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Necessary and sufficient conditions are obtained for unconditional basicity with

brackets of a family of exponentials in the space LZ(— a, a) or in its span. The subspaces
corresponding to the brackets are spanned by exponentials with "neighboring” exponents.

1. Let us consider a family {e; 2 < o Of exponentials ei = exp (—iix),

—a<x<aon a finite interval. The question of its unconditional basisness (notation:
(UB)) has been completely solved in [1-3] provided that

infImA:=inf {ImA| XAe A} > - 0y
in the case
inf Im Al :=inf {[ImA]| Ae A} > O; ®

in [4] and for arbitrary spectrum in [S]. All these works are based on the projection

method due to B. S. Pavlov. In the case Im A > 2 > 0, it consists of reducing the UB
property to the question of whether there is an isomorphism between

span (e, | (- a, ©)) and Lz(— a, a) under the orthogonal projection P, on L2(— a, a)

in L2(— a, ©). Here and below e, =exp (i A x). Let us try to apply the result of [5] to -
the spectrality problem of the operator generated by boundary value problem:

—idyldx=f, ~a<x<a,fe L¥-a,a), 3

Supported by the RFFI grant No 95-01-00014

© A. M. Minkin, 1996



Projection method and unconditional bases

UQy) = J'y(t)do = Z ¢ y(aj ), ¢ * 0. C))
-a J

Here do is a discrete measure of finite variation, Z | ¢ | < oo, { a; } < [-a,a]. Let

a

L(A) = jexp @i ?»x)dc(x)b be the generating function of this problem, A ={ A } be

—a
the set of its zeros with multiplicities k(A ). Suppose that
tae{ a; }. &)

Then it is known [6] that the following assertions are valid:
i) A lies in a strip of finite width:

Ilm A | < & = const; ©
ii) in every rectangle R(t,h) :={|Rez—-t|<h, |Imz|<h} the number of

zeros counting multiplicities is uniformly bounded with respect to ¢ € (- o, oc);
moreover, V& > 0 the following double-sided estimate holds true:

| £ (2) Ixexp (a|y ), y=1Imz; dist(z, A)28§; - M
iii) the spectrum A can be partitioned into a set of disjoint clusters A, ,

Card A := Z k(A) = (1) and the corresponding family N={ N, } constitutes an
AeA

unconditional basis of subspaces in Lg(-~ a, a) (notation: N € (UB) ). Here N, stands

for the span (xke; k=0, ...,k ) -1; Le A).
Whenever relation (5) is broken it is only known [6] that

+ae{aj}—>inflmkn=—oo, (8)
~aé{aj}—)suplmkn=+oo, 9

and no basisness results were obtained.
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2. In view of (iii) it is useful to introduce the following notation. Let k(A) be a
divisor in the complex plane C with a discrete support A which has a single limiting
point at o and let

A=UA, (10)
be its partition into disjoint subsets called clusters. Further we set
kM) =Y kM), k(M) =kA), L€ A and =0 otherwise (n
and assume that
LA eK ={lz-§,|<r,}; r,<C-(1+|ImE_ |} (12
2. Card A= O(1). | (13)

Definition 1. Let N, be as in ii), N:= MA) = { N, }. Suppose (10)-(13)

are valid and N e (UB). Then we shall say that N is a block-basis in L%(- a, a)
(notation: N € (BB)).

Theorem 1. Let (10) be a certain partition of the problem’s (3) spectrum and
N =N, be the corresponding family of spectral subspaces. Then N € (BB) iff (5) is
valid.

The statement of this theorem rests on a block-basis generalization of the criterion
in [5].

Let A_ be a union of all A such that Im K, < 0, A_be its complement in A and

denote their divisors & i(?»).

Theorem 2. Let N={ N, } be defined by some partition (11) of the divisor k (A)
in Section 2. Then N € (BB) iff the following relations hold:
A) k()) is a zero divisor of some entire function L (z)
of exponential type (e.fe.t.); (14)
B) dist (A, , A, ) 2€ > 0, n# m; (notation: A € (GS )); 15)
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O AL :=U (A, |inf tImK 2h)} e (CV); (16
D) | M( - - iy) |2 € (4,),y > 0 and sufficiently large. an
Here dist (X, Y) :=inf { |x~y||x € X,y € Y}, (4, ) is the Muckenhoupt’s condi-

tion, (CV) — the Carleson—Vasjunin condition [8] and M(2) is an entire function of the
first order with zero divisor

kyy ) =k (A) +k (=), Im A 2 0; = 0 orherwise. (18)

Remark 1. Let ® = exp (iaz); B(z, k) be the Blaschke product with divisor k.
Then in Theorem 2 one can replace D) by

dist (@B (-, ky (- - ), HS) < 1. (19)
Let us also mention that (BB) yields completeness and the latter implies A).

Remark 2. Theorem 2 is also valid for the block-basisness in the span.
Herewith it is only needed to remove the second condition from (19) (it corresponds
to the minus sign) together with A).

