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The controllability problem for the linear system with generator of strong-
ly continuous group is investigated. The criteria of exact and local exact
controllability are obtained. The principal results of the paper rely essen-
tially on some deep facts of the operator theory. The application to the
problem of control of the wave process with the braking force is considered.

Introduction

Consider the system
t=Az+Bu, ze€X, uweQCU=LinQ, (1)

where X, U are Hilbert spaces, A is generator of the strongly continuous group
{eAt}, —00 < t < 400, B is a bounded operator, B € [U, X], Q is a convex set
such that 0 € Q.

In this work, we shall investigate the problem of the exact local and global
controllability for the system (1).

We shall say that a control u(¢), t € [0,7], is admissible on [0,77] if u(-) €
Ly([0,7],9). As it is well known, the set of controllability S, 7" > 0, for the
system (1) has the following form:

St = {:Co EX:z9g=— /OT e~ Bu(t) dt, u(-) € Lg([O,T],Q)} .

Definition 1. The system (1) is called globally (locally) controllable for the
time T'> 0, if ST = X (0 € intSt).

Definition 2. The system (1) is called globally (locally) controllable for the
free time or simply — controllable if
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S UrsoSr =X (0 €intS).

The main goal of our work is to get necessary and sufficient condition of
the global and local controllability of the system (1) under a following general
assumption:

du : u € intf). (2)

This work continues the previous investigations of its authors on the controlla-
bility problem [1-4].

In Section 1, we consider the exact controllability problem for the equation
(1), that is the controllability problem in the case where Q = U. Necessary and
sufficient conditions are obtained in the form which generalize criterion from [2].

Next we investigate the problem of the local controllability for the system (1),
(2) (Section 2). The full solution of this problem is obtained.

In Section 3, another form of the criterion of the controllability is given. We
investigate also relationships between the obtained results and the results from
[3]. Examples are also given.

In the concluding section, the application of our results to the problem of
control of the wave process is considered.

1. The exact controllability problem

As it is known, if the operator A is bounded, then the concepts of the ex-
act controllability for the free time and for the arbitrary fixed time T" > 0 are
equivalent [2]. It essentially follows from the independence of the criterion of the
exact controllability [2] from the time. In case of the unbounded operator A these
concepts are different.

Example 1. Let X = L3[0,1], U = Ly[0.5,1], A = d/ds, and the
domain of definition D(A) of A is the class of absolutely continuous functions
z(-) on [0, 1] such that

ml() € L2[07 1]7 ‘r(o) = ‘r(l) )

the operator B is defined by formula

It is known [5] that the operator A generates the strongly continuous unitary
group {e4'}, —0o < t < +oo: eta(s) = #(s+t), s € [0,1], where Z(-) is the
1-periodic continuation of the function z(-) on the real axis. Now we establish
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the exact controllability of the equation (1) for the time 7" > 0.5. Let us make
use of the criterion from [6]. Let operator N7 be defined by the formula

T
NTJE:/ e BB e Az dt . (3)
0
Then
T . T t+1
(Nra,z) :/ B4 fg;||2dt:/ dt/ 17(s)|? ds
0 0 t—|—1/2
1 T+1/2 T+1
:/ (s — 0.5)|#(s)[2 ds + 0.5/ |3(s)|2 ds + (T + 1= s)|3(s) | ds
1/2 1 T—|—1/2
1 T+1/2
> 5 (s 0.5)|i(s)|2d50.5/ 1(s)|2 ds+
T/2—|—1/4 1
T/2+5/4
15 (T 41— 5)[(s) P ds > (/2 — g/ )|}l P
T-|—1/2

parameters § and ¢ are defined here in the following way: if 0.5 < T < 1.5, then

gq=1,0=1;if T"> 1.5, then ¢ = 2(T' — 1), 6 = 0. Therefore, if 7" > 0.5, then

Nr is the strongly positive operator and the equation (1) is exactly controllable.
On the other hand, if T"= 0.5, then

1

1/2
(Niz,2) = /1/2(5—0.5)|:E(s)|2d5—|—/0 (0.5 — )|3(s)| ds

1
— / s — 0.5]|7(s)[2 ds .
0
Let {z,}72y C L2[0,1], ||zn]| =1, n =2,3,..., is a sequence of the form

‘ ) /n, s€]0.5,0.5+1/n],
) =900, s e [0.1]\(0.5,0.54 1/n].

We have then

Therefore the equation (1) is not controllable for the time 7" = 0.5 and, of course,
for the time T < 0.5.

