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The equations for Green’s functions are investigated and thermodynamically equivalent
approximating Hamiltonians are derived for the model Hamiltonian of Bogolyubov’s theory of
superfluidity and the Huang—Yang-Luttinger (HYL) model Hamiltonian. The approximating
Hamiltonians contain terms linear and quadratic in operators of creation and annihilatior: with
momentum zero. On this basis, we prove thai Bogolyubov’s model describes superfluidity for
certain values of the chemical potential, high densities, and low temperatures. It is shown that
the expression for pressure derived in this paper for the HYL model coincides with that obtained
earlier.

Introduction

The problem of theoretical description of Bose condensation and superfluidity is a
permanent challenge for mathematicians and physicists. It is generally accepted that the
theory explaining these phenomena should be based on the Hamiltonian for bosons
interacting via a pair potential
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Here A is a cube centered at the origin, L is the length of its edge, V(A) = L3is its
volume, the summation is carried out over quasimomenta k that take the values
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Bogolyubov’s model of superfluidity and Huang-Yang-Luttinger model

k=2nn/L, n= (”1’ n ) is a vector with integer components, ¢, = k /Zm m is the

n3
mass of a boson, u is a chemical potential, ¢, and a/c are the operators of annihilation

and creation of bosons satisfying canonical commutation relations, & £k is the Kro-
1'*2

necker symbol, and ®(k) is the Fourier transform of a potential, ®(k) = 5(—-k). Fur-
thermore, we assume that periodic boundary conditions are given at the boundary of the
cube A.

The general Hamiltonian (1) contains all information about boson systems but,
except for quite general properties, hardly anything can be acquired from it. Therefore a
very important problem is to extract from (1) a model Hamiltonian which would
describe superfluidity being exactly solvable. Certainly, it is desirable to clarify in what
sense a model Hamiltonian approximates the general one.

For this purpose, Bogolyubov [1 ] suggested the following model Hamiltonian:

* 1 ,
A=Zakak(£k_'u)+21/(/\) 2 % + k0 PRDE @4 agaq +
2 kyky=0 L2
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1 * 1 3 * ok
+ 5 CI)(k Ya, +———— 0 P O)a,a, a,a, +
2V (A) ‘ ;_ K, %% 2V(A)k2’%¢0 ky, kD% o
3,  Oky)aga; a, ay + 57— P(0)aga 2
kz,%¢0 k2, k3 ( 3) 0 k2 /63 'ZV(A) ©) 0 0 Qo -

The model Hamiltonian (2) is obtained from the general Hamiltonian (1) by neg-
lecting the terms that contain more than two operators of annihilation and creation with
nonzero momentum in the interaction Hamiltonian H; \. It was unknown then in what

sense the model Hamiltonian (2) approximates the general Hamiltonian (1); this was
the first postulate of the Bogolyubov theory of superfluidity.
The second Bogolyubov’s postulate was that the operators a, /v V(/G and

a("; /v V(Aj can be replaced by c-numbers, because, in the thermodynamic limit, they

commute with all operators a, and a.Z and are thus multiples of the identity operator

(c-numbers), provided that the representation of the canonical commutation relations is
irreducible.
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By replacing all the operators a; /VV (A) and a:) /VV (A) in (2) by c-numbers,
namely, a,/VV(A) =c and aj/VV(A) =c¢, we obtain the approximating

Hamiltonian

2 2
2\ * C * ¥ 4
Heypor 2 (¢, — # + ®(0)c ? )aja, + —Z—kg(:b(k)aka_ Lt —2-12 0<I>(k)aka_ Pt

+ 2y dk)aa, + ( —pc? + —;—(D(O)c") V(A). &)
k=0

Hamiltonian (3) can be diagonalized by using Bogolyubov’s canonical u-v transfor-
mation, its spectrum can be exactly determined and coincides with that postulated by
Landau in his phenomenological theory of superfluidity.

At first sight, the replacement of the operators a, /VV (A) and a; /VV (A) by c-

numbers seems to be reasonable and well justified. However a more detailed analysis
leads to a serious doubt about the validity of this postulate. First, for every ko # 0, the

operators a, /VV (A) and a; /VV (A) (and certain expressions containing these)
0 0

also commute with the operators a, and a,’: in the thermodynamic limit and are thus

c-numbers, provided that the representation of the canonical commutation relations is
irreducible. In this connection, it is not clear why the operators a, /VV(A) and

ag /VV (A) play such a distinguished role.

To clarify the last remark, we write Hamiltonian (2) for an infinite cube A ~R3,
V (A) - =, using the well-known rules

14 A
V(A) 2 f - dk, (2::)3 Ok ky ™ Oy = k)
VV (A VV(A) « .
——7—(2”)(3 % a, = a(k), _—_7_(2_7;)(3 % a, = a (k). “@

Before passing to the case of an infinite cube, we rewrite the Hamiltonian Hy A (2) in

the form, where the summation is carried out over all momenta including £ = 0 (this
step is necessary for passing to integrals of a(k) and a"(k)). We have

Ay E“k"k(e ”)+2V(A) 2 O, + k0 PR @4 agay +
ko ky
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1 A * &
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ForA =R3 (L = ), in view of (4), we get (V = V(R3 »

ty= [ @ ®atkye® - wak +
@ga f 3(k, + ky)D(k,)a" (k,)a’(k, )a(0)a(0)dk, dk, +
+ (32"1_/).:_ f 3(ky + ky YD(k)a" (0)a" (0)a(ky Yalk,)dk dk, +
_2_”); f (k= ky )®(0)a’ (k,)a"(0)a(k, )a(0)dk, dk, +
+ (_221”‘/)_23 f 3(k, — k, )®(k,)a"(k)a"(k )a"(0)a(0)a(k,)dk, dk, +

3
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. (22;): ®(0)a" (0)a* (0)a(0)a(0). ©6)

Recall that we consider an infinite cube and thus all the integrals divided by the volume
in (6) are understood as the limits

1 f . 1 J‘ '
—f ..dk= lim ——— | ..dk. ©))
|4 V(A) - 14 (A) A
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Let us examine a typical term, e.g., the second one, on the right-hand side of (6) and
show how certain operator expressions turn into c-numbers in the thermodynamic limit
and what problems arise in realizing this procedure. We have

, .
(—22%% f 8(k, + ky YD(k,)a"(k,)a"(k, Ya(0)a(O)dk, dk, . ®)

Obviously, we can consider the factor 1/ v? together with the operator «(0)a(0) and

replace the expression (27r)3 EL‘(,)-)- 2{_31 by a c-number. In this case, we obtain

.2
22— f ok, + k, )D(k,)a’ (k))a" (k, )dk,dk, .

At the same time, there exists another possibility, namely, to join the factors 1/V to
one of the operators a(0) and the operator expression '

f Ok, + ky )P(k )a"(k )a"(k, )dk,dk,

respectively. The operator
1 * *
7 f 8(k, + ky)D(k,)a"(k )a" (ky )dk,dk,

commutes with all a4, and a; and hence it is also a c-number; denote it by ¢, . Thus

interpreted, operator (8} takes the form (21:)3/ 2ccla(O).
We have encountered an ambiguity, since we have two factors 1/V and three ope-
rator expressions in (8) fo which they may be joined. Note that, following the first

scheme (joining tnese factors only to the operators a(0) and «*(0)), we obtain the
approximating Hamiltonian (3). The detailed analysis carried out in {2, 3 ] showed that
both the possibilitics must be taken into account; in this case, the following thermo-
dynamically equivalent operator corresponds to operator (8):

2
= f Ok, + ky Dk, )a’ (k) )a" (ky Yk, dk, + (2m)> %cc a(0).

The thermodynamically equivalent approximating Hamiltonian which corresponds to
Hamiltonian (6) has the form

- C 2 » ] .
anpr = f a (k)a(k)(e(k) — p)dk + 5 fé(kl + k) )Pk, Ya (kl)a(k2 )dkl(lk2 +
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2
+5 f 8(k, + k,)D(k,)a(k,)a(k, )dk, dk, + c* B(0) f a*(k)a(k)dk +

b2 f D(k) a*(k)a(k)dk + AQ2r)* 2a*©) + A(2r)¥%a(0) + B, 9)

where A and B are certain constants determined by averages of the operators a(k) and
a’(k).

