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It is proved that Schreier’s space, Lorentz sequence spaces, and Baern-
stein’s spaces, which contain no subspaces isomorphic to [, have the Lya-
punov property.

The famous Lyapunov theorem ([8; 9, Theorem 5.5] , or [3, p. 264]) states
that the range of a non-atomic vector measure valued in a finite dimensional
Banach space is convex and compact. The assertion is valid only in finite di-
mensional spaces. Many generalizations of it to infinite dimensional case have
been obtained under various additional restrictions on a measure and a space.
In 1992 V.M. Kadets and G. Schechtman [6] discovered that the closure of every
non-atomic [, (p # 2,1 < p < 00) or cp-valued vector measure range is con-
vex. This statement holds in Orlicz sequence spaces, which contain no subspaces
isomorphic to Iy (this result has been obtained by the author but has not been
published). We shall show that it is true in Lorentz sequence spaces, Schreier’s
space, and Baernstein’s spaces. The idea of the proofs here is very close to [6], in
particular Theorem 1 below almost coincides with analogous statement in [6], but
the new trick which we employ considering auxiliary cg-valued operator allows us
to generalize the Lyapunov theorem for more spaces.

Throughout the paper by ” X-valued measure” we mean a countably additive
X-valued measure i defined on a o-field X of subsets of a set £2. A Banach space
X is said to have the Lyapunov property (X € LPr) if the closure of every non-
atomic X-valued measure range is convex. In the sequel we will use standard
notation of the classical Banach space theory (see [4, 3]).

*The present work has been carried out by support of State Grant of Fundamental Research
of Ministry of Science and Technology (Ukraine).
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1. Preliminaries

First we summarize some material concerning Lorentz sequence spaces,
Schreier’s space, and Baernstein’s spaces.

Let 1 < p < co. For any a = (a1,az,...) € co\l1, a1 > az > ... > 0, let
d(a,p) = {z = (21,22,...) € €0 : SUPyey 2 onet [To(n)| @n < 00}, Where 7 is
the set of all permutations of the natural numbers N. Then d(a,p) with the

1
pan)p for z € d(a,p) is a Banach space and

norm [[z]| = (sup,erX0%; o)
the sequence of unit vectors {e,} ~, is a symmetric basis of d(a,p). For the
basic properties of the Lorentz spaces d(a,p) we refer to [4, 5]. In particular, it
is known that every infinite-dimensional subspace of d(a, p) has a complemented
subspace isomorphic to [, [1].

A finite subset £ = {n; < ny < ... < ni} of N is said to be admissible if
k < ny. We denote by L the class of all admissible subsets of N. Let R(N) denote
the vector space of all real sequences which are eventually 0. Schreier’s space S
is the ||.||g-completion of RWY) where ||z]|g = supger,Srer |7 (k)|, = (k) is a k-th
coordinate of z, and z € RWY),

If ¥ and [ are finite non-void subsets of N, we write ”F < F” for max F <
min F. For z € RWN) we write Ez to indicate vector defined by

(Em)(k):{ x(g), if kek,

otherwise.

(N)

Fix 1 < p < co0. For z € RYY/| we define

1
n P
||$||Bp = sup { (Z ||Ek:6||fl) cEyeLand By < By < ... < E,, n=1,2, }
k=1

Baernstein’s space B, is ||.|| g -completion of RM™) . It is known that every infinite-

dimensional subspace of B, has a complemented subspace isomorphic to /,. See
[2] for details.

Now we consider some lemmas. The following two lemmas are due to V.M. Ka-
dets and G. Schechtman [6].

Lemma 1. Let X be a Banach space. The following statements are equiva-
lent:
() X ¢ LPr.
(#%) There exists a triple (2,2, ), where X : ¥ — Ry is a non-atomic
measure and a linear bounded map T : Lo, (2,%,\) = X such that
(a) T is 0 (Leo, L1) — 0 (X, X*)-continuous,
(b) there exists € >0 such that ||Tf|| > eX(supp f) for any "sign”
f € L, i.e., any function taking only values 0 and £1.
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We need some more notation. Let r; = r; (@) be a sequence of independent
random variables taking values +1 and —1 with probability % Fix a number
N € N and denote the random variable

J

Y ori(w)

=1

T(w):inf{j: z«/ﬁ}.

Further define the stopped martingale Zle s; by the rule

s»(w):{”(w)’ if i<T (@),
' 0, if i>T(w).

The constructed martingale is evidently symmetric, and its absolute value is

bounded by VN +1.

Lemma 2. Let k be a function of N. If N = o (k), then

k
lim P ; N | =0.
Nl_I}nOO (;s < \/_) 0

If k=0(N), then

lim P(Zk:si <\/N):1.

N—oo =1
The next lemma has a technical nature and was proved in [7].

Lemma 3. Let X € LPr, p be an X -valued non-atomic measure, A : ¥ — R,
be non-atomic. Then for every A € ¥ with A(A) # 0 and € > 0 there exist
G' € X|4, G" = A\G' such that

(i) AMG) = A(G") =31 (4),

(i) | (G") = 3 ()] <.