Thus the equation (1) is exactly controllable for the free time but is not
exactly controllable for the arbitrary fixed time.
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Introduce into consideration the bounded operator N(A), A > 2wo(—A) =

2 lim M, which is defined by the equality

N(/\)x:/ e Mem A BB e Iy dt .
0

Proposition 1. The equation (1) is exactly controllable for the free time iff
N(X) is strongly positive operator.

P roof. Assume that the equation (1) is exactly controllable for the free
time. Consider a bounded operator F\ = F\(A): L2([0,00],U) — X defined by
the formula

Fyu() = /Ooo M2 Bu(t) di, A > 2wg(—A).
Then this operator will be surjective. Therefore, due to [7], we get
(NWN)a,2) = (FyFia, @) = |[Fal2 > nllal, > 0.
Contrary, let N(X) be a strongly positive operator, that is,
(NN)z,2) = nllzl]?, 7> 0.

From the estimation

0 *
-\t * _—A*t_ 112 € —(A=2wo(=A)—)T||..1|2
B dt <
et s e el

M. >0,e < X—2w(—A), we get that

T 00
/ 1B e~ A" dt > min{1, T} ((N(/\)x,x)—/ e—M||B*e—A*fm||2dt)
0 T

: ME —(A—2wo(—A4)—¢
> mln{l,e/\T} (7_ A_Qwo(_A) _86 (A—2wo(—A4) )T) ||£C||2

Consequently, the operator Nt defined by (3) is strongly positive. Then the
system (1) is exactly controllable for the time T due to the criterion [6].

Remark. From the proof of the Proposition 1 it follows that if the equation
(1) is exactly controllable then there exist 7" > 0 such that operator N7 is positive
defined. In this case, for arbitrary € X we have for u,(-) € Loo{[0,T],U}

ua(t) = —B*M2emAINS e 1 € [0,T),
B 0, t>T,
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Pug(-) = z.

This fact we will write in the form
L {[0,T,U}=X.
We now establish some properties of the operator N(\).

Proposition 2. The operator N () maps the domain of definition D(A*) of
the operator A* into the domain of definition D(A) of the operator A. Moreover,
if x € D(A*), then the following relation holds:

AN(N)z+ N(A) A"z 4+ AN(XN)z = BBz . (4)

Proof. Letz e D(A*). Since
eAAN(/\)$ = /OOO e AR BB~ ATt M 1t
_ /OO e~ A BB~ (AN = (A DA L g ()= (A HADA,
-A
+/0 e~ At BBre~(ATHADt~(AADA gy
A

then we have

oL aa o L arpana ,
ianOA(e —I)N(/\);zc_Z\f(/\)ilgqoA (e —])r
+ lim i/0 e A BRB* e~ (ATHM) = (ATHADA L gy

A0 A J_A

=—-N\)(A*+ M)z + BB*z. (5)
Therefore lima_o £(e® — I)N(X)z exists. This implies [5] at first that
N(X)z € D(A) and at second that

.1
ilino Z(GAA —I)N(ANz=AN(\)z. (6)

From (5), (6) we have relation (4). The proof is complete.
Denote Ry = R,\(A) = (/\I—I— A)_l, T, = T)\(A) = ARy =1 - ARy, A >
wo(—A). Then the equality (4) can be written in the form

(A+ M)NA) + N(A)(A*+ M) — AN(\))z = BB*z, 2 € D(AY).
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Since every z € D(A*) can be uniquely represented in the form z = R}y, then
we have for A > max{2wo(—A),wo(—A4)},

(A+AXNANRY+NANy— ANAN)RYy = BB R\y,ye X.
From this we obtain the operator equality
AN (MR +ARN(X) — M2 RyN (M) Ry = AR\BB* R},
which can be written in the following form:
NA)=T\NMNTY+ AR\BB* R}, . (7)
From the formula (7) we have at last that
nt1

AR Y TEBBTE R, (8)
k=0

NA) = TN (AT
A > max{2wo(—A),wo(—A)}, k=1,2,....