The approximating Hamiltonian (9) was obtained by analysis of equations of a state
(more precisely, the equations for temperature Green’s functions, see Section 2). It
follows from these equations that both possibilities of joining the two factors 1/V to the
three operator expressions in term (8) are realized. This means that an argument based

on the assumption that only the operators a, /VV (A) and a(; Vv (A)‘ commute with

all operators a; and al’: in the thermodynamic limit and are thus c-numbers, provided
that the representation of the canonical commutation relations is irreducible, fails be-

cause the Hamiltonian HM also contains other terms that possess this property and can

be replaced by c-numbers. This problem is completely solved by using the equations for
Green’s functions, the analysis of which shows that, as has been mentioned above, all
possible replacements of operator expressions by c-numbers are realized.

According to (4), Hamiltonian (9) is associated with the following Hamiltonian in
the cube A:

2
_ * _ __C__ * ok 3
Hoppe, A = ; (e, — 1) + 3 Ek aklakzq)(l‘l)akl +hyoT
ik

2
. C L2 *
+ 5 E aklak;l)(kl)ék1 + k0 + ¢ “D(0) /(E aa, +
1’2

+c2Y ata, @) + AVN 20 + AN Pay + B, a0
k

where the constants A and B are determined via the same averages (taken over the cube
A) as those in (9).

The approximating Hamiltonian Happr (9), (10) is thermodynamically equivalent to
the model Hamiltonian H,, (2), (5) in the sense that the Green’s functions of both these
systems coincide in the thermodynamic limit.

Comparing (3) and (10) show that Hamiltonian (10) contains terms with the pro-

duct a;')a0 of operators with momentum zero as well as terms linear in a, and a(’;. Note

that, in Hamiltonians (9) and (10), there are no operators a(0) /V, a*(0) /V or
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ag /VV (A), ay /VV (A), which turn into c-numbers in the thermodynamic limit.
Therefore, for Happr and Happr‘ A
considering the possibility of constructing artificial expressions such as V - a(0)/V,

V-a(0)/Vor VV(A) - a, /VV (A_)‘, VV(A) - aa /V'V (A) and replacing then the cor-

responding operators by c-numbers).

these expressions are final (we have no intention of

By using canouical transformations, one can eliminate the terms linear in ¢, and a",

from operator (10). As a result, we obtain the following Hamiltonian:

2
- ¢ * %
Hoor A = D (e, = 1)+ 7 » a % (b(kl)akl +h.07T
P kyvky 2 2

2
(44 9 L2 -
+3 2 “/c,“/cz‘b("l)"k1 thyote D(0) 3, aja, +
kidk T

+c2 aya, dkK) + (- uct + %fb(O)c‘) V(A), an
k

2

where the constant ¢ is determined by the condition ¢ = (ay)/ VV(A) = {agM V'V (A)

and {A) denotcs the statistical average of an operator A. (We preserve the notation ay

and a(*) for the new operators, though ‘heir averages are equal to zero.)

It follows from (10) that the difference between Hamiltonian (3), which was gene-
rally used before, and the correctly defined thermodynamically equivalent Hamiltonian
(10) is that latter contains operators g and a;. This fact is very important because Bose
condensation is possible only if a Hamilionian contains operators of creation and anni-
hilation with momentum zero (under periodic boundary conditions). Certainly, one
must prove that the condition ¢ = (u,)/VV (A) = (up)/VV (A) has a non-trivial solu-
tion.

For certain model Hamiltonians, one cannot use the procedure of replacing some
operators by c-numbers because it is quite difficult (or even impossible) to select ope-
rators that commute with all ¢, and “Z in the thermodynamic limit. Nevertheless, by
analyzing the equations for Green’s functions, onc can obtain a thermodynamically

equivalent approximating Hamiltonian . For example, such a situation takes place in the
case of the Huang—Yang—Luttinger (HYL) Hamiltonian, which has the form

H ATH A=

mA = Ay,
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2
= ; aa (e, — 1) + ﬁ/%\')’ [2 (; “I:“k) - % (“Z“k)z] , (12?

where a is a coupling constant. The system of bosons is again considered in a cube A
under periodic boundary conditions.
If we pass to the thermodynamic limit in (12) we obtain the following Hamiltonian

for A = R3;

Hy = f a*(kya(k)(e(k) — pw)dk +

2
2m)? 2
-g: -2‘-1‘7[2 [ f a‘(k)a(k)dk] - E——‘;z— [a'(k)a(k)] dk} =H,+H. 13

\

Let us select in H| operators that commute with all a(k) and a’(k) and thus can be

replaced by c-numbers. It is obvious that the operator -:7 f a’(k)a(k)dk in the first

term of H, possesses this property and can be replaced by a c-number. At first sight, the

entire second term can be replaced by a c-number. However the analysis of the equ-
ations for Green’s functions shows that this is not true and the thermodynamicaily
equivalent approximating Hamiltonian has the form [4 ]

H f " (K)a(k)(e(k) — u + 2ac))dk — ac®(27)**(a"(0) + a(0) ] -

appr
- al?V + 3 acv, 14
where

{a(0)) (a*(0)) !
= (27!)3/2 v = (27[)3/2 — 6 = —‘;f(a‘(k)a(k))dk. (15)

For a system in a cube A, Hamiltonian (14) has the form

Hogpr,n = 2 Gayleg =+ 2ac) = ac®V ()16 + gy -

- aclkV(A) + 5 ac“V(A) (16)

It is easy to see that the approximating Hamiltonians (14) and (16) for the HYL
model have the same features as the corresponding approximating Hamiltonians (10)
and (11) for the Bogolyubov model, namely, they contain quadratic and linear terms
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with respect to the operators of creation and annihilation with momentum zero and
there is no reason to replace them by c-numbers. By using canonical transformations,

one can eliminate the terms linear in a(') and “0‘ from (16). As a result, the Hamiltonian
takes the following final form: ‘

26
2 3 4 acV(A
appr, E akak(e - + 2ac)) - aclV,(A) + 3 ac V(A) - —_—”__’_‘z(zgl— . (17)

Here the constants ¢ and c, are determined by (15) or, which is the same, from the

condition of the minimum of free energy.
It should be noted that the expression for pressure obtained by Van den Berg, Lewis,
and Pulé [5] for the HYL model coincides with the corresponding expression calculated

for a system with Hamiltonian (16). This fact corroborates that H appr (16) is a correct

thermodynamically equivalent Hamiltonian.

Let us formulate the main results of this paper.

In Section 1, we study the model Hamiltonian of Bogolyubov’s theory of super-
fluidity and the HYL model Hamiltonian.

In Section 2, we investigate the equations for Green’s functions in the theory of
superfluidity and derive the approximating Hamiltonian (10), (11). It is shown that if

—-u+ c2<l>(0) < 0, the pressure is infinite, i.e., the system is unstable; if — u + c2<l>(0) >0,
there is no condensate in the system, i.e.,c = 0 and H appr is reduced to a free Hamilto-

nian with an energy of excitation £, . Only for 4 = 2<I>(0) and sufficiently high

densities and low temperatures, there is a condensate in the system and Hamiltonian

(2) (or H appr thermodynamically equivalent to it) describes the phenomenon of

superfluidity. Thus the doubts whether Bogolyubov’s model Hamiltonian (2) describes
superfluidity expressed in [6 ] is reasonless.

- In Section 3, we determine H appr (16), (17) for the HYL model. It is shown that the
expression for pressure obtained here coincides with the corresponding expressnon de-

rivedin {5 ] )
Some of results presented in this paper were published earlier in the brief notes

{2, 3]1and the preprint {4].
1. Description of Hamiltonians of model systems

In this section, we describe two models of interacting bosons, namely, the Bogo-
lyubov model of superfluidity and the Huang-Yang~Luttinger (HYL) model.

