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Quantum one-dimensional systems of particles interacting via singular
"collective” (depending on all the position vectors of particles) vector elec-
tromagnetic potential is considered in a thermodynamic limit. The reduced
density matrices in the limit are computed for the cases short-range interac-
tion and one-dimensional analog of the Chern—Simons interaction (the j-th
”collective” vector electromagnetic potential of n particles equals the partial
derivative in the position vector of the j-th particle of the Coulomb potential
energy of a system of n charged particles).

1. Introduction

We characterize v-dimensional systems of n-particles with singular magnetic
interaction by the ”collective” vector electromagnetic potential a;(X,), X, =
(z1,...,2z,) € RY", which depends on the differences z; — zj of the position
vectors of particles and has a mild singularity (in the neighborhood of hyperplane
z; = zy, it behaves as ||z;—21||™"), and the Hamiltonian H,, defined on C'*°(R§"),

g 1 - vn
Hy= 5300 = aj(Xa))% Xn= (o100 ) ERT,
=1
a;(Xn) € CPRG"), (pj—a;)* =D (pf —al)®, pj=i"0;. (1.1)

The motivation to study such systems originates from the 2-d Chern—Simons
(C-S) system which is believed to describe a phenomena of high temperature
superconductivity based on the mechanism of the Bose condensation of clusters
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of anyons, i.e., particles with exotic statistics [1-3]. C-S system corresponds to
the case

a?(X,) = € PUc(X,) = 92Ucs(X,), X, €R3", (1.2)

where 97 is the partial derivative with respect to z, €§ is the antisymmetric
tensor, there is a summation over the index &:

UO(CS) ()(n) = Z Uj0k¢c(cs)(xj - xk) ,
1<k<j<n

¢C(=r) :ln|33|, ¢CS($) :arCtani_j7 T = ($1,$2), (13)

o; is the charge of the j-th particle. The existence of anyons is explained by
the singularity of the C-S potential and equality (2): interaction is gauged out
(formally) and the singular phase has discontinuity on union of hyperplanes z; =
x} that ”spoils” symmetricity or anitisymmetricity of a complex wave function.

The C-S particle system is derived in Topological Electrodynamics (the Max-
well term is dropped in the Lagrangian containing the C-S form). There are
many interesting conjectures concerning the phase structure of the system [4,
5]. But up to now a mechanism of the Bose condensation was not established.
The description of anyons in the zero-temperature 3-d Lattice Scalar Quantum
Topological Electrodynamics (QED) in rigorous terms was given by Frohlich and
Marchetti in [6]. A change of phase diagram produced by the topological (C-S)
term is poorly explored in the zero-temperature Lattice QED. Anyons at non-zero
temperature up to now were not discussed in the framework of the Constructive
QFT and QSM.

In the vector collective potential a; satisfies the condition
a;(X,) =0;U(X,), x;#x, (1.4)

there exists the simplest self-adjoint extension H, of Hn, which generates a con-
traction semi-group unitary equivalent to semi-group, whose infinitesimal gener-
ator is the minus one-half vn-dimensional Laplacian. It is not difficult to check
that for the Dirichlet boundary condition and the Maxwell-Boltzmann (M-B)
statistics the grand canonical partition function coincides with the grand parti-
tion function of free particles.

The conjecture that the system is equivalent to the free particle system in the
thermodynamic limit seems plausible only for the case of short range magnetic
interactions (U is expressed through k-particle ”magnetic potentials” integrable
by k — 1 variables) when the reduced density matrices are easily computed in
the thermodynamic limit. The existence of the matrices for long-range magnet-
ic interactions (k-particle ”magnetic potentials” are not integrable) is an open
problem (we solve the problem for the simplest ”integrable” 1 — d system).
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For the case of the Fermi or Bose statistics the aforementioned self-adjoint
extension for the C-S system produces the system of free annoys. Another ex-
tension introduces interaction between them.

One-dimensional systems with singular magnetic interactions are also inter-
esting. There are also anyons in the systems but they appear as a result of special
self-adjoint extensions of the n-dimensional Laplacian restricted to C§°(Rf) or
H, (a simplest class of them are considered in this paper). The collective vector
potential a; creates interaction between them.

Earlier self-adjoint extensions, corresponding to jumps of partial derivatives
of a wave function on the hyperplanes, where the position vectors coincide, were
considered in [7, 8].