3.Proof of Theorem 2. Itrepeats essentially that one given in [5].
Therefore we shall mention below only the corrections in the proof preserving nota-
tion from that article.

3.1. Corrections to §1. Let A’ =A; for some A > 0, A :=A\ A’ . Hence
ImK, 2-h VA cA with some h, > 0. We take B_=0, B, > — h, . Then all
the statements in [5, §1] except Lemma 1.4 are readily checked. One must only
replace Carleson condition (C) by (CV). For instance, Lemma 1.2 is reduced to the

question of norm equivalence for "packets” of exponentials on (0, 2a) and (0, ). But
the latter has aiready been proved in [5, Theorem 9.1]. ‘
3.2. Necessity of (15)-(16). Without loss of generality we may consider some
subsystem M(A’ ) ¢ N with spectrum A’ such that /= inf Im A’ > — . Moreover,
multiplying it by exp ( —y#), y > | /]| we come to a new subsystem N(A’ + iy). Then
it is a block-basis in its span. This yields that the continued subsystem constitutes an
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unconditional basis of subspaces in its span in L2( - a, ), The latter implies that

N +iy e (CV).

3.3. Corrections to Section 4.2. Now we set 8 > B, and let A, = A’ \A,, A, be

the union of all A e A’ such that sup Im K, < - 8.

3.4. Corrections to §6. We replace everywhere Carleson condition (C) with Carle-

son—Vasjunin one (CV). Proposition 6.1 has respectively an analogous generalization
to the case of the union of two (CV) sets. We notice that

[=r,\JTl_e(CV), T_=A,, [,=A,\UA]

because I'"_ € (CV') as a part of A and the second set I, also belongs to (CV) (may-

be with some other partition into clusters). Then dist (I'_, T_) > 0 due to our choice
of these sets.

3.5. Corrections to §7. Now we fix y such that

inf Im (T + i) > 0. 20)
In 7.2, we set
Y, = (NP y_=T\y,. (3}
inf Im l“n >0

We obtain set M, from A reflecting all A ’s with X' intersecting C_ to upper halfplane,

namely such A ’s are replaced by Xn . All other A’s stay in M, unchanged. There-

fore My=1v, U Y_. Settingy =v_\_ y_, we see that y lies in the strip C (- 61, 61)
with sufficiently big 81 > 0. We choose y such thaty -8, > g, (cf. [5, Section 7.4])

and repeat all the considerations in §7 with & replaced by &, . Instead of (7.11) we set

S2 =/ (Kn U -IE” ), the union is taken over all A, <7y_ . At last we come to a new

relation

@7'B(-, My+iy)H? + OH2=1? @2
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instead of (7.16). Let us consider the function
h(z) = B(z, M + iy)/B(z, M, + iy).

It is easy to calculate that

h =[] b, ,, @/ [ b3ty @

hev hev

where v={A ey_|ImA20]|} and b, stands for elementary Blaschke factor. Since
y_€ (CV) we get that v + iy, v + iy € (CV ). Reasoning as in [5, Lemma 7.2}, we

deduce that | 2 X1, Im z £ 0. Therefore hH_2 = H_2 and hL? = L*. At last multiplying
(22) by h, we establish (7.16).

3.6. Corrections to §8. It suffices only to repeat word by word all the considera-
tions in this paragraph. Thus we proved Theorem 2 with sufficiently big y > 0. But
in the half-bounded case, namely for the spectrum M + iy it is well-known that the
exponents can be shifted downwards as much as one wants to subject to inequality
Im (M + iy) 2 € > 0. The proof is finished.
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Meton npoeknuii U 6esycioBHbIE HGa3HCHI
AM. MuHKuH

IMomydensl He0GXOOMUMbIC M JHOCTaTOYHbIE YCIOBUA Ge3ycOBHOM Ga3MCHOCTH cO CKOG-

KaMM CeMEMCTBA 3KCIIOHEHT B IIPOCTPAHCTBE Lz(— a, @) WIM B CBOEH 3aMKHYTOM JTHHEH-
Holt obonouxe. IIpu 3ToM oTBevalole cKo6KaM TOANPOCTPAHCTBA HATAHYTHI Ha KCIO-
HEHTHI C "CIM3KMMU" IMOKA3aTeIIMHU.

Mero, npoekiiii Ta 0esyMoBHi Ga3uck
A.M. Minkin

OTpuMaHO HeoOXimHi Ta HmocraTHI YMOBU 6e3yMOBHOI Ga3sMCHOCTI 3 AyXKaMHM ciM’i
€KCTIOHEHT Y TipocTopi Lz(- a, aj a6o B cBOIH 3aMKHeHIW miHiiniit o6ononwd. [Ipu usomMy
BIMOBIIHI DTyXKKaM ITIITPOCTOPU HATAI'HEHI Ha €KCIIOHEHTH 3 "OIM3BKUMH" IOKa3HMUKA-
MH.
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