The following lemma is a strengthening of the previous one and will be em-
ployed in the proof of Theorem 1.

Lemma 4. Let X € LPr, p be an X -valued non-atomic measure, A : ¥ —
R, be non-atomic. Then for every A € X, A(A) # 0 there exist G|, € Y|4,
GI'=A\G!, (n=1,2,...) such that

(i) M(GL) = A(GY) = 3A(4),

(i) 20 = Xa1, — Xqu are independent random variables on the measure space
(4,51, x5

(i) i (Gr) = 3 ()] < 5.
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Proof. Weshall construct by induction on k the sets G, G} (k= 1,2,...).
Let £k = 1. By Lemma 3, there is a G| € X|4 such that

1

(@) = gu) <

1
and A (GY) = 5/\ (A). (1)
Let k = k + 1. Suppose G, G/ (j = 1, ..., k), satisfying the required conditions,
k

have been constructed. By independence of {T‘j}]—zl )

sets {Dz}?; C Y|4 such that

there are mutually disjoint

Qk—l 2k

o= ) XD~ Y. XD
i=1 i=2k—141
gk—2 gk—1 3.9k—2 ok

rg = Z XD; — > Xp; + > XD; — > XD
=1 1=2k—241 1=2k—141 1=3.2k—241
2k

. i1

e = > (=17 xp,-

=1

Put G, = U?il Di. It is easy to verify that G}, G}, satisfy conditions
(2)—(7i1). [ |
2. A,-property

Definition 1. A Banach space X with a basis is said to have Ay,-property
(X € Ap) if for some basis {e,}°2, in X there exists a map T € L(X,cq) such
that for every z = YN 2 (i)e; € X, with z (i) #0 (1 <i< N), & > 0, there
exists & > 0 such that for any y = Zf\iN-H y (i) e; € X with Hffy”oo )

Il + ylI” = llzlI” = llyll"| <,

if 1 <p<oo, or
Iz +yll = max{[[«]], [lyll}| <e,

if p = oo.
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Lemma 5. If X € A, then there is a map Te L(X,¢q) such that for every
z € X,z #0, for every sequence z,, % 0 in X with HT:C,L — 0, and for
n— 00 o0 n—oo
every € > 0 there exists n such that

lllz + 2all” = [l2]l” = leall” < e,
if 1 <p< oo, or
llz + @nll = max {[lz]|, lza][}] <&,
if p = oo.

Proof. Let{e,} ~, bea basisin X, for which the conditions of Definition 1
are satisfied. Fix z = 372,z (i)e; € X, 2 # 0, z, = 372 2, (1) e; € X,
n=1,2,.., z, ni”_;O 0, fonHoo = 0, ¢ > 0. Put C' = sup, ||z,||. Choose
6 € (0,1) such that for any a,b € [0, ||z|| + 1 + C] with |a — b] < 6 the inequality
laP — b?] < £ holds. Select N € N such that |52y, 2 (i) e < &. Denote

4
x® = YN, 2° (i) e;, where
ma(i):{ (i), if 2 (i) #0,
g if (i) =0.

It is obvious that

. €
llll” = 2=l < - (2)
Find ¢ >0 for 2* and 5. There is n € N such that Hfa;n < ¢ and
HZf\Ll z, (1) €]l < &. Select M € N such that |[252,,4; 20 (i) &) < £, Put
2e =Y M2, (i) €. Tt is easy to see that ||z, — 25| < g and Hffaci < ¢ and

consequently

. €

llnll” = 2zl < 5 3)
(4 (4 (4 (4 €

Iz + 5l = [l = [l25]1"] < - (4)

4
Note that |||z + z,|| — ||z° + 25]|| < 6. Therefore

lle 4+ @l = ll2* + 25 [|] <

&~ m

Combining (2)—(5), we get

Nz +2all® = ll2l” = llzall®l < Mll2® 4+ 23" = [J2°]” = (|25 ]
+ e+ 2l = [la® + 25 [17] + |2 )" — [l=°1"]
+ Mzl = ll25]7] < e
The case p = co can be shown in the same way. [
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Theorem 1. If X € A, (p # 2), then X € LPr.

Proof. Let us consider two cases.
The case 1 < p < 2. First we fix N € N and k£ = {%} . We shall prove

ad absurdum. Assume that X ¢ LPr. By Lemma 1, there are (,%,X), e > 0
and T : Lo (2,3, X) = X, satisfying the conditions a) and b). Let us show by
induction on j that there exist functions {t;}/_;, € L. jointly equidistributed

with {Si}?zl such that
J
T Zti
=1

For j =1, there is nothing to prove. Suppose that {¢;}/", satisfying (6) has been
constructed. Now consider A = {w EQ: YRt < \/N} and the auxiliary co-

> ZIIT I” - (6)

valued measure p (D) = TTXD, where T is the operator from Definition 1 for the
space X. Using the LPr of ¢y, we may apply Lemma 4 to the measure u. Choose
a sequence {z,} —,, meeting the conditions of Lemma 4. By condition (i7i), we
get HTTAn —, 0. Since z, 5 0, we have Tz, % 0. By Lemma 5, we can
find a number 7%0 N such that e

(3] vr

where § is arbitrarily small. Fitting  sufficiently small and putting t,,41 = 2.,
we obtain the required inequality.