1.1. Bogolyubov Hamiltonian in the theory of superfluidity [1]. Denote by a; and a,
the creation and annihilation operators for a boson with momentum k. These operators

378 Matematicheskaya fizlka, anaflz, geometriya, 1996, v. 3, No 3/4



Bogolyubov’s model of superfluidity and Huang-Yang-Luttirger model

satisfy the well-known canonical commutation relations. Assume that they interact via a
pair potential ®(x). For this syste:a of particles contained in the region (cube) A and
subjected to periodic boundary cow..itions, the Hamiltonian has the form

H, =) a, K2 +
AT ; Y\ o, M
é Ok, — k,)a} a} a, a, .
V( N, kz’st, by + kg by + PRy~ K30 0 0y @ a.n
Heré, as usual, summation is carried out over all quasimomenta; ®(k) are the coeffi-

cients of the Fourier series for the potential ®(x) = ®(] x |)

Oz, - %) =% SR 00, e = 0,

D(k) = B(— k) = D(k), f | D(x) |dx < oo 1.2

We assume that ©(0) >0 and $(k) is a real continuous function with a bounded support.
The model Bogolyubov Hamiltonian describing superfluidity can be obtained from the
general Hamiltonian (1.1) if we retain in the Hamiltonian of interaction all terms that
have at most two operators with non-zero momentum and neglect all the others. One can
easily show that this Hamiltonian takes the form

o &2 1 . o
A= ; aa, (—2—';1- - y) + R kzk 6"1 +ky 0 d)(kl)aklakzaoao +
%2
1 . 1 . o
+ 37 @ ks’z,‘4 3y, ky+ k4<1>(k3 )aoaoakaak4 + 57 7S kl’zks 6/‘1' ks(D(O)aklaoaksao +
1 ) * #
s zry k§4 %, L OV R T2 ( % 24 0 ®(0)a’, ak a;, +

2V(A) 2 6k kfb(k )a, a,c kao 2V(A)<I)(0)aoaoaoao (1.3
3

Note that we can also consider the case, where summation in the terms
corresponding to H | in (1.3) is carried out over non-zero momenta. This results in the

Hamiltonian that differs from (1.3) only by the coefficient in the last term ( + 1 instead
of — 5). Therefore we consider Hamiltonian (1.3).
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By passing to the thermodynamic limit in (1.3) according to (4), we obtain the model
Hamilionian of the infinite system

. 2
Hy f & (Ka(k) (5"’-’—1 - u) dk +

3
Q—”)Z— f 8(k, + k) ®(k))a"(k,)a"(k, )a(0)a(0)dk,dk,, +

3
+ <§$’z f 8(ky + ky) ®(kp)a’(0)a"(0)alky alk )dkydk, +

3
+ 30 f 8(k, = ky) ®(0)a"(k,)a" (0)a(k; Ya(0)dk,dk; -+

3
+ (22:[,)2 f 3(k, — k,) D(k,)a"(k)a" (0)a" (0)a(k,)dk dk, +

3
Qf)z— f d(ky — ky ) @(ky)a"(0)a"(k, a(k, Ya(0)dk,dk, +

(2")3 f 3k, — k, ) D(0)a"(0)a"(k, )a(0)alk,)dk,dk, ~

6
-5 %33— ®(0)* (0)a" (0)a(0)a(0). 1.4

By using the operators of creation and annihilation of bosons in the configuration space

* 1 — l * 1 i
a*(k) = s f e~ ®*(x)dx, a(k) = T f e ¥ a(x)dx,
__1 ~ thx (1.5

D(x) a7 f e~ % d(k)dk,

we arrive at the model Hamiltonian of the infinite system in the configuration space

Hy = f a*(x) (— ién— - ,u) a(x)dx +

L st s ) ([ )
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+ _2-‘177 ( f a'(x, )dxl) | ( f a’(x, )dxz) f f a(xy )a(x, YP(x, — X, )dxydx, +
+ 5'1!72'6(9) f f 3(x, = x5 )a"(x,) (f a’(x, )dxz) a(x, )dx,dx, ( f a(x, )dx4) +
+-L; f f O(x, - x,)a"(x)) ( f a"(x, )dxz) ( f a(xs )dxs)a(x4 ydx,dx, +
+o f f B(x, ~ %5 ) ( f a'(xl)dxl) a’(x, )a(x;) (f a(x, )dx4) dx,dxy +
+§1,—5<'i>(0) f f 3(x, = x,) ( f a‘(xl)dxl)a'(xz) ( f a(x, )dxa)a(x4 )dxdx, =
-#&3(0) ( f a'(x, )dxl) ( f a'(x, )dxz) ( f a(x, )d"a) ( f a(x, )dx.,),

d(0) = f D(x)dx. (1.6)

Note that here V = V(Rs) and A = R3; therefore all integrals in (1.6) should be re-
garded as limits (7). For example, the second term in (1.6) should be understood as the
limit

lim ffa‘x a*(x, Y®(x, — x, Ydx,dx,X 1D
i i [ [ e 00 - yan

(A R)
X (f a(x, )dxs] [f a(x, )dx4].

A A

The other terms in (1.6) have similar meaning.

1.2, Huang—-Yang-Luttinger (HYL) model [5]. The Hamiltonian of this model has
the form

2
\ * kz a * * 2
Hyn = Hon * Hia = ; % ('i}Z - ") T IV [2 (; “k“k) - ; (@) ]'

(1.8)
where az and a, are creation and annihilation operators for bosons, a is a coupling

constant of the model, and parameters m and # denote, as usual, mass and chemical
potential, respectively. '
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We now pass to the thermodynamic limit by using (4). The Hamiltonian of the
infinite system has the form

)
Hy = f a’(k)a(k) (g—; - ,u) dk +

. 2 o 3
+ 1917 {2 [ f a*(k)a(k)dk] - (—Vl— [a*(k)a(k)]z dk} = H,+ H,. (1.9)

By using (1.5), we can pass to the configuration space in (1.9). As a result, we obtain
the model Hamiltonian of the infinite system in configuration space

Hy=H,+ H = f a'(x) (—- -2%1- - )a(x)dx + -2% { [f a'(x)a(x)dx]2 -

- %f [ f a’(x + y)a(y)dy] [ f a'(- x + z)a(z)dz] }dx. (1.10)

2. Equations for Green’s functions in the model of superfluidity

2.1. In this model, Green’s functions are defined in a standard way as statistical
averages of T-products of the Heisenberg operators a(?, x) and a*(¢, x),

t

Gmn(tl’ Xpp oo tm’ X m+1’ xm+l’ T tm+n’ xm+n) =

m

= lim (Tre At )~ Yrr [T(a(tl, Xy ) alt,, %, )%

V(A)» o
» » - BH,
Xa (tm+1’ *m+1 ).-a (tm-i n *m+n Je g M) =
=(T(a(ty, %, ) e @t %, )8 s 15 Xy ) e @ Wy o Etn ) Q.0n

mn=0,1,2,....m+nz=1.

Here H , is a Hamiltonian (1.3) of the model of superfluidity and a’(t, x) and a(t, x) are

the operators of creation and annihilation in the Heisenberg representation. We assume
that Gm n exist.

To derive equations for Green’s functions, we need the Heisenberg equation for
a(t, x) and a*(t, x). Let us write the equation for a(t, x). We have
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Oa(‘;tx) la(t, xj, H ] = — (_-Z—Ar;—,u)a(t,x)ﬁ-

1 *

+ —;E fd)(x =ypa (i, y)ds. f a(t, y, )dy, f a(t, y3 )dy, +
1

+ P f a*(t, y)dy, f f a(t, y, ) P(y, = y3 )a(t, y }dy,dy, +

1 = -
+ P D(0) [f a'(t, y,)dy,a(t, x) f a(t, y, ydy, +
+ f a'(t, y)a(t, y,)dy, f a(t, yz)dyz] +
+ 5:-,3 f D(x -y, )( f a'(t, y,)dy,) ( f a(t, yz)dyz) a(t, y; )dy, +
2V2 f f (yl Y3 )a (, y‘) (f a(t, yz)‘b’z) a(t, Vs )dyld)’3 +

2V2 f f by, - yz )a’(t, y))a(t, }z)dy,dyz( f a(t, y3)dy3)