Lemma 1. For arbitrary A > max{2wo(—A),0} and for arbitrary x € X the
following equalities hold:

. . k
lim Tz =0. lim Ty 2=0.
k—+oco k—+o0

Proof. Letthe operator N () be defined by formula

[o.0]
NNz :/ e Mem Al A dt, 2 e X,
0

Since
e~ 2|]> > me™|[z]|%, t>0, m,v>0,

then
(N.(N)z,z) = / e M4 |2 dt > m / O gt 2|2 = |||
0 0 m-+v

Consequently, N,(A) is a bounded strongly positive operator. Then the Hilbert
norma ||z||« =|| v/ N«(X)z || is equivalent to the former norm, that is,

cillell« < 2]l < ealfall; e, e2> 0. (9)

Let us now make use of formula (6), replacing the operators N(A) and B by
N.(X) and I, respectively:

l2]l2 = (Nu(Nz, 2) = (Nu(AN) T3z, Ti2) + M R3z|* > || 7322, (10)

Matematicheskaya fizika, analiz, geometriya , 1997, v. 4, No. 1/2 89



V.1. Korobov and G.M. Sklyar

Therefore 75 is a contracting operator in the norm || - ||«. The spectrum o(7%)
of the operator 775 is defined by the equality [8]

o(13) = a(A)/(A+a(A)",

if the operator A is unbounded, we take that co € ¢(A). Since for every finite
p € 0(A) the unequality Re p > —wo(—A) holds, then for A > max{2wo(—A),0}
we get Im g = Im (A + u), Rep < Re (A + p). Therefore |p/(A+ p)| < 1. Thus
the intersection o(15) N {z : |2| = 1} may contain at most one point, namely,
the point 1 (in the case of nonbounded operator A). Moreover, number 1 is not
eigenvalue of T%. Therefore [9], the powers of the operator T5 strongly converge
to zero in the norm || - ||.. From this and (9) the first statement of lemma follows.
The proof of the second equality may be obtained by the formal substitution
A= A%

Theorem 1. For every A > max{2wo(—A),0} and for every z € X, the
following decomposition holds:

NNz =AY R\TYBB*TY Riz .
k=0

Proof. From (9), (10) we have for every k=0,1,2,...
[ T3 2 [[<en | T3 2 < eo || Ta 157 N2l < eofl2lls < ea/enllz]].

Therefore || T+ ||< cz/er. Then due to (8) the following relation holds:

= * ko n 7+l
NNz =AY RTEBB T Rz ||<[| TIH I N (T3 2 |
k=0

*n+1

< eofer | NOY I 752 |0, m = oo

Thus the theorem is proved.
Now we can obtain the criterion of the exact controllability. Let U® be
Hilbert space with elements

o0

u™ = (ug, U1, ..., Upy...) up € Uk =0,1,...,

00 1/2
[[u™]| = (Z||Uk||2) :
k=0

and with the norm
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Denote for A > max{2wy(—A),0} by F\ 4 operator
Faa:X = U™ Pz = (B*Riz, B*RiT5z, ..., B*RiT 2,..).

From Theorem 1 we have

> 1 1
|| F\ 4z I’= Z(R,\TfBB*T;kRKx,x) = X(N(/\)w,ac) < x
k=0

Nl (1)

Hence the operator F 4 is bounded. Then the conjugate operator G 4 = F7 4,
Gy a: U™ — X is also bounded. This operator will play an important role for
us further. It is defined by formula

Grau™ =Y R\TYBuy,
k=0

which also may be written in the form

Gra = (R\B,R\T\B, ..., R\T{B,...).

Theorem 2 (criterion of the exact controllability). The equation (1)
is exactly controllable iff the operator Gy 4 for A > max{2wy(—A),0} is surjec-
tive:

G,\\7AUOO =X,
that is,

(RAB, R\T\B, ..., R\TE¥B,.. )U* = X. (12)

P roof. Letthe equation (1) be exactly controllable. Then, by Proposi-
tion 1, the operator N () is strongly positive and thus N(A) is surjective. But
we have from Theorem 1

N(A) = MGy aG 4 -

Consequently, the operator GG 4 is surjective. Conversely, let the operator
G\, 4 be surjective. Then [7] the following unequality is true:

NGzl = ~lzl], ~>0.
Hence from (11) we have

(N(Nz,z) > A2 |||
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Therefore N(A) is a strongly positive operator and the equation (1) is exact
controllable due to the Proposition 1. Thus the theorem is proved.