In this paper, we investigate one-dimensional system of r sorts of particles
with the M-B statistics with magnetic interaction for which equality (1.4) holds
and

U(X,) = Z ojopd(z; — xg) . (1.5)

1<k<5<n

At first we compute the reduced density matrices in the thermodynamic limit for
the case of short range pair "magnetic potential” ¢ € C°°(R\0) N L'(R) and the
class of self-adjoint extensions of H, corresponding to jumps of a wave function
on the hyperplanes, where the position vectors of particles coincide. Then we
study the system with long range pair ”magnetic potential” ¢ = A|z|. It turns
out that if o; € vZ then the reduced density matrices are non-trivial in the
thermodynamic limit if the differences of variables sit on the lattice 2ry~2A~1Z.

It is not difficult to show that this system can be derived from the 2-d electro-
dynamics with the additional term Agd'A; in the Lagrangian (the Maxwellian
term has to be omitted).

2. Main results

Let’s consider the Hamiltonian H, with a; satisfying equalities (1.4), (1.5)
and the case v = 1. From simple equality
p;j — ;= exp{il.}p; exp{—iU,}

it follows that ) o )
H, = exp{ilU,} H? exp{—iU,}, (2.1)

where U,,, @; are operators of multiplication by functions U(X,), a;(X,), re-
spectively, and H? is the minus one-half n-dimensional Laplacian, restricted to
C*(Rg). Now let’s define several functions

Us(X,) = S (wy—a)liglor, ..., 00),
1<k<j<n
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€(z) = arccose(z), €(z)= |a;_| ,a.e.,
x

U™ (Xn) = U(Xs) + U (X)),

where I'; ;. are functions on a discrete set. (It’s not difficult to see that €*(z) can

be changed into €(z), and this change does not alter H,). By D(A) we’ll denote

the domain of the operator A and by U;(E) the operator of multiplication by the

function U*(©) (X,). These operators are unitary and the equality
exp{iU7}C5° (RG) = C5° (Rg) (2.2)

holds. As the result the set exp{il/*}D(H?) is dense in L2(R"). Tt is the domain
of the self-adjoint operator H,

H, = exp{ilU*YH exp{—iU}} . (2.3)

Proposition 1. Operator H, is a self-adjoint extension of the operator H,.

P r oo f follows immediately from the equality (1.2) and the fact that the
operators of partial differentiation commute with the operator exp{—l—(—)zf]g} on
Co° (Rg)-

Operator H, is the infinitesimal generator of the contraction strongly contin-
uos semi-group

P! = exp{ill} exp{—tH"} exp{—il7}
and by the ”core theorem” its core concides with exp{il/}S(R2) [9].
We’ll assume in what follows that

Uk = Koojoy . (2.4)

Now we consider the system in the interval [—L, L] with the Dirichlet boundary
condition on its boundary, i.e., with the Hamiltonian H, r:

Py = exp{—=BH, 1} = exp{ilU;} Py, 1) exp{—iU}} | (2.5)

where the semi-group PS(mL) is generated by the n-dimensional Laplacian with
the Dirichlet boundary condition on the boundary of [—L, L]. Let’s define the
reduced density matrices for the systems of r sorts of particles (o; € 3 (r), >-(r)
is the set of r elements) with the M—B statistics [10, 11]. Hense

_:Zl HZUk Z (nh)™

n>0

P (XY,
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Xy Hza /L )(X X Yo, X1) dX (2.6)

! _7
0'17 7(7'81

where Zp, coincides with the numerator in (1.4) for the case m = 0, the sums in o’
are performed over the set 3 (r), z, is the activity of the particle with the ”charge”
o, ( is the inverse temperature, P&) (X,|Y,) is the kernel of the operator PfiL.
The reduced density matrices in our case are functions in oy,...,0,,, since the
Hamiltonian is diagonal in variables that describe the internal degree of freedom.
In order to simplify notations we don’t indicate this dependence in p?.