1 .
+ ;;/—2 f Plx - Y2 ) (f a(t yl)dyl) a(t, Y> )dyz (f a(t, Y3 )dy3) +

1 = *
+ m@(O) f a(ty) (f a(t, y, )dyz) a(t, y,)dy, +

l - - .
+ E-‘ﬁd)(()) (f a (¢, yl)dyl) (f a(t, y, )dyz) a(t, x) —
- %&3(0) (f‘a*(t, yl)dyl) ( f a(t, v, )dyz) ( f alt, v, )dy3). 2.2)

The equation for a’(t, x) can be obtained from (2.2) by the operation of Hermitian
conjugation.
By using the Heisenberg equations and one-time commutation relations, we can now
deduce equations for Green’s functions in the standard way. We obtain
G (t vees by X3

mn m’ m ‘'m+1’ xm+l’ el

m+n’ *m+n )=
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A
1
= (_. T -p)G (e Xpa e s bps Xt b0 X1y oo 3 bt Boaen ) T+

1 : .
+2 f f f‘l’("l =Gt ne1 (s Yoo G V3o Up Ko oo by X

tl’ I tm-t-l' xm+l' I tm+n’ xm+n )dyldy2dy3 +

+—fff¢(yz "3) +ln+l(tl’y2’ l’ys"Z’xZ"“’tm' m

0 Y bt a1 b Xmobn Y8V 99,0Y5 +

2Vz ff Gt a1 Cyo 31 by Yy o B oo by X

W Y b Xma1r = 2 b Fmeen )dyldyZ +

2V2fffq’("1 = Y3)C g nra (b i s Yo B X woe sy X

tl’ Y tm+l’ Xme1r o tm+n’ Xm+n )dyldyzdy3 +

‘PgO! .
2V2 Gt nat (s Yo U Yoo Uys X e s Uy X8

tl’ yl’ tm-H’ xm+l’ see tm-m' m+n )dyld-"z +

zvszfq’(yl Y3 )Gt na1(fys Yoo Uy V3o B X ooy Bpp X

tl’ yl’ tm+l’ xm+l’ e tm+n’ xm+n )dyldyzdyli +

2V2fff(p(yl Y2 G at na 1ty Yoo Uy V3o gp X eee s By X

tl’ Yp tm+l’ TS LR tm+n’ Xm+n )dyldyzdy3 +

1
MY f f fq’("l = Y2)C it et Uy Yoo s Yo g X won s s X

!l’ Yy tm+l’ X2 oo tm+n’ xm+n )dyndyzd)’s +
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2v2 fme-f—er-l(tl’yl’ by Yo Iy Ko e s by X

Yo Y b1 Xmarr = b’ Xman )dyldyz +

2V2 ff Gt na (s Xy s Yo B X oo s by X

Lo Y b1 X100 b St )y dy, -

f f f m+1t n+](’l' yz’ 1° )’3, tzr xz’ eee y tmv xm;

tl’ Yo tm+l’ Xmays o tm+n’ Xm+n )dyldyzdy3 +

m+n ]
+i 2 Oty = 4,)0(x) = %3G, 1 g (gs Xgs wee s byps X by 13 X 19 % 0 by X Do
j=m+1 '

mn=0,1,2,.., m+nz1l. 2.3

2.2. It is now necessary to give rigorous meaning to the terms on the right-hand side

of (2.3) that contain V=V (ll3 ) = e in the denominators. We understand this term in
the sense of limit (1.7). To define these terms, we first make some assumptions con-
cerning the structure of the functions G, ,

Let us split a set of m + n points (), xps o o ¢

m+1’ xm+l' s tm+n’ xm+n)
into / subsets Oy s 0) consisting at least of the pomt

(til’ xil, sl X G , X, s ey L » X; )s eee

i i
m my ml+l ml+l ml+nl ml"’”l

(t ,x, 5.0t X, ;t x R ' X . 2.4
WU T my jml’ jml+l’ jmpl ’ jml*"l Iml"”l)

These subsets Oy eees dl are associated with the functions

A (7 AN A L x R X ) =
myny Vi T 'ml’ 'ml’ iml+l' lml-!-l’ ’ lml-ml’ iml-mx

= £y 0 (2 D) 5 (), s

J4 (7 ZRN S | y X, wen b, X, )=
mny ’1’ ’l' ’ Jml ’ml, jml+l ’mld’ ! ’mlml’ /mlml
= gm[ nl((t’ x)ml; (t’ x)ul) : @5
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which are assumed to be translation invariant with respect to all variables, i.e., they
remain unchanged under the replacements of all four-dimensional points (¢, x) by the
points (¢ + a,, x + a), where a; and a are an arbitrary number and an arbitrary

threevector, respectively. This means that the functions

8'mn(tl’ Xpseees tm‘ *m tm+l’ Ema1r o tm+u’ xm-l-n)

depend on m + n — 1 independent variables that can be chosen in the form of diffe-
rences

(b =t Xy = Xy ey by = 1, X, = X3

bnv1 ~ i X

m+ X t — X

m+1 T 12 Cmtn m+n ~ %1 )’

namely,

gmn(tl’ Xpr oo tm’ xm; tm+l’ xm+1’ e tm+n’ Xm+n ) =

= gmn(O, 0, by = Xy = Xy es b, = 4, X, — X3

t

m+l_t

x ot 2.6)

U Fmer = Fp o m+n_tl’xm+n—xl)'

Assume that Green’s functions can be represented in the form
Gmn(tl’ Xy oee s Iy Xy tm+l’ 17 00 tm+n' xm+n) =
= D 8 (60), 5 (6%), ) e s 8y (6 8),5 (1), ) Q.7
r 2 1 1 1™ 1 4
Here summation is carried out over all possible decompositions af. In view of the fact
that all subsets of the decomposition o contain at least one point, we have
Gio=810>Co1 =8;- 2.8

It follows from (2.7) and (2.8) that the representation

Gm+l n+l(t1’ xl’ e rm’ xm; tm.+l' xm+!’ e tm+n’ xm+n ) =
= Glo(tl’ X )GIO(tZ’ o) )Gm—z n(t3’ x3’ s zm' xm; tm+l’ Xma1> tm+n’ xm+n) +
+ an(tl’ Xps e tm’ xm; tm+l’ X120 tm+1+n+l’ xm+l+u+l ) 2.9

t ‘We assume that the functions Gmn and gmn are symmetric with respect 1o permutations.
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holds, where M mn is given by (2.7) but summation is carried out over all decompositions
o which do not contain two subsets consisting of one point and containing just the points
(¢, x, ) and (1, x, ).

We require that the functions 8,,, must be summable with respect to the difference
variables X, =% together with the potential & (all other variables are fixed). This

means, for example, that
f | P(x, = %) |1 8,,(0,0, 8, = 2, %, = xpy ey 8, — 8, X, — X3

t

me1 ~ %

m+1 = Xpseeent

min 1 Xman — %1 ) 1 d(xy — % ) <. (2.10)

In the models investigated in physical literature, potentials ® are, as usual, bounded
and summable; therefore it suffices to require that 8,,, must summable with respect to

difference variables.

2.3. Let us proceed to the determination of the right-hang side of equations (2.3),

which contains uncertainties connected with the factors 1/V 2 and 1/V 3, To eliminate
these uncertainties, we assumed that Green’s functions can be represented in the form
(2.7) and decompositions ¢ also contain subsets consisting of a single point. The func-
tions g, (¢, x) and g, (¢, x) are translation invariant, i.e., they are constants. The other

functions 8y Mmtnz 2, are also translation invariant and integrable with respect to

difference variables; furthermore, they are bounded.
We now determine the second term on the right-hand side of (2.3). By using repre-

sentation (2.7), 2.9) for G, _, ., and inequality (2.10), we get

1
T;ifff‘b(xl TGt a1 (B Yoo B2 V3o By X cov s X

tl’ yl’ tm+1’ xm+1’ T tm+n’ xm+n )dyldyZdys =

= o2 - .
=¢ f Py = Y)C et a1 (B X woo s Ly X 15 V1o by 1 X2 > Epr X )9V 5
Q.1D

where

= T 1 _
c= GIO(O’ 0) - V(Il\l;ri - vV (A) ‘[ Glo(tp yz )dyz = (a(O, 0)). 2.12)