In the concluding part of this section we shall establish the direct connection
between the obtained criterion and the criterion from [2] in the case, when the
operator A is bounded. We choose A\g > max{2wy(—A),0} such large that for
A > Ao unequality || Ry ||< ¢||A]|7Y, ¢ < 1, is valid. Let the operator P,()) €
[U*, X],n=0,1,2,... be defined by equality

P,(\)u™ =" R\T{Buy.
k=0
Then
| (Gaa = PaA)u™ [|=) T3F Y0 RATS Btk [|< " [ Goa || ([0,
k=0

that is, P,(A) — G\ 4, n — oo in the operator norm. Hence, if the operator A
is surjective, then, [7], there exist a number m such that the operator P, () is
also surjective, that is,

Lin{ R\BU, R\T\BU, ..., R\T"BU} = X . (13)
Since the operator (A 4 AI) is invertible, then from (13) we have
Lin{(A+X)"BU, (A+X)""'BU,...,A"BU} = X .
The last equality and the equality
Lin{BU, ABU,...,A"BU} = X (14)

(from [2]) are evidently equivalent. Thus the criterion of the exact controllability
[2] arises from the (12).

Conversely, the equation (14) for some m = 0,1, ... implies that the operator
P,.(X) is invertible, A > wo(—A). On the other hand, ImG 4 D Im P, (X). Thus
the condition (12) follows from the criterion [2] in case of bounded operator A.

2. The main result

The necessary and sufficient conditions of the local controllability of the system
(1), (2) with a bounded operator A is [3] Im € {0,1,2,...}, that is,
0 € intco{BQ, ABQ,..., A" BQ},

0 € intco{BQ, —ABQ,...,(-1)"A™BQ}.
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The main goal of this part is to generalize this criterion on the case of unbounded
operator A. Let () C U. We denote further by Q°° C U the set

QF ={u* CcU*® :u™ = (ug, U1, ..., Uk,...), upr€Q,k=0,1,...}.
Then the following criterion of local controllability holds.

Theorem 3. The system (1), (2) is locally controllable for the free time iff

1 1
XBﬂEintG)\7A(ﬂ—Q)OO, XBﬂGintG,\_A(ﬁ—Q)OO,
A > max{2wg(A), 2wo(—A),0} .

Proof. Necessity Letthesystem (1), (2) be locally controllable
for the free time, that is 0 € int S. Then the equation (1) is exactly controllable
and due to the theorem 2

G AU =X, X > max{2wy(—A),0}.

Besides, the equation

t=—-Az+ Bu, u€qQ, (15)

is also exactly controllable (this fact can be proved completely similarly as in the
case of the bounded operator A [3]). Therefore (theorem 2)

Gr-aU® =X, X>max{2wo(A)}.

Introduce into consideration a Banach space U = U x L, where [ =
{pu*,p € R}, u>* ={u,4,...,4,...} with elements 4 = (u*, pu*) and with
the norm [[@*°[| = [|u|[ + [¢|. Now we extend the operators G 74 to the space

U®°. For this purpose we note that

& 1
> R\T{Bu= —Bu. (16)
A
k=0
In fact,
S kn- n+1 -1 — 1, 1 n+1 -
STR\TYBu= (I -1 (I —T\) 'RyBu = 1 Bu - YT Bu.

k=0

Since, by the Lemma 1, the relation Tf‘HBﬂ — 0 holds, then the equality (16)
holds too. For this reason, we define extensions GG\ x4 of operators Gy 4 to the
space U by the equality

G,\’:FA'TLOO = G/\FFAUOO + %Bﬂ.
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Let K C U be the cone generated by the set ((Q — @)°°, a>°), that is,
K={a®ecU>®: a® =~((Q - a)*, 1), v > 0}.

Then the element (u,0°) belongs to int K. We denote by KT, K~ convex
cones defined by the equalities Kt = GA7AI(', K~ = GM,\7_AK. Since Im GA,A =
Im GA7_A = X, then by the theorem on an open mapping we have that int K+ #
0,int K~ #0.

Next we shall show that the cone K is invariant with respect to the operator
Tr(A). In fact, let z € K. Hence, from (16)

1 & e i
T =7 (XBU-I-];JRATfBuk) :'ykZZ%R,\TfB(uk—I—u),

v >0, QQ,UQ,..J € “2__ﬂym‘

Therefore

Tz = ~y Z R)\T)]\H_lB(uk + ﬂ) =7 (Z R)\T/{CBTL — R\Bu

o0 1 o0
+SN R\TFBup_1 | =~v [ <Bu+ Y R\TF¥Bu'y | ,
kz::l ALy k 1) vy (/\ kg% Ay k

where u'o = —u, v’y = up—1, k =1,2,..., and element (uf,u},...) € (2 —u)>.
Thus Thz € KT. In the same way we can establish the invariance of the cone
K~ with respect to the operator T)(—A).