Lemma. For the system with the Hamiltonian defined by the equalities (2.4),
(2.5) the following equality true:

p" (X | Ym) = exp{i[U*(X }Hzc,k o(r) (@klyr) exp{GL(Xm, Ym)},
Gr(Xm, Ym)
L m
= Y20 [ Al 00y (67 (2 = ) = &7 (3 — )]} = VRl (o) da

where P(?(L)(:dy) is the integral over the Wiener measure concentrated on paths,
starting at zero moment from x and arriving in y at the moment (3, of the char-
acteristic function of paths that are strictly inside [—L, L], and

¢"(2) = Koe™(2) + () -

Theorem 1. Let the condition of the lemma be satisfied and ¢(z) € C*°(R\0)
N LY(R), then the thermodynamic limit of the reduced density matrices are given

by

PXm|Ym) = lim p"(Xpn|Vyn) = exp{i[U" (Xm H 2o, Py (2lye)
x Y exp{G§ (X, Yn) +G“(Xm,Ym)}XW(Xm,Ym), (2.7)
7T€52m

where Sy, is the permutation group of 2m elements, x. is the characteristic
function of the set vr(1) < vra) < ... < Vriam)s Vam = (Xom, Yin),

Gg(meym) _ ZZJ(Qﬂ-ﬁ)_l/2 (/Uﬂ—(l) +/oo )
—00 Vr(2m)

[

x [exp{i Z o0;(P(v; —z) — d(vj4m — )} — 1] dz,
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2m

G (X, Vi) =33 2 (278)71/2

s=1 o

X [JUmﬂ) [exp{iZ: 00 (¢"(vj — @) = " (vVjgm — 7))} — 1] dz.

m(s)

Theorem 2. Let ¢(z) = A|z|, and X(r) C vZ, and the following condition
be satisfied:

z;—y; €2y ANTZ, (2.8)
then the reduced density matrices in the thermodynamic limit is given by the
equality (2.7) provided Gf is equal to zero. If (2.8) is not satisfied then the
matrices in the limit are equal to zero.

3. Proofs

Let’s start from the lemma. In all formulas instead of A we’ll write L.The
semi-group Pf,L has the kernel
Pl (XalYn) = explil™ (Xo)} Py ) (Xl V) exp{ =i (V) }

where
n

Ya) = 1 Poy (@ilus) - (3.1)

i=1

PP

o(z) (Xn

It is obvious that

U™ (X, X)) = U™ (X)) + U™ (X5) + W (X | X))

where
W*( X)) X)) =D oroie*(xr — o).
k=1 ;=1
Hence
By (X, X4V, X1) = exp{i[U (X) + U (V,0)]}
x [P 1) (@xlye) H ailay) expli[W (2} Xon) — W7 (2] Yn)]} -
k:l :

Substituting this equality into the equality (1.6), we prove the main formula of
the lemma. In order to pass to the thermodynamic limit or to prove Theorem 1
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we have to represent the n-dimensional space as a union of not intersecting sets
of ordered variables. Each such subset is labelled by the element of the group
of permutations of 2m elements. Then we split the interval of integration in the
expression for G'1,(X,,,Y,,) into three intervals. In the first interval z;, y; > =,
in the second — z;, y; < = and the third is the compliment of these intervals to

[-L,L]. So

exp{Gr(Xm,Ym)} = Z Xr (X Yin) exp{(GT + G" (X, Yim) } .
TES2m

The terms with ¢°(z; — z) cancel exactly the terms with ¢°(y; — z) under
the sign of integral in the expression for G7. Since the pair "magnetic potential”
¢(z) is integrable then we pass to the limit L — oo in the integral. Since the
integral over the third interval (function G™) does not depend on L we obtain the
main formula of Theorem 1, since P(?(L (z|z) tends to (273)~'/? when L tends
to oc. In order to prove Theorem 2 we have to prove that G7 is equal to zero if
variables sit on the defined lattice or tends to —oo if the variables are not on the
lattice. This can be shown easily since we can compute the function. Really

m - — Tor(1)
GT( X, Yn) = Ezg [exp{zZaaj/\(mj —y;)} —1] /L Poﬁ(L)(:dx) dx
o 7=1 B

m L
—I—exp{—z'ZUUj/\(JCj —y;)} — 1]/ Poﬁ(L)(er) dz
j:l Vr(2m)
In order to have G, is equal to zero we have to demand that z; — y; €
27 A~ 'y~2Z. From the computed expression for the function G, it follows that
it tends to —oo if the differences are not on the lattice and Pg(L)(ﬂm) tends to

(273)~'/2 in the limit of infinite L. The theorem is proved.