The proof consists in establishing the equalities
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lim ffG (13, )Go(t1s ¥ Ydysdys = ¢ 2,
V(A)*OOV(A)z 10\°1 2) 101 3) 273

d)x -J tsy’ ,y7 ,'X,-..,t ' X 3
V(A)-..»V(A) fff ( VM +1n+1(1 21073 " 2 m *m’

by Yp tm+l’ a1 o0 tm+n’ Xm+n )dyldy2dy3 =0,

which follow from integrability of g and the fact that M, , |

depends on Yy 0ry,.
The other terms can be determined analogously. ‘
By using the argument similar to that used for the term considered above, we con-

clude that, after passing to the thermodynamic limit and eliminating the uncertaiaties

connected with the factors 1/V 2 and 1/ V3, equations (2.3) for Green’s functions take
the following form: ‘

4

X, )

m+1’ xm+l’ . m+n’ xm+n) =

9
l-é't-l"Gmn(tl, Xis eoes tm’

A
1 .
= (_ _2}; - ”) Gmn(tl’ xl’ 0 tm? xm’ tm+l’ xm+l’ e tm+n’ xm+n) +

2
+e fq)(xl = VDGt na1 (g X woes s Xty Vi By i Koo o0 0 o X )Y, +

* .
+c Cle—l n(tZ’ Xgr eees by Xy tm+l’ M T LRLE) tm+n’ xm+n) +
. = .
+cc®O0)G, | (B Xgy ey B0 X 58 L% s B X )
+ c"‘z Q(O)Gm-—l n(tZ’ x2’ v tm’ xm; tm+1’ xm+l’ e tm+n’ Jr’m-&—n) +

* .
tc cf (D(xl - yl)Gmn(tl’ yl’ t2’ x2’ e tm’ xm’ tm+1’ xm+1’ ot tm+n’ xm+n )dyl +

+ c"aGm—x n(tz’ Xpr e by Xy b+ 10 a1 tm+n’ xm+n) -
2+ . .
—Sc’c (D(O)Gm-—l n(tz’ * ’ tm’ *m tm+!’ X120 tm+n’ xm+n) +
m+n §
+i z 6(t - t )6(x ) m—1 n—l( 2 ¥ e tm’ X tm+l’ Fm+1? S tm+n’ xm+n)’
j=m+1
mn=0,1,2,..., m+nzl. 2.13)
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Here the constants ¢, ¢*, ¢, ¢,,and c,are defined as follows:

¢ = G,(0, 0) = £,4(0, 0) = (a(0, 0)) = {a(t, x)) = y(ii;"i 3 —‘,-(175 f {a(t, x)) dx,
A

¢* = Gy, (0, 0) = g5, (0, 0) = {a"(0, 0)) = (a"(t, x)) =y(,l\i{'l i —V—(I—A—) f (a*(t, x)) dx,
A

¢, = f D(x - ¥)G,y(0, x — »,0,0) d(x — y) =

—V(A

. 1
h;lf. R { [ @(x — yXT(a(t, x)a(t,y))) dxdy,

. 1 .
©=6,0.0.0,0 =G, (txt 9= lm o f (T(a(t, ©)a"(t, %)) dx,
V(A)~» B

c3=f<l>(x-—y)G“(0,x—y;0, 0Odx-y =

1
= lim ——ff(bx-—yG t,x;t,y) dxdy =
V(A)—+» V(A) A A ( ) “( )
= lim VA 1 f f O(x — y(T(a(t, x)a"(t,y))) dxdy. 2.14)
- V(A) :

V(A)»» A ™A
By using the canonical transformation

a(x) = e" a(x), a'(x)~»e” ¥ a'(x),

we can always guarantee that ¢ = ¢” and ¢, = c]. This enables us to assume in what
follows that the constants ¢ and c, are real.

Let us introduce the approximating Hamiltonian
H —- * A d (4 2 * & * dx.d
appr = | @ (x) ~am T H a(x) x+ =5 a (x)®(x, — x,)a (x, )dx,dx, +
2 ~
+5 f f a(x,)®(x, ~ x, )a(x, )dx,dx, +  B(0) f a*(x)a(x) dx +
+c? ff a@*(x)®(x, = x, )a(x, ydx,dx, + A f a‘(x)dx + A f a(x) dx + BY,

(2.15
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where
A=cc +cc, 5(0) + oy - 563 &;(0),
= - 20201 - 2c2c2 ®(0) - 2c2(:3 + -1—2'2 4 o(0).

The constant B was determined from the equation (H) = (H, appr )

By direct calculation, we find that the equations for Green’s functions in the system
with approximating Hamiltonian coincide with equations (2.13) for the system with
model Hamiltonian provided that the constants ¢, ¢, , ¢, , and [ in (2.13) are defined

according to (2.14). This means that Green’s functions in the system with approxi-
mating Hamiltonian coincide with Green’s functions in the system with model Hamil-
fonian, i.é., that these systems are equivalent in the thermodynamic sense.
In the momentum space, H appr has the form
e [ K2
Happr = f a (k) (—2—’-’1- - ,u) a(k)dk +

2
+5 f a"(k,)a"(ky YO(k)) O(k, + ky ) dk dk, +

+£Zfa(k Ya(k, YO(k,) O(k, + k, ) dk,dk, +
2 1/ 1 1 + ky) dkydk,

+c2d0) f a*(k,)a(k, ) 3(k, — k, ) dk,dk, +
+c? f a'(k)alk, )d)(kl) 3(k, ~ k, ) dk,dk, +

+ A2 %" (0) + AQ2n)*/%a*(0) + BV ; 2.16)

for a bounded region A, we have

* kz Cz *
Hopor = 2. 9 (ﬂ‘f‘)“k"‘"z— D G a ®k)S, L, ot
% kl'kZ 1 "2 1 2

022

+ = a
&
zkk 1

2 *
% a D)8y 4 g 0* ¢ <I>(0)k§;c @ @ 8 b, *

172

+c?y a;lakz(b(kl)ékl'kz+A(V(A))l/2a;+
ki, k ’
1""2

+ AV (A))%a, + BV (). . @m
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2.4. Let us make the canonical transformation in (2.17)
a, = a, + d, a0=?io + d.

Then the term in H,  (2.17) containing a, and a, takes the form

2 2
o~y o~ [4 —~ o~ C P
(-pu+2 2 ®(0))a, a, + 5 ®(0) a, ay + 5 ®(0) aya, +

+ (= p+ 3¢ @) @3d + ayd) + AV (A) 2 a5 +

+ AV (A)2 3 + (= + 3¢ 200)d ? + 24V (M) 2.

(2.18)

(2.19)

We choose the number d so that the coefficients at Zio and Eo' are equal to zero. We

obtain the equation

_ (= p + 3¢ 2B(0))d + A(V (A)2 =0.
It follows from (2.20) that
| 1/2
d=—ATA) "

3¢ “®0) — u

The constant A can be defined by c. To show this, we use the equations

day() _ OH), _ l_aag(t) _ OH,,
at aaa(t) ? at day(?)
or the equations
ING) _ SH__ _9ay(H B dHappr

= - , =i =
ot dag(1) at day(t)
and average them, by using the fact that

@M _ (aO _  a®) (O
A A A S 2

Both the equations result in the same equations

—pc—-2 3<I>(O) +cep + cc,®@(0) + cey =0,

or, equivalently,
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A= pc - 3c¢30(0).
If we take (2.22) into account, then we find d from (2.21), namely,
d = c(V(A)/2 (2.23)

Thus the operators linear in ay, a :) vanish and operator (2.19) takes the form
2 ~h o~ [4 2 —~ o~ (4 2 ~ o~
(— 4+ 2c°@0))a, ay + TCD(O) 2y @y +5 D(0) aya, +
+ [ uc 2_3c 4<I>(O)] V (A). Q2.24)

Taking (2.24) into account, we obtain from (2.17) the final expression for H, appr, A

2
[4 . &
appr' Zakak( )+-2—§ aka_k¢(k)+
02 2 *
+—2—-;aka__k<b(k)+c ¢(0);akak+

+e? T ara, o) + [ uc?+ e ‘D) V (). 2.25)
k

In (2.25), we use the fact that, by virtue of (2.22) and A =/l6‘2 -3¢ 3fb(()), the ex-
pression for B takes the form

B= (—2pc2+%c4ff>(0))v(,\), (2.26)

In addition, in (2.25), we use the notation a , a:‘) instead of a, , Z{o' ; however
{ay) = (ap) = 0 according to (2.18) and (2.23).