We shall now prove that KT = X, K~ = X. In fact, suppose that K+ # X.
Then due to the theorem on invariant cone [10] there exists the eigenvector f € X
of the operator T5(A): TXf = uf, p > 0 such that (f,z) > 0, z € K*. Since
p = 1 is not an eigenvalue of the operator 7%, then f € D(A*) and A*f = vf,
where v = pA/(1 — p).

Next we shall establish that (f, Bu) > 0 for every u € Q. Denote

2" =Y R\TYBu+ Y R\TVBu.

k=0 k=n+1
Therefore, by (16),
n 1 = - n
2" = B+ > R\T¥Buj,
k=0
where uy =uv—u, k=1,...,n;u =0, k=n+1,n+2,.... Thus

A— G,\A(uff,ﬂ) ,
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where u® = (uf, uf,...) € (2—u)*°,u) and 2 € KT. Besides, due to Lemma 1,

> 1
" — R\T¥Bu = ~Bu, n — 0.
& =3

Hence we have

(f,Bu) =X lim (f,2") > 0.

n—+oo
From this relation it follows

T T
(f,—/ =4 Bu(t) dt) = —/ e~ (f, Bu(t)) dt < 0
0 0
for every T > 0 and for every function u(-) € L3([0,7),€). This unequality
contradicts the assumption of the local controllability (1), (2). Thus KT = X.
The supposition that K~ # X contradicts the local controllability of the
system (15), (2). Hence K~ = X.
Now note that, due to (2), 0°° € int(2 — @) C U*. Then, according to the
theorem on open mapping, each of the sets

. 1
MT =Gy z4(0™, (Q—u)>®) = XBﬂ + G4 —-u)* CX

has non-empty interior. We shall prove that
1
0 € int <XBu +Grra(Q - u)oo) . (17)

In fact, if 0 € int M* or 0 € int M, then there exists a functional f € X* = X
such that (f,z) > 0, z € M* or x € M~. This contradicts the established
relations K* = K~ = X. Finally, from (17) evidently it follows

1
XB’TL € int G)\,:FA(ﬂ — Q)Oo .

The necessity is proved.

Sufficiency. Since by the assumption of the theorem the sets G\ x4 (2 —
2)* have a non-emply interior, then int Im Gy 4 # 0 and G\ £4U>™ = X . Hence
the equation (1) is the exact controllable. Therefore, by remark to Proposition
1, we have

Lo {[0,T],U} = X . (18)

Next we argue by contradiction. Let the system (1), (2) be not locally con-
trollable. The set Lo.{[0,7],2} C Lo{[0,7T],U} has an inner point u(t) =
u, t € [0,7]. Then, by (18) due to the theorem on an open mapping, the
set I\ Lo,{[0,7],922} has non-empty interior in X. Since F\L.{[0,7],Q2} C
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F\Ly{[0, 00], 2}, then P = F)\Ly{[0,00],Q2} C X is the set with non-empty inte-
rior. Besides, this set is convex and the point 0 belongs to its boundary.

Denote by @ the cone generated by P, thatis Q = {q:q=~yz,z € P,y > 0}.
Then @ is a convex cone with non-empty interior, which is invariant with respect
to the commutative semi-group of operators {e~4*}, t > 0. Due to the theorem
on invariant cone [10], there exist a vector h € X such that

e h=7()h, (t) >0, (19)
(h,2) >0, z€Q. (20)

Since the space Lin {h} is invariant with respect to the semi-group {e=4"*}, ¢t > 0,
then A € D(A*). Hence, by (19), A*h = ph, p = 4'(0). Therefore h is an
eigenvector of the operators T5(A) and T3 (—A):

Ti(Ah=~Lh Tr—Ah=—Fp. 21
HAh = pi=h T = (21)

Next let for some 7" > 0 and arbitrary u € Q

w€eQ, 0<t<T,
u(t) = 0 T<t.

Then, by (20),
(h, Fxu(-)) = (h, Ry\Bu) — (h,e” TR\ Bu) > 0.

From this we have when T — +co

(h, R\Bu) > 0, Vue€Q. (22)
Since g < wo(a) < A, A > 0, then at least one of the numbers ﬁ or ﬁ is

non-negative. From this and due to (21), (22) the following unequalities hold:
(h, RAT?Bu) = (T3 h, R\Bu) >0, n=1,2,...

at least for one of the operators 75 = T5(A) or 15 = T¥(—A). Let further denote
G =G\ a,if Th =T\(A) and G =G _4, if T\ =T\(—A).