Discussion. We established that in the thermodynamic limit the behavior
of the reduced density matrices for short-range pair magnetic interactions and
the long-range C-S type magnetic interaction differs essentially. But there is the
common property: on the diagonal they coincide with the free particle reduced
density matrices. The question in what respect to the systems differ from the free
particle system remains opened. In the next paper, we’ll show that the similar
results hold for the systems with the Fermi and Bose statistics for two simplest
cases: kg = 0, 1. The second case corresponds to impenetrable free bosons. It is
known that there is no condensation in such the system [12] and that is equivalent
on the thermodynamic level to the free fermion system (fermionization of the
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system). It can be stated that impenetrable bosons is an example of simplest
anyons. The proof of the absence of the condensation is not trivial. This is
a good hint that the thermodynamic equivalence to free particle systems does
not automatically yield an equivalence on the level of an algebra of observables
and its symmetries. It is known that in one-dimensional Bose gas in an external
potential there is a condensation [13]. Is there a condensation in the system
of impenetrable bosons with a long-range magnetic interaction? The problem
of condensation in systems of 1-d anyons is very interesting and may clarify in
some sense the same problem for 2-d anyons. Besides that an investigation of 1-d
anyons may clarify rigorous picture of connection of anomalies and bosonization
in 2-d systems, including the Schwinger model.
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KBaHTOBBIE CHCTEMbBI YaCcTHI[ C CUHTYJAPHBIM
MarHuTHBIM B3auMojeiicTBMeM B OJTHOM M3MEPEHHH.
Cratuctuxka M-b

B.U. CKkpunHuk

PaccmaTpuBaioTcsi B TEpMOJIUHAMHYECKOM Mpefielie KBAaHTOBbIE OTHOMEp-
Hble CHUCTEMbl 4YacTHIl, B3auMojieficTBUE Mexs/ly KOTOPbIMH OIpe/elsieTcs
7 KOJIEKTUBHBIM” | 3aBUCHIIIUM OT KOOPIUHAT BCEX YACTHUIl BEKTOPHBIM BlleK-
TPOMATHUTHBIM MOTEHIHAIOM.  Beiuucasiioress pejlyKIHOHHBIE MaTpU-
Ilbl IIOTHOCTU B ClydasiX KOpPOTKO/eHCTBYIONEro B3auMoieficTBUS U OHO-
MepHbIii aHajgor B3auMojeiictBusas Yepra—CaiimMoHca (j-it ”KomteKTHBHBIH”
BEKTOPHbIH MOTEHI[HAJ N-YacTUI] pABEH YacTHOH MpPOU3BOJHON 10 KOOPU-

HaTe j—ﬁ HqacTHUIbI Hy.ﬂOHOBCHOﬁ OHEPIruu CUCTEeMbl N 3apAMEHHBIX ‘-IaCTHI_[).

IIpo KBAaHTOBI cMCTEMH YACTUHOK 3 CHHIYJAPHOIO
MarHiTHOIO B3a€EMOMIE€I0 B OJHOMY BHMIipi.
Cratuctuxka M-b

B.I. CkpunHuk

PosraspamoThess B TepMOAMHAMIUHIH TpaHUII KBAHTOBI OJJTHOBUMIPHI CHC-
TeMU YaCTUHOK, B3AaEMO/If Mi# AKUMH BU3HAUAETHLCA ~KOJEKTUBHUM” | IO
BaJIezKUTh Bl KOOpAUHAT YCIX YacCTHHOK, BEKTOPHHUM €JIeKTpOMArHITHUM
norenmiaioM. OGUYUCTIOIOTLCA peJyKOBaHI MaTpHUIl TYCTUHH [ BHUNAJ-
KIB KOpOTKO/110901 B3a€MO/Ii1 Ta OJITHOBUMIPHOTO aHaJjory B3aeMomil YepHa—
CaiimoHca (j-it ” KoJAeKTHBHUI” BEKTOPHUIT MOTEHIIaN n-4aCcTHHOK [0piBHIOE
YacTKOBIHM MOX1HIM 32 KOOPANHATOIO j-1 YACTUHKU KYJIOHIBChKOI €Heprii cUc-
TeMH n 3apfA/KEeHUX YaCTHHOK).
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