the normal vector to 9.

We want our function v to satisfy this condition for the equation (5), seen in the
variables x and y, in the open set (0, 2)x (0, 2r). In this case, the above relation reads:

(Bll + Dl) axv + BIZ ayv =0 on {O’ 277:})( [0, 27[L (31)
Blzayv+(Bzz+D2)6xv =0 on |0, 27 |x {0, 2x}. (32)
We have

axv=x(4-t/a)e_t'l(—-lsinlx),

v = cx(t/la-De” = —p) A ay (tla=4) (—A'sind'y).
Since B, is a multiple of sin Ax sin A’y (see (10) and (13)), the conditions

AEN, A’eN ‘ 33)
are sufficient in order to ensure the houndary condition (31) and (32). These relations
will imply that «, bij and d; constructed below fulfill condition (iv) of Theorem 1. They

satisfy also the periodicity condition (iii).

Proof of Theorem 1. Let{ak},621 and {Ak}kZl be two sequences of
positive numbers. We will suppose

2a<w 1/a, <A, <A, (34
j=1

k~1
We denote T, = Z afork=land T = z a. . The sequence { pk} & > is defined by
j=1
12/1 R We postpone as much as we can the choice of these sequences, in order
to derlve first all the conditions they have to fulfill. We shall use the indices a, 4, A’ for
the functions B, and D, , with i, j= 1, 2 (similarly to (16)), since we will use them for
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different values of these parameters. Let k) > 0 be an even natural number, to be chosen
later. We are ready for the definition of the functions u, bl.j and d,.

( —(t-T A,
e 0 "0cosd, x foralit€ (- », T, |,
ko ko

cv ,ALA (t-T,x,y) fork even
u(t, %, y) = | kap Tl Tk + k Vi€ Tk, Tk+1 ), Yk = ko,
"‘k”ak’lk’}‘k+ (¢~ T, y,x) fork odd

{0 forall1 € [T, ).

35
Here ¢, are constants which ensure the continuity (and therefore, the smoothness) of u.

They are defined by the relations

ck0= 1,

Ck+1

%

=a (@Al )

where a(a, A, 1') is defined by the relation (18). We have therefore (see (18)):
5 k=1
csexp| -3 2 aj/lj . (36)
1= ko

The coefficients are ‘

i for any r ¢ [Tko, T),
_|B., t-T,,x,y) forte|T,, T
bij(t, X, y) = Uak’)'k’}'k+l( k ) kT k

B, ,
fitpdipdy

+ l] with k even,

(t=Tpyx) for t€[T,, T, 1 with k odd,

foralli,j=1,2 withi <./, where i = 3 — i and j = 3 — j. This inversion is necessary,
since the derivatives with respect to x and y — and therefore the coefficients — switch
their roles in the odd intervals. The singular coefficients are defined in a similar manner:

0 for any t ¢ [Tko, 7),
=Ty xy) for t€ [T, T, ] with k even,
(t— Tk’ y,x) for te [Tk’ Tk+ l] with & odd.

- | D,
d;(t, x,y) = fagddye o

D.
Lapdpndy oy
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The above u, bl.l. and d; fulfill the equation (3): indeed, they are obtained by simple
changes of variables (the translation ¢ > T, + { and the symmetry which reverts the
roles of x and y) from the functions satisfying (5).

Notice that B a b= 6 for ¢in a neighborhood of 0 or in a neighborhood of 5a, and
therefore bij are smoothinR\ { T} X R2. In order to obtain that b‘.j aresmoothatf=T

too, it is enough that all their derivatives are continuous and have the limitOas¢ 1 7. In
view of (24), we have forany i,j =1, 2:

palam S " —a(d~ k/'z‘k.’.l)’z p+im
sup |[ePa a b (t,x,3) ]| <C e A0 T4 ,
tE[T.Tk_H] t x"y Ty 1P dom k+1
X, yER

and due to the monotony of {4 X } the following condition ensures that bij are smooth on
R3:

lim e Ak”" +1)/2 A¢y =0 for any m €N. 37

k-~ oo

Remark that if we suppose d; continuous then lim (1 - pkz) = 0, since d, takes the
k> o

value (1 — pkz) on a subset of [Tk’ Tk for i = 2 for even k and i = 1 for odd &, and