Hence, for every u™ = (ug, uy,...) € (& — Q)>, we have
(h,Gu™) = lim |—(h, > R\TYB(u — ug)) + (h, Y R\T{Bu)
" o k=0 k=0

" 1
< lim (h TEBu) = (h, ~ Bu).
H}_l ( 7kz:%R/\ A u) ( "\ u)

— n—+oo

Therefore 1 Bu € int G(z — Q). That contradicts the initial assumptions. The
theorem is proved.
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Corollary 1. The space U™ can be interpreted as the space of arbitrary se-
quences 0 = (vg, v1,...), v, €U, n=0,1,..., such that:

i) there exist lim, 400 v, = pu, p € R;
i) 3 opzo v — limg— 400 Uk||2 <0
with the norm

0o 1/2
ool _ . _ o 2
|0 ||—||n1_1>ffoovn||/||u||+(;H% GJm v ) :

In so doing, we will write a° = (ug+ pu, uy + pa, . . .) instead of 4> = (u™, pu),
u™® e U™,
Consider set Qoo(ﬂ) ={6® eU”: v, € Qn=0,1,...;limy_p00 v, = @}.
It is clear that
Q% (u) = u> + (Q —u)>.

Therefore we can give another statement of Theorem 3.
The system (1), (2) is the locally controllable iff

0 €int GN/\AQOO (ﬂ), 0e inté/\7_AQOO (ﬂ) . (23)

Corollary 2. Let 2 be a cone. Then the conditions of Theorem 3 are neces-
sary and sufficient for the global controllability of the system (1), (2).

3. Another form of the criterion of the controllability

Now we will give conditions of the local controllability in terms of the conju-
gate operator A*.

Theorem 4. The system (1), (2) is locally controllable iff:

i) the equation (1) is exactly controllable;
ii) for the operator A* there not exist an eigenvector h with a real responding
eigenvalue such that

(h,Bu) >0, whenue Q. (24)

Proof. Necessity. Letthesystem (1), (2) be local controllable.
Then it is clear that the equation (1) is exact controllable. Next we argue by
contradiction. Let there exist the eigenvector h: A*h = ph, ¢ € R such that
condition (24) holds. Then this vector will be an eigenvector for the operators
T3 (FA) and
@

* H
——h, TX(—A)h=——"~H
A /\( )

TH(A)h =
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As it has been noted (proof of Theorem 2), at least one of the numbers v = 4= or
v= % in non-negative. Let further denote by 7% one of the operators 15 (FA)

for which eigenvalue v is non-negative. Then we have for every u € Q2
(h, R\T? Bu) = (TY" Rih, Bu) = yv"(h, Bu), n=0,1,2,...,

where v = ﬁ, if 7% = T (A), and v = ﬁ, if 7% = T} (—A). This equalities
together with (24) contradict the conditions (23).

Sufficiency. Letthesystem (1), (2) is not locally controllable. Then
at least one of the conditions (23) is not true. For example, 0 ¢ intGy 4Q% (u).
Hence the cone K generated by the set G,\AQ“('&) is convex, has non-empty
interior (due to the Theorem 2) and K # X. Since the cone K is invariant with
respect to the operator T\ (A) then for the operator T5(A) there exists eigenvector
h with real eigenvalue such that (h,z) > 0, z € G\ 4Q%(%). As in the proof of
Theorem 3, the vector h will be also an eigenvector for the operator A* and
the corresponding eigenvalue will be real. To show that (h, Bu) > 0, u € Q,
we consider the sequence 5 = (vg,...,v},...) € Q%®(4), where v} = u € Q,

k=0,...,n,k=n+1,.... Then
(h, Bu) = Anng(h,GA7Avn ) > 0.

This contradicts the condition ii). The theorem is proved.

Corollary 3. i) Let the equation (1) be exactly controllable and the operator
A* has no real eigenvalues, then the system (1), (2) is locally controllable.

ii) If, besides, the set ) is a cone with non-empty interior, then, moreover,
the system is globally controllable.

It is clear that the obtained criterion of the local controllability (Theorem 3)
is of the same type as the criterion [3] in the case of a bounded operator A. But it
is rather difficult to establish immediately a connection between these conditions
(as it has been done for the conditions of exact controllability in Section 1). At
the same time that can be established in the following way. The condition (12)
of the exact controllability in the case of a bounded operator A takes the form
(14). Hence, in this case the conditions of the local controllability become:

i) 3m: Lin {Bu, ABu,... ,A™Bu} = X;

i) 3h#£0: A*h = Ah, A € R; (h, Bu) > 0,u € Q.