Let us show that, in the thermodynamic limit, the extremum condition for the spe-
cific free energy for H (2.25) coincides with equation (2.22). Indeed, the extre-

appr, A
mum condition gives
lim (] +®O)cy +cj—p+c 2p(0)) = @.27)
| 4GV
Here

—17\—); d,a" ) ok) = V(A)Z (@, a_ ) D),
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=V (A) Z (@ a) s e =V (A) 2 (a; a, ) k), (2.28)

and we have taken into account that

lim <+ ( A) Ty (2,3 ) = lim (V( A) f a(x)dxv( A f a(x)dx) 0,

V(A)» = V(A)» =

S v @ =, <V(A\f @ ey vm)f ") =0,

lim V(A)(”*” Y= lim (V(A)f”"( )de(A)fa(x)dx) 0.

V(A)~> o vr)-

If we make an identical transformation in (2.27), adding and subtracting 3c 3<I>(0), we
arrive at the equation

— 1 = 2¢7®(0) + ¢, + D(O)c, + ¢, =0, (2.29)

which coincides with (2.22) with the constants ¢, €10y, €y given by (2.14) in terms of

the initial fields a(x) and a*(x). This equation was taken into account in H, por by setting

A=puc— 303<I>(0).

The approximating Hamiltonian (2.17) (or (2.25)) thus obtained is thermodyna-
mically equivalent to Bogolyubov’s model Hamiltonian (1). It contains the creation and
annihilation operators with momentum zero, and the constant ¢ will be determined
below.

2.5. The determination of the constant ¢ and the spectrum of H . Thus, after

appr
taking into account the condition of minimum of a free energy and eliminating terms

linear in “8 and ag , we have obtained the final expression (2.25) for H app

contains only one constant ¢. To complete the investigation of the Hamiltonians H,, and

Happr ’

this Hamiltonian describes superfluidity.
First we determine the constant ¢. For this purpose, we use the following relation:

. 1 . 1
c?= V(/l\;)ni TR .[ {a (x))dxm '!\. {a(y))dy =

- which

it remains to determine the constant ¢ and the spectrum of H, ppr and show that
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f (@ atasdy =

= lim

(2.30)
V(A)»o V (A)

), eo(\/T’T/—\— V(A)
where the average is taken with respect to H appr [71.

To determine the averages (d,a,), we reduce the Hamiltonian H, appr 10 @ diagonal
form by using Bogolyubov’s canonical u ~ v transformation

a=ub +v b ,. Q.31
1f we set
z=_;_ (f + 1] z_% (%' 1]’ Ek=(sz_hz)1/2’
fo=¢,—n+c2(DO) + BK), h, = czé(k),
E =V, —p+cl00) + 26, —p+ P00 2B 2%k), (23D
then H, appr, A takes the form

. 1
Hopor, A EEI’H Z(E fk)+(-uc2+5cb(0)c‘)v. 2.33)

In this subsection, we assume that ®(k) > 0. Clearly, E, must be non-negative, E, = 0,

and therefore f ,2‘ = h: . The latter inequality holds if — u + c2¢(0) 2 0; in what fol-

lows, we assume that this condition is satisfied.
In terms of (b; b, ), the averages (a;ak ) are expressed as follows:

(aja, ) =vi+ Qup ~ 1)(b; b, ) =

1% e 1 1[5 PE
—TE.; 1] ET———— i——cothz -1}.

2.39)

It is obvious that (g, a, ) has singularities for — 4 + ¢ 29(0) = 0 only if

Ey=V (- +220(0)% - ¢ “0%(0) =

ie., if
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p = c 2d(0). (2.35)

Below we assume that this relation is satisfied.
Hamiltonian (2.33) is a free one with respect to the new operators b; and b, and its
energy of excitation is E, . It is well known that the Bose condensation of a free Bose
system is possible only if E, =0 for k=0, i.e., foru =¢ 2(I>(0). The density of con-

densed particles is equal to ¢ 2, therefore, for Bose condensation, it is necessary to have
¢ # 0. We proceed to determining this constant. For this purpose, we employ the well-
known idea from the theory of Bose condensation and consider the formula for the
number of particles in a system

N=(aga))+ > (aa)=ny+ X n,, (2.36)
k=0 k=0

where n, is the average number of particles with momentum zero and n « is the average

number of particles with momentum k. Dividing relation (2.36) by V (A), we get
1_1
vy TV (A) 2 <

where 1/v = N/V (A) is the density of all particles and 1/v, = n,/V (A) is the density

of particles with momentum zero.
By employing the well-known procedure*
V (A) = = in view of (2.30), we obtain

1 2. 1 [1(/( . BE® '
T=c +(27r)3f2(5(k)coth - ——l)dk. 237

Let us show that this equation has a non-trivial solution with respect to ¢ 2 for

1 1 1 1 1 (1) BE (k)
v>cz+vc(°°)’ vc(ﬁ)—'(z,,)3f2(E(k)c°th 2 —l)dk

and passing to the thermodynamic limit

and some B. For this purpose, we fix ¢ 2 arbitrarily and consider the value 1/v_(f) asa
function of B. For a finite potential ®(k), the integral in the definition of ch (p)is

absolutely convergent; moreover, it is a decreasing function of § and
| S | 1/ _
CEC R f 2 (E 6 ~ 1]k

t For detailed presentation, see [8-10].
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A, A 1, 1
vc(O) v c(0) vc( B vc(eo) .
Therefore, if '
o0 >l> -—l—— +c 2,
v ()

equation (2.37) has a unique solution with respect to ¢ 2 for a certain fixed B e This

means that, for certain high densities and low temperatures, Bose condensation takes
place in the system.

Note that if 4 satisfies condition (2.35), the behavior of the energy of elementary
excitations

E =Vel+ 2,02 0(k) . (2.38)
is as follows: 1/2
at zero is as follows 200
Ek ~ ||
m
Note that if —p + ¢ 2®(0)>0, then E,#0 for all k and Bose condensation is
absent, i.e.,c=0and H appr
a, and with an energy of excitatione, . If —u +¢ 2¢I>(()) <0, then E, = 0 for some k, a

is reduced to the free Hamiltonian with respect to 2, and

pressure is equal to infinity, and, in this sense, the system is unstable. Only for

— 4 + ¢ 2®(0) = 0, Bose condensation is possible, ¢ % 0, and an energy of excitation
has a desired behavior for k ~ 0.
Thus Bogolyubov’s model Hamiltonian (1.3) completely describes superfluidity for a

non-zero density of a condensate ¢ 2= 1/v,, with the corresponding energy of elemen-
tary excitations E,.

Note that this result was obtained due to the fact that H appr A contains operators of

creation and annihilation a“, and a, with momentum zero.

Equation (2.37) has a solution c2=0 for 4 <0, wich corresponds to a free Bose
system. Note that equation (2.37) also has a non-zero solution for fixed 4 and ¢ # 0

such that ¥ — ¢ 2 ®(0) <0. Indeed, the function 1/v ¢ (B) is a decreasing function of 8
and 1/v (0) = . Therefore, if ©>1/v>1/v (w) +¢ 2, equation (2.37) has a unique

solution with respect to ¢ 2 % 0 for a certain fixed B . - Physical meaning of this solution
is not clear yet.
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‘3. Equations for Green’s functions in the HYL model

Green’s functions in the HYL model are defined according to the formula

t ThH -1y

1> Xma1? o lim (Tre

G, (t, X, .t , X
mn\"1’ 71 V(A) =

’ m’ ’t

m; m+n’ xm+n ) =

- BH
x Tr [T(a(tl, X ) ety X, )8 (15 X sy ) eoe @ (s Xy Ve A )] ,

mn=0,12,.... m+nzl, A3.Dh

Here we assume that the thermodynamic limit of (3.1) exists.
When deriving equations for Green’s functions, we shall need the Heisenberg equ-

ations for a*(¢, x) and a(¢, x). The equation for a(f, x) has the form

da(t), x)

o = lat, %), H }=

A N
=(- 5;1 - p)a(t,, x,) + 5%7 {2a(tl, x,) (f a(t, x)a(t,, x)dx) +
+2 (f a'(t, xally, x)dx) a(t, x,) -