+1h

d;= Ofor ¢ = T fori=1,2. This implies thatp, - 1 and since p, =2 //11‘+ ; » we have
lim A //1k 1= 38
k-«
For the smoothness of © we use the relation (29), and obtain
paal.m A p+1lqm . : .
A 9, axay u(t, x, N | < LkCZ’ p/l AA+ , Vkzk), Vi Y I, Vx,yER,
and in view of (36) a sufficient condition for the smoothness of u is
5 k-1
kl:mwexp -5 2;( a;d; Ay, =0 foranym&N. 3%
=%

Due to the relation (38), we can replace in the limit above A"

by bBY 1;(" or, equi-

valently, take the sum under exponential from £, to k. We have

k
-2 2 A S = a A /2 = ag (A~ 2210, /2,

k+ 1
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and therefore (39) is a consequence of (37). Since we will put conditions on Ak and a,
that ensure the continuity of d, and d, (hence (38) hold) we will omit the condition

39).
Continuity of d; . We will prove that fori € {1, 2} we have

| di(tl) - d,'(tz) | =

sup ((1—Af /A2, hmin (S5, |, = t,]/a,)), V1, ,t,ER.  (40)

< 10C
TR

In order to do so, we show that for any t,and ¢, thereisak = kq such that

| dt) = d1,) | <10C, , (1 = 4/4; , Pmin (5, |1, = | /a)). “4Dn

(-]
Sincelc Uk [Tk, Tk +1 1= [Tko, T), there are three cases to treat:
=%

(@) Thereisak = kysuchthatt ,t, € [T, T,
(b) One of the 1, belongs toR\ [Tko, 7).

w1k

©4 €T, Ty 4 Jand €T, Ty o\ L vithky =k,
Case (a). Using the theorem of Cauchy, and the upper bound of the derivative of dl.
given by (30) we obtain:
; 2 /92
[dt) —d@) | = |y - ’z|5‘x,2(1 = A A, Dl e .
Using further that
W €T T (1= —Bl=sT =T =5,

we obtain

| d1)) = d 1) ] 5C, (1 = AT, pmin (5, |1, - t,] /a)).

Case (b). Suppose that 4 ¢ [Tk , T). Then d,.(tl) = 0. If [ is also outside this inter-

N 0
val, then d(t,) = d(t,) =0 and there is nothing to prove. So, we may suppose that
= [Tk’ Ty, ], with k 2§ik0 . Then one of T, and Te o (let us denote it by tl’)
must lie between 7, and t, (or equal #,). Then |t —t,| = |¢{—t,]| and since
d(Tp) =d(T, . ) =0, we have d(1]) = 0 = d,(1,). Applying the case (a) to ¢/ and ¢, ,

we obtain:
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ldi(t,) = dity)] = 1d(t)) = di(t,)| S SC, , (1 =3 /AL, ymin (S, [t — l/a,) s

<5c, , —A; /A3 . pmin (5, |1, = t,|/a,).

Case (c). The method is similar to the one used in case (b). Suppose

I E [T"l’ Tkl 1 J and 1, € [T"z’ T,€2 4+ 1 with k, # k2 . By symmetry we may suppose

 and &, =T, . Then we have d,.(t}) = 0 for

that 1, <t,, hence kl < k2 . Let t = Tk1 .

2
j=1,2and

|4ty = ) | S 1d ) |+ 1dy) V=1 de) = de) | +1dgty) - dgy) | s
=5C, , (-4 //12l Lomin G, 1 =41/ )+

+5C (- '1’2‘2 /Jli2 L )min (S, 1, — r2'|/ak2) <

_ 2 2 . —!
= 10C, , max ((1 Akj //lkj+ ,) min (5, Itj 2 ]/akj ))

21,2

The proof of (41) is complete.
We turn back to Theorem 1, condition (v). In order to obtain Holder continuous
coefficients of any order 0 <« <1 our sequences { a; }and {4 X } must satisfy (in view of

4n):

Vae(0,1)3C>0 s.t. (1=A2 /A7, ymin (5, |1 |/a,) < Ct“, ¥t =0,Vk = k.