And, as it has been shown in [3], the last conditions are equivalent to the
conditions

dm: 0 €int{BQ,ABQ,..., A" BQ},
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0 € int {BQ, —ABSQ, ..., (~1)"A™BQ}.

Example 2. Consider the equation from example 1. It is known that
the spectrum of the operator A is of the form

o(A) =A{2irk, k=0,F1,F2,...}.

Besides, every point of this spectrum is eigenvalue. Hence there exists the unique
real eigenvalue A = 0, which responds to the eigenvector v = 1.

Thus if © is an arbitrary convex set in L3[0.5, 1], which contains zero and
satisfies the condition (2), then the system (1), (2) will be locally controllable iff
there exist two function uy, ug € €2 such that

1 1
(/ w(t)dt >0, / ws(t) d < 0.
1/2 1/2

For example, if

0= {u() € L[0.5,1]: /l;(u(t) —1)%dt < %} '

then the system is locally controllable, if

Q= {u(-) € Ly[0.5,1] /I;Z(u(t) —1)%dt < %} :

then the system is not locally controllable.

4. The control wave process with the braking force

Let G C R™ be a closed bounded domain in R™ with a boundary 0G of the
class C?. Consider in (& the control wave process, which is given by the equation

¢tt(t7 5) - A¢(t7 S) - M%(ta S) + u(ta 8)7 ¢3G =0 y (25)

where s € G, t € [0,00). Here —utx(t,z), p > 0, is the braking force which is
proportional to the speed and it is the control force. By means of the substitution,

Pt ) =21 ()(@),  $ulty) = 22() (1), (26)
we reduce the equation (25) to the form

& = Az + Bu, (27)
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where © = (21,22) € H = Hy X Hy, Hy =W} (G), Hy = Ly(G), w € U = Ly(G).
The operator A is defined by the equality

0 I

D(A) ={(z1,22) € H: Azy; € Hy, x5 € H1}, and the operator is of the form

0
B = .
Next we will also assume that the control u satisfies some restrictions

u€QC LyG). (28)

Observe that the value
1 1
Sllall? = 5 [ (Fa1(&) + Jaa(s) ) ds
G

coincides with the full inner energy of the wave. Thus the exact controllability of
the system (27), (28) means the possibility to put out the inner energy of the wave
for any initial values by choosing the corresponding control force u(t,-) € Q2 C U.
In this part, we investigate the controllability problem for the system (27), (28).
First of all consider the spectral properties of the operator A. It is known [11] that
under the given suppositions on the domain GG the Laplace operator A is negative
defined. Spectrum of this operator consists of the countable set of eigenvalues
2,0 <A <A< ... <A < ..., A = oo. Moreover, the corresponding
eigenvectors fr (Afr = —Aif;) form the orthogonal basis in the space Ly(G).
We shall assume that this basis is normed. Thus the spectrum o(A) of the
operator A is of the form

2
U(A):{T:Fk:—%:[: %—Ai, kZI,Q,}

Furthermore, the following three cases are possible:

i)kel, ={leN: £< Ai}, both eigenvalues r¢ are complex, Reryy =
—u/2, and the corresponding eigenvectors are ¢T* = (fg, rx fr);

ii) k€ I, = {l € N : & > \;}: both eigenvalues ry; are real negative, and the
corresponding eigenvectors are ¢ = (f, refi);

iii) k€ Is ={leN: &= Ai}: g = r_p = p/2, and the eigenvector oF =
(fr,rxfr) and the principal vector =% = (fi, (1 4+ ri) fr) (A — ril)o™* = oF)

corresponds to this eigenvalue.
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It is easy to see that {¢™}, m = F1,F2,F3,..., is the basis of the space H
such that (¢, ™) = 0 when |k| # |m|. Moreover, operator A generates a strongly
continuous group {e4?}, —oo < t < +00, which is defined by the equality

oo 00
ety = At Z ™ = Z e, o™ + Z te_“‘t/Qozk¢k,
m=—00 m=—00 kEIS
m#0 m#0

where 372 [laxd”® + a_po7F||? < .

Next we will prove that the equation (27) is the exactly controllable. To see
this we verify that the operator N () is positive defined.

Denote by Ly, = Lin {¢*, =%}, k = 1,2,.... Then it is clear that for z* € L;

B e Mk e Lin{fi}, k=1,2,....