- -]‘;f a(t,, x, = x) (f a*(t), — x + y)a(t, y)dy) dx —

1 *
-7 (f a (1), x + ya(t, y)dy) a(t), x, + x)dx}. 3.2)

The equation for a'(tl, x,) can be obtained from (3.2) by the operation of Hermitian

conjugation.
By using the Heisenberg equations and the canonical commutation relations, we get
the following equations for Green’s functions:

9 ‘
la_tl Gmn(tl’ xl’ s tm’ xm’ tm+l' xm+l’ et tm+n’ xm+n ) -

A
= |—=t_ .
- ( 2m ”) Gmn(tl’ Xp e tm’ Xm? tm+l’ Ema1 0 tm+n’ xm+n) +

a
tav {4 f Gt nat (s X0 8 X5 gy Xy e B X0

t )dx -

tl’ X, 1’ xm+l’ 0 Ymen? xm+n

*“m+
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1
- 2'{/me+1 arlllp Xy F X by Xy ey 10 X5

TR LT T bt *mn )dxdy]

m+n

+i 2 8ty = 1) 8 = X,)G, ) oy (s Xy s by X 1o
C o j=mel

J

v
J‘m+l' see tm-&-n' xm+u )’

mn=01,2,.., m+nzl. 3.3

On the right-hand side of equation (3.3) the terms in braces contain the factors 1/V

and 1/ Vz, where V is the volume of the entire three-dimensional space. To make these
expressions meaningful, we assume that the functions G, A can be represented in the

form (2.7), where the set of decomposition o also contain decompositions with one-
point subsets; moreover, we assume that the functions G, and g are symmetric. The

functions g, (¢, x) and g, (1, x) are translation invariant; therefore they are constants.
The other functions g, , m + n = 2 are summable with respect to difference spatial

variables as in Bogolyubov’s model (they are also bounded).
By using relation (2.7) for the functions G, » We can represent them in the form

Gm+l n+l(tl’ % tl’ Xys v tm’ xm; tl’ %, tm+l' xm+l' e tm+u’ xm+n) =

= G“(tl, xt), x)Gmn(tl, EARTRL T RS SUSTE FURTRRES S xm+n) +

I .
+ Mm+l n+l(tl’ % tl’ xl’ Y m? xm’ tl’ % tm+l’ xm+l’ e tm+n’ m+n )'
where M! ] ne1 G X b X e s 8y XS ’v"' L1 Xma1? = 2 b ¥men ) 1S TEPRE-

sentable in the form (2.7) but summation is carried out over all decompositions o which
do not contain subsets that include exactly two points X and thx corresponding to

the operators a(t,, x) and a’(t,, x).
We have
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. 4q .
fim 2V (A) f G"H'l ll+l(tl’ ol Xy e s Lye X5
A

V(/\) -> o
’l’ ) tm.-H’ A TS LI tm+n m+n )dx =
= 2ac Gum(tl’ X tm’ xm; ’m+l ’ xm+l’ o "m+n’ xm+n )’ 3.4
where
i 1 f 3.5)
¢,= lim ——<1G, (,xt,x)dx=G, (0,0;0,0). :
Iy a)ys o VA ) 14 1 11

This can be proved by using the relation

V(/l\l)nl . V(A) me+l n+l(tl’ ’ tl’ xl’ e tm.’ xm;

1, %t t Ydx =0

m+ 1 Tl “m+n
which follows from the integrability of g,,, With respect to difference spatial variables.

We also have

. a .
V(k;{ o VZ(A) _[Gm.+l n+l(tl’ X +x tl’ Vs t2’ x2’ et tm’ xm’

A
tl’ x+y, Lnsre Tt Lypon Sppen Ydxdy =
= 0 . 3.6)
=ac Gm-—l n.(t2’ x2’ e tm’ xm’ ’m+l’ xm+l’ e tm+n’ xm+n )’

where

. 1
c= lim ———————fG t, x)dx =G (0,0) =
V({A)> V(A) A I()( ) 10( )

. 1 f
= lim G, (t, x)dx=G,,(0,0), G,.=¢g,,, G,, =g, .
V(A)» = V(A A 01(6 ) o1 )» Gy =89 Gy = &,

This relation can be proved with the help of the representation

Gm+ 1 n+l (tl ?

xl + X, tl’ Yy t2’ x2’ s tm X m’ rl’ X+ y! m+1’ xm+l’ e tm+n’ xm+n ) -
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= Gw(t, x, + x)Gm(tl, y)Gm(t x+ y) -1 n(t y Xy woe s by Xl

tm-H' xm-H’ see tm+n' m+n) +
+ M m+1 n+1(tl' X + x, tl) y, tz, x2, oo o t m,
‘1' x+y, th,‘xm“, vos byand Xppn)

where M1 m+1 nt1 18 representable in the form (2.7) but summation is carried out over all
decompositions o that do not contain subsets just with the points thx X1, and
t,, x + y (one point in each subset). Here we take into account that the integrability of
8,,, With respect to difference spatial variables implies the equality

fM“(tl,xl + X1, Y by Xy e by X
A

lim
V(A)» o V (A)

t X+ Wt t

m+1° m+l’ ' "m4-n? xm+n

)dxdy = 0.
In view of (3.4)-(3.6), we can rewrite equations (3.3) in the form

t

m+n’ X

m+n)=

5 .
la_t{ Gty Xps e s G X3 b 10 Ko oo

A
1
= (_ m —") Gmn(tl’ Xys oo tm’ tm+l’ m+1? " tm+n’ m+n) +

+2acG (s %y e n 2 it

X m+1’ X1 o tm+n’ xm+n) -

17 mn m “m’
3 .
- ac Gm—l n(t2’ Xy e tm’ X b2 Xm0 s tm+n‘ xm+n) +
m+n
i3 8ty = 1)0(x = x.)Gy (b Xy ey By X
J=m+1
3.
J

t

m+1? Jcm+l’ Moot

m+n’ xm+u )

One can easily show that equations (3.7) coincide with the equations for Green’s func-
tions in the model with the following approximating Hamiltonian:

- A
Hoo = f a’(x) (— i;nl- - /4) a(x)dx + 2ac, f a’(x)a(x)dx —
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- ac® [f a’(x)dx + f a(x)dx] -aclv+ %ac 4y. 3.8

Note that the second term in the square brackets in H appr

Green’s functions with respect to the variables tj ,m+ 1< j< m+ n, and the constants

appears if we differentiate

BV = - ac12V+ %c‘V are chosen to guarantee the coincidence of average specific

energies of the model and approximating Hamiltonians.
Indeed, assume that the average energies of the model and approximating Hamil-
tonians coincide, i.e.,

1 1 .
G H)Y=5H, )
this means that
1 2 act 1 2 4
V(Ho)-o-acl ——-2——=-‘—,(Ho)+2ac1 -2ac” + B

whence

_ 2,3 a4
B-——acl +2ac .

It is easy to show that the conditions of extremum of the specific free energy (with
respect to ¢, and ¢) in the system with approximating Hamiltonian (21.38) coincide with
equations (3.5) and (3.7) for c,and c.

The approximating Hamiltonian (3.8) is not diagonal since its third term is not
diagonal. Let us transform it to the diagonal form. It is convenient to do this in the
momentum space. We have

.o [
H appr = f a (k) (2—m_ -u+ 2acl) a(k)dk —

- ac(2n)(a'(0) + a(0) 1 - acV + 3 ac*v. @.9

Let us diagonalize the Hamiltonian of a finite system

. [ #
Happr‘A= ;Qak (m—ﬂ +2a"1) -

= ac3(V (AN 1a] + ag) ~ ac 2V (A) + %ac ‘v (A). (3.10)

» . *
We select in H appr, A the terms with a, and ay» namely,
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‘ 3 1/2
ag ao( — p + 2ac)) — ac>(V (A)) / lag + a,]
and introduce new operators @; and &, by using the canonical transformations

.3 1/2 .3 1/2
o=t V(A) a =7 +% V(A) .