Since the r.h.s. is concave and increasing, while the Lh.s. is linear on [0, Sak] and
constant on [Sa,, « ] and is continuous, it is cnough to check the inequality at t = Sak .

We-obtain in this way the condiiion:
Va<l3C>0st. (1 =42 /A2, )< Caf V2 k.

- Sumarising, we need two sequences { ¢, and {4, } which must satisfy:

}kzl k=1
%

(@) D @, < % (the constuction is to be achieved in finite time),
T

B) Va,<a, <A, (technical condition),

(v) A, € N (in order to ensure the 2zz-periodicity and the boundary conditions),

324 ) Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, No 3/4



On a counterexample concerning unique continuation for elliptic equations

2
(®) lim e~ %A~ 4 14 +l)’2/12"+ , = Oforany m €N (to ensure the smoothness of

k -» oo

bij and implicitly that of u).

(©)Va<13C>0st (1-42/A2, )< Cd® forany k = k, (the Holder continuity
of d,, d2 ,of any ordera <1).
The following sequences satisfy all these conditions:
A= (k+1)°
_ 2 -1
a, = (kln"(k+1)) "
The condition () is easy to prove, and also (8 ), and (). We have for (d):
k3 -k 0¥k 2

2 2
e—"k(lk—'lk/)‘k+1)/2,1;cﬂ+l=e kln® (k+ 1) (k+2)3m=
2
-k + 1)3 3k 3+ 9k2+ 7
=e G+2)"kin"(k+1) (k + 2)3m.

The exponent is assimptotically

3k% + 9k + 7
k+23kIn?(*k+1)

~(k + 1)3 =—(1+O/k)3kIn~ 2(k + 1),
and therefore the whole above expression has limit zero as k£ - . For the condition (&)
we have

6k° + 45K° + ... + 63

A=22/22, )= —(k+ 18 Kk+2)°) = 2y

<ck~ ', c>0,

andsincelimk'l+“ln'2"(k+ 1) = Ofor any a < 1, we have
k=

Va<13C,>0 suchthat (1-42 /A2 )< C k™ “ln~ 2 (k+ 1).

It remains to choose ko We must ensure the uniform ellipticity of the equation (3), as

required in the point (vi) of the theorem. This is possible since the coefficients that we
have constructed are uniformly continuous: di and bi;’ - éij have compact support in the ¢

variable and are periodic in x and y. Now, passing from a ko to a bigger ;0 has the only

effect that these function become zero for r € [Tk , T; ] and remain as they were for
0 0
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te iTZ , T1. Since they tend uniformly to zero as ¢t § T, we can choose k0 such that
0
|d;|<1/18and | bl.j—dijl < 1/18 and then

[b“ -1+d, by, )

<6x1/18=1/3,
b12 b22— 1 +d2

and we obtain

1-1/3 b“ ! bl ]
=
b b22 2

12 ] <1+1/3.
12

The proof is complete.
The construction for the parabolic problem (4) is similar to the one for the elliptic
equation and will be not done here.

R e m ark. From the condition A o we infer that

4

o 1 )
C -4 _ -4 K _,-4 2 _
k“mm’lk —lko I 14 =1 I1 Py =0,
- k=kyAg 1y k=k,

and since pz € (0, 1) for any k, we can pass to the infinite sum associated to the infinite

product, and obtain from the above relation:

d 2
> =p)= .
k=k0

Since in each of the intervals [T, T ] one of the functions dl , d2 takes the value
-(1- pz) and gets back to the value 0 at the end of the interval, the above relation

implies that either d, or d, have unbounded variation. Thus we cannot obtain wi?

coefficients in the construction above.

Professor N. Lerner raised the problem of the refinement of the above result, consi-
dering the continuity moduli of the coefficients. He asked in particular whether the
below result hold. The following corollary is actually a corollary of the proof of
Theorem 1.