Therefore, if z € H, z = Y52, ¥, 2% € Ly, then

o0

(NNz,z)= / e M| B e A || dt = Z(N(/\)mk,xk) )
0 k=1
and thus L
(17\7()\)$,$) : : (ZV(/\):C y L )
——— 12 > inf g, = inf ~—~———*~
2 - P U
It is easy to see that all numbers v, £ = 1,2,..., are positive and then it is

sufficiently to show that there exist vg > 0 such that vx > 79, £ = 1,2,....
Denote by {¢™}%%__., the dual basis for the basis {¢™}%__.., i.e., (¢!, ¢7) = &,

m#0 m#0

I, p=F1,F2,.... Then for k € I, 2¥ = ad* + Bd~* € L;, we have
(NWabat) = [ eMIBe " (adh + 56" d
0

_ /Oo 1 oM ‘ae—r_kt _I_ﬁe—rkt 2
o 4[Imrg|?

_ 1 o>+ 18> o af
T 4]Im g A— A2r_p  A+2rp )

#1-0(15) ~0 ().

N+ 2r_k| = |A+ 2ri| — oo, when & — oo, then for sufficiently large & and
A > pt = 2wy(—A) there exists C' > 0:

dt

Since

1 2 2 1k —k|12 k112
8|Tm 7| A—pu 16Tm 72| | 0¥ [|2(X — p) A —p)
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2*® € Lj. Thus the sequence 74 is bounded from below and therefore the operator
N (X) is positive defined.

Now we can give solution of the local controllability problem for the system
(27), (28) under the supposition that the set 2 C Ly(G) has a non-empty interior
and 0 € €. Let us divide the set I into subsets

I

I
-
-

such that for kq, ko € Iy the equality Ag, = Ag, is valid iff for some p € 1, m: kq,
ko € J, and let I3 = J,,41. Thus an arbitrary real eigenvector ¢ of the operator
A* is of the form

o= > abd", p=Tm, or ¢=> plé* p=Tm+]1.

keJp ke

Therefore, due to the theorem 4, we obtain the following result: the system (27),
(28) is locally controllable iff for every vector of the form

f:ZPV]Z;flm p=1m+1,
keJy

where v} € R, k € J,, Zkejp('y,f)Q # 0, there exist two elements uy, uy € €2 such
that

/Gf(S)m(S) ds > 0, /Gf(S)UQ(S) ds < 0.

Finally, we note that in the case u = 0 (without a braking force) all eigenvalues
of the operator A are not real and then the system (27), (28) is locally controllable.
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JlokanbHaAa u rno6anbHaAd TOYHaAA YyNpaBJIAEeMOCTb
B ruiib6epTOBOM NPOCTPAHCTBE

B.1. Kopo6Gos, I'"M. Crasp

Hccaenyerca npo6aeMa ynpaBiasgeMoCTHU sl AMHEHHBIX CUCTEM C TeHepa-
TOPOM CHUJABLHO HelpepbiBHOH Tpynmbl. [lodydeHbl KpUTepUH TOYHOM U 710-
KadbHOU TouHOH ympaBaseMocTu. OCHOBHBIE pe3yldbTaThl CTAaThU OMHUpa-
I0TCAl HA HEKOTOphle GyHAaMeHTalbHble TEOpEMbl TeOpHUHU OmepaTopoB. Pac-
CMOTPEHO MpUJIOoKeHNe OMYUYeHHbIX pe3yAbTaToB K 3ajlade ylpaBieHUs BO-
HOBBIM TIPOIECCOM MpHU HAAUYUU TOPMO3AIIEH CHUILI.

JlokanbHa Ta rio6GajlbHa TOYHA KEpPOBaHICTh
B npocTtopi I'ianGepTa

B.I. Kopo6og, I"M. Crasp

HocaipmyeThcsi MpobaeMa KepOBaHOCTI ISl JMIHIHHUX CHCTEeM 3 TreHepa-
TOPOM CHJBHO HemepepBHOI Tpynu. OTpHUMAaHO KpUTepil TOUHOI Ta A0KalbHOl
TOYHOI KepoBaHocTi. OCHOBHI pe3yabTaTH CTATTI CIUpAIOThCA Ha Aefkl GyH-
AaMeHTalbHl TeOpeMHu Teopil onepaTopiB. Po3riafgHyTo 3aCTOCyBaHHA Oflep-
KAHUX pe3yJbTaTiB JI0 3a/laul KepyBaHHA XBUJILOBUM MpOIECOM MpH HafB-
HOCT1 TalbMyI04O0l CUJTH.
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