0770 " —p+2ac, 0T 0 —pu+2ac,
This enables us transform the terms indicated above to the diagonal form

2.6
— V(A
ay ay(—p + 2ac)) - 2L

-u+ 2acl '
We can now write H, pprs A in the diagonal form
26
2 3 4y a’c’V (A)
Hypor. A Zakak( y+2a¢,) ac’V (A) + 5 ac *V(A) - T Zac,
3.1

(here, for convenience, G; and @; are denoted by «; and ay , respectively). The para-

meter ¢ appears in Happr‘ A

as a separate term independent of the operators a; ) G s
a:) ,and q, ; therefore the condition of extremum of the free energy with respect to ¢
coincides with the condition of extremum of the function

2P

Y= 2ot 4
fey) =7 -+ 2ac,”

It is easy to show that, for — u + 2ac, >0, the function f(c) attains maximum value at
the point cl=a" ‘(—/4 + 2ac|) and its minimum value at ¢2=0. In the fitst case,

H appr, A depends on the parameter ¢, as follows:

(—pu + 2ac )2
appr, Z (lk ak ( -u+ 2ac1) - aclzy(/\) + _____27_1__ V(A). 3.12)

In the second case, one should omit the third term. In the first case, the grand partition

function E (V (A), 8, ) of the system with H, apprs A has the form

E(V(A), /9’ u) =

402 Matematicheskaya fizika, analiz, geometriya, 1996, v. 3, No 3/4



Bogolyubov’s model of superfluidity and Huang-Yang-Luttinger model

“’ 2 (-4 + 2ac))’?
=Trexp |8 Ea;ak (zk—m-y+2acl) —-acle(A)+—T—l-—V(A) =
k

2 (—p+ 2acl)2
= EQ(V(A)’ Bu-— zacl) exp [-B| - ac, V(A)+ 24 VML G.13

where Z(V (A), B, # — 2ac)) is the grand partition function of the free Bose gas at an

inverse temperature 8 with a chemical potential equal to the difference between the
chemical potential x of the original system and 2ac, .

Let us define pressure in the system

P(B, 1) =y(‘Ai§"l By~ log Z2(V (A),B,u) =

= lim (BV(A)~ 'logE(V (A), B u — 2ac)) +

(u — 2ac )2 (u- 2001)2 .
+ a.cl2 - —'—22-—1— =Py(B,p — 2ac)) + acl2 i P (3.19)

where P, is a pressure of the free Bose gas. Passing in (3.14) to a new variable

# = 2ac, = d <0, we obtain

2 2
- (p—d)” _d-°
| P(B,u) = Py(B,d) + > 3 (3.15)
In addition, one should take the maximum of (3.15) with respecttod <0.
In the second case, by a similar calculation, we get

P(B, 1) = Py, — 2ac,) + ac?
or, in terms of the variable d,

—d)? (3.16)
P(B.u) = Py d )+ LETAL

4a
Here one should take the minimum value with respect to d < 0.
Relations (3.15) and (3.16) coincide with the formulas obtained by Van den Berg,
Lewis, and Pulé [5). In this paper, the authors also established the existence of the
desired maximum of (3.15) and minimum of (3.16) with respect to d.

This means that the system under consideration may be in two states corresponding

tocl=q" 1( - - 2“1) and ¢ 2 = 0. The values of pressure.in these states are given
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by relations (3.15) and (3.16), respectively. It is known that the problem of determining
the state in which the system is situated can be solved as follows: if a pressure has the
same value in both states but chemical potentials are different, then the system is
situated in the state with the lower chemical potential. It was proved by Van den Berg,

Lewis, and Pulé in [[5] that there is u” such that, for 4 = u", the system is situated in
the first state while, for x4 < ", it is in the second state.

Conclusions

Note a link between our article and important papers of Angelescu, Verbeure, and
Zagrebnov [6]and Van den Berg, Lewis, and Pulé [9].

In [6], the model Hamiltonian of the theory of superfluidity (2) was investigated
and it was established that, for some u >0, pressure is equal to infinity and, for some
# <0, it coincides with that of the free system. From our point of view, it is not a
shortage of the Bogolyubov model, because the free Bose gas analogous properties and
the model Hamiltonian (2) is thermodynamically equivalent to the free Hamiltonian of
quasiparticles (2.33).

It follows from our results that, for 4 — ¢ 2<D(O) = 0, Hamiltonian (2) or Hamilto-
nian (2.33) thermodynamically equivalent to it describes superfluidity; foru — ¢ 2(I>(O) >0,

pressure of the system is equal to infinity; and, for 4 — ¢ 2<I>(O) <0, pressure coincides,
generally speaking, with that of the free system, i.e., ¢ = 0.

In [9], by using the large deviation principle, the exact expression was rigorously
calculated for pressure in the HYL model.

In the present paper, the state of the HYL model is exactly determined — this is the
state of a free Boson system with a renormalized chemical potential. The expression for
pressure obtained in this paper completely coincides with that obtained in [9].

Finally, note that the thermodynamically equivalent Hamiltonians (2.17), (3.10)

contain quadratic and linear terms with respect to aa and a. This means that the

commonly accepted method of replacement of all operators a; and a, by c-numbers

fails. In order to emphasize this fact, we described this principal replacement procedure
in detail in the introduction and Sections 1 and 2. '
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O asyx mMoaensx s3anmonaeicTsylouwiero bose rasa: moaenp
csepxTekyuectu Boromo6osa v Moneab XyaHra-Snra-Jlarrunxkepa

I. 5. Merpusna, B. U. I'penxyx

Hccnenosannt ypasHeHus ans dysxumit I'puHa, BbiBeaeHbl TEPMOIMHAMMYUECKH IKBUBA-
JNEHTHBIC ANMPOKCUMUPYIOIIME FAMUALTOHMAHLI LIS MOREALHOIO TAMMWJILTOHWUGHA TEOPHH
ceepxTexyuectv BoromofoBa v MOReAbHOrO ramuabTonuana Xyawra—Sura-JlaTrvnxkepa
(HYL). AnnpokcHMMpyIOiMe raMuIbTOHNAHB COACPXKAT WICHB!, KBAAPATUUHLIE ¥ AMHEHbIE
MO ONEPaTOPaM POXKAEHUA ¥ YHUUTOXKEHMUs C HyAEBbiM HMITysibcoM. Ha 310# ocHose noxasa-
HO, uT0 Monesb Boromo6oBa oNMCHIBAET SBICHME CBEPXTEKYUECTH NPH ONPERENCHHBIX 3HAUE~
HHUSX XMMHUYECKOTO NOTEHUHANA, BBICOKHX MJIOTHOCTSX M HM3KUX Temnepatypax. arnexue,
BbIUMCNEHHOE B Hawei pabore mia moneam HYL, cosnanaer ¢ nosiyuedHbiM panee 8 paBote
Jhionca v np.

IIpo asi Moneni B3aemoailouoro Bose rasy: Mone/ib HAAMJIMHHOCTI
Boromo0osa Ta moaeib XyaHra—Iura-Jlarrinxepa

H. 4. Merpuna, B. 1. I'penxyk

BuBueno piBHanHs ans ynkuii Fpina, BUBEREHO TEPMOAMHAMIMHO eXBiBANEHTHI anpo-
KCHMMYIOUi raMiIbTOHIAHM NS MOZREJIBHOFO TAMINBLTOHIAHA Teopii HagIMHHOCTI Boromo6osa Ta
MoaesbHOro raminbroniana Xyaura—Sura—Jlarrinxkepa (HYL). Anpokcumyioui raminstonianm
MICTSTh WiEHM, KBaapaTM4Hi Ta NiHiliHi BIZHOCHO ONEPATOPIB HAPOIKEHHR TA 3HUILEHHA 3
HysnboBuM iMnysincom. Ha wniit ocHosi poseneno, mo monens Boronio6osa onucye asuwe Haj-
MUIMHHOCTI NPU NEBHMUX 3HAUCHHIX XiMIYHOrO NOTEHUIANY, BUCOKMX IYCTUHAX | HM3LKMX TeM-
nepartypax. Tuck, skuit ninpaxosavuit 8 Hawii pobori ans Moneni HYL, cnisnanae 3 orpu-
MaHuM paniwe B poboti JIbtoica Ta iHIMX.
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