Corollary 1. Let w: [0, ©) = [0, ) be a continuous, non-decreasing and concave
Sunction such that w(0) = 0 and w(1) > 0. Suppose that
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1

dt
L 42
f ({) < 00, 42)

0
Then there exist u, bi/' and dl. , where i, j= 1,2, satisfying all the conditions of
Theorem 1, and such that

| dt) —dft,) | sw(lt, = 4,1), ¥t ,1,ER, i=12. 43)

Remark. If f:R" > R then the modulus of continuity of / is by definition the
function

w1 [0, ©) > [0, ©), (1) = ‘ sup [ f(x) = f(x) |

X=Xy | =
It is easy to prove that w ¢ is non-decreasing and satisfy the relation
w}(a Hht(-a),)=z 1/2(awf(tl) + (1 - a)wf(tz NV, 1,20,Va € [0,1]. (44)-

This shows that there is a concave function & » more precisely,

@ ()= sup (= Do)+ (-1) o)

t,—t
()Stl<t<t2 2 1

such that %Eﬁfs wfs &)’f . It follows that the restriction to concave funstions w in the

above corollary does not affect the generality.

Proof of Corollary 1. We may suppose that
w(f) € V7. (45)
Indeed, replacing w by the function
| @ (1) = min (w(1), Vi),

the hypotheses of the corollary remains true: @ is continuous, non-decreasing, concave
and

1

1 1 1

t 1 -2 f dt f -1/2
f——-—a(t)-fmax (w(t)’t )zlts () + t dt< oo,
[} 0 0

0
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We will make another choice of the constant &, , of the sequences {”k } i > and
{4}, -, in the proof of Theorem 1, such that the conditions (@)-(d ) and the relation

(43) are satisficd. We choose

o ¥ 22 G-k
2 .

k k+1 7 (k+l)8

We have to make some preparations in view of the construction of the sequence { a, }.
Let @ = sup { x € [0, 1 JJw(x) <w(l) }. Since w(0) = 0 and w(1) >0, we have a € (0,1 ].
Then by continuity we have w(a) = w(1) and the function w : {0, a] = [0, w(1) ] is bijcc-
tive. Indeed, suppose 0 < x <y < q. Since w is non-decreasing, w(x) < w(a) by the defi-
nition of a. Using that w is concave,

U=-Yo@)+ - x)e@ . @=-yeE)+ = x)wE)
a-x a-x

w(y) = = w(x),

which proves that w is strictly increasing on [0, « |. We put
a=1/5w" ’(SOCX‘ 20 ) forany k 2 k.
I'his requires that the argumentof w ~ lies in {0, w(1) |. To this end, we impose
50C, z"ko < w(l),
rclation satisfied for & big enough since 8, » 0. Since 0 < akl < ako forany k| =k, , we
_obtain from the concavity of w:
(Sako - 5¢1k1)w(0) + 5"k, w(SakO) a,

o}
=50, 20,

N = w(S = z
50(’3(.2()& w( ukl) 30 -
: ko ko

and we infer

ﬂk ('Ik
—L -2 forallk, 2 &,. (46)
k al\'

1 0

Now we will check in order the conditions (@), (), (y) and () stated at the end of
the proof of Theorem 1.
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We prove first that 2 a, < «. Using the monotony of w and then the relation (42):

ky

k
2 ‘1‘( =4 ,,)=50C, , l (-, )=
=koak k =k, 50Cx'2(5k

Sak

-1ocx,2k§_jk w(Sak)(sak SakH)SIOCx‘zk;k o) S
%0

Sag 4y

leC =M< foranyk, = k.

'“(7)
0

We will associate differently the terms in the ﬁrst sum above, in order to obtain infor-
mation about the series z a, . We have )

lcl kl—l a a
k k, +1
‘é‘(“k"“kﬂ):z 61 ”31“““1*3“0'“3!"“'
k=ky%% k=kot%%+1 %% ko ky
and we.obtain using (46):
ky =1
11 “ %%
2 ak+l_M——-—+ <Mforanyk 2 k.
K=k |5, TS S d
ol %k +1 k ky Tk

Since {d ¢ 1 is decreasing, [ - —1—-] a, ., >0forany k = k. We obtain that the
k

series

3
U+ 1
= 0[ k+l 616]

is convergent. It remains now to use the fact that

lim[ 1 __1_] - 1/8 | CY)

ksod 1 O

and the positivity of a, to conclude that
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In order to show that the relation (47) holds, we compute

1 (k+1)8 _L k*+8%"+0@k% _1
5, 8k +285+0(5) Bk +1uS+0x5 8

(k+9/2 + O (1/k)).

The proof of the condition () is complete.

Due to the relation (45), we have w ~ l(t) > ¢ for t€ [0, w(1)] and in particular
Sa, = ~1(50C, ,8,) 2 (50C, ,8,)" for any k = k, . Since &, = 8/k + O (1/k%), we
obtain the existence of a C > 0 such that

a,zCk™2 : 43

Choosing k,, big enough, we obtain 1/ a, < =2 « for any k = k, and the condition B)is
fulfilled.

The condition (y) is obviously satisfied: 4, = K enN.

We have from (48):

2
PRl Ot LT L

-2,4 4 4
A;‘n.’.l Se—Ck k (l"k /(k+l) );’2(k+1)4m5.

< o~ CK@ I+ )ty (k + 1),

The limit of the above expression is 0 as k- «, since the exponent is
— 2Ck(1 + O (1/k)), hence the condition () is satisfied.
_ It remains to prove the inequality (43). In order to do so it is enough to prove that

1062 o (1 =4 /¢, ) min (5, t/a,)) < w(?)

for any ¢ € [0, =), since (43) is then a consequence of (40). We will prove the inequality
foreachk = ko:

w(t) = IOCZ’ , 0, min (5, t/a,).

We use the concavity of w and the fact that it is non-decreasing. This implies that it is
enough to prove the above inequality at the point 1 = Sa, , where the r.h.s. passes from a
linear function to a constant one. Indeed, suppose the inequality proved at ¢ = Sak.

Then it results, on one hand, by the monotony of w, that the inequality holds in the
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interval [5q, ). On the other hand, it is obviously true for =0 and from the

concavity of w it is true in the interval [0, Sa B ]. We have to check that

.25/('5’

w(Say) = lOCx
or by the definition of a, we have equality. The proof is complete.
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O KOHTpNpUMepe, CBA3AHHOM C €AMHCTBEHHOCTHIO NPORONXEHNS ANd
NMATUYECKUX YPABHEHUI B auBepreHTHONU hopme

H. Manaake

IIpennoxeH ApUMEP AMBEPreHTHOIO JLMATHUECKON andxpepeHLmanbsHoro onepatopa Tpex
nepeMeHHbIX, Y KOTOPOro CyLIECTBYET HEHYJIeBOe pelleHue, 00pallalomeecs B Hyb Ha no-
synpoctpancTee. KoadgduumeHTol ypasHenus ynosaetsopsior ycnosmo Teasaepa ¢ mobbim
nokasatesem < 1. Ilpumep yJayuinaer n3BeCTHbIN peayabTaT Mwanepa. I[Toka3zano takxe,

4TO CYUIECTBYET BOIMUMXKHOCTb CAENATb KOIDMULMEHTBI B NOCTPOEHHOM npumepe Gonee rnaa-
KHMMH.

IIpo KOHTPIIpUKIA, NOB’I3aHUIA 3 €AMHICTIO NPOAOBXEHHS AN
eJiNTUYHUX PIBHAHb Y AUBEPreHTHIN opmi

M. Managake

3anponoHoBaHO NPUKIAJ AMBEPTEHTHOO ENNTHUYHOTO ONEPATOPa TPHOX IMIHHMX, Y AKONO
€ HeHyJIbOBHFI D038’ 930K, M0 00epTacTbes y Hy/ib Ha HanisnpocTopi. KoediieHTy piBHsHHS
3a10BOSILHSIIOTE YMOBI Tenbaepa 3 mobum nokazaukom a < 1. IMpuxnag nokpauye Binommii

peayabrat Minnepa. ITokasaHo Tex, WO iCHYE MOXAMBICTb 3pobuTh KoediuieHT™ y nobyaosa-
HOMY NpUKAai 6UTbII FNaRKMMH.
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