Suppose that {ti}le are jointly equidistributed with {si}le and subject to
the condition (6) with j = k. Then

()]

In view of the condition (**) we have ||T (¢;)|| > €A (suppt;) > €A (suppty) for
i < k. Since {t; } _, and {52} _, are equidistributed, this gives us by the choice
of k that

n=1"

p
>

P

+ Tz =

m

YT ()

=1

P

1711”

k
S
=1

> ZIIT P -

v

Z 1T ()7 > ke” (P (s # 0))"

()7 (e (5] <))
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By Lemma 2, the last factor tends to 1, hence this inequality cannot hold for
large N. This contradiction completes the verification of the first case.

The case 2 < p < co. Assume that X ¢ LPr. By analogy with the first case,
we fix N € N, let k = [Nlg N], and construct functions {t;}5_, € Lo, jointly
equidistributed with {si}le such that

(2

Further the proof coincides with the same case in [6].
The case p = co is analyzed just like previous one. [

p k
<Y NT @)+ 1 < |TIP k41, (7)
=1

In Lemmas 6-8 below the role of T from Definition 1 plays the natural coor-
dinate embedding of the correspondent sequence space into cg.

Lemma 6. d(a,p) € A,.

P r oo f. Note that if z = (z1,22,...) € d(a,p), ||z|| = 202, fﬁan)%,
where (&1, &3,...) is an enumeration of {|z,|} —, such that &3 > 2, > ... . Fix
x= YN,z €d(a,p), where z; #0 (i =1,2,...,N), € € (0,1). Without loss
of generality we may assume that z; > z3 > ... > 0. Since a = (a1,az,...) €
co, there exists £ > N such that Zfiév a; < 5. Take 6 = min {;—k, 121511]\7% .
Let y = Z%N-H yie; € d(a,p) with [|y||, < 8. We may assume that yni; >
YNtz > ...> 0. Further we estimate the number |||z + y[|” — ||z[|” — ||y||"| :

M
e +yll” =llel” = llul’l = > o (6i-n — ai)
i=N+1
N+k M
= > YWla-nv—a)+ Y, yP(ai-n—a).
i=N+1 i=N+k+1

Since 1> a1 > ag > ... > 0, we obtain

N+E N+kE

S y(aiiy —ai) < D yfé%-

=N+1 1=N+1

The application of ||y||., < 1 yields

M M
o lan-—a) <) (ain - )
1=N+k+1 1=N+k+1
N+k M c
i=k+1 i=M—-N+1
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So, [llz +yll” = ll=llI” = llyll"| <e. m

Lemma 7. S € A.

Proof. Letz= Zf\; zie; €S, wherez; #0 (i=1,2,..., N),e > 0. Denote

§ = 4 minj<i<n |zi]. Choose y = Zf\iN_H yie; € S with [|y||., < 4. It is evident
that [l2], 1] < [}z + 1|, consequently, max {[lz], 1]} < = & .

We shall prove that |z +y| < max{|z|,|y|l}. Let k& < N, E =
{n1 < ...< ni} be an admissible set, i.e., k < ny. If n < N, then

Z 25| + Z lyi| = Z lzs| < ||| .

t€ER 1€l 1€F

If ng > N, then

gﬂlm +i€§]jz|yz| < ;ﬂm + minlai] < minfei] < le]],

where E' = {ko}U{i € E:i < N}, ko € k, N\E. Let k > N, then

Z 2| + Z |y:| = Z lyil < lyll -

t€ER el =

Thus ||z 4+ y|| < max {{|z]|, [ly[|}- L

Lemma 8. B, € A,.

Proof TLetz =N zie € By, 2#0,¢>0. Select § € (0,1) such
that for any a,b € {0, ||, + 1} with |a —b] < @ the inequality |a? — bP| < ¢
holds. Take § = %. Choose y = Z%N-H yie; € S with [|y||,, < 6. Evidently,
[zl + [lyll” < [l + y[[". We shall prove that ||z +y[|” < ||z[|” + [ly[|” +&. Let
Fi<Ey<..<FE, FE;€L,and

2+ yll” =Y IE: (= + )7, -
=1

We introduce the sets of indices

I, = {iel,—n:Eiﬂm:@},

I, = {ie1,n:Em1,N:®},
io = 1,71\(]1U12)
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Then

e +ull” = D I Ellf, + D 1Byl + 1B (= + )17, -
1€l 1€lz

Let us estimate the last item:

1B, (2 + 97, = (H (B nTN) 2|, + | (B0 nN+1,31) th)p < ||Eqzllf +e.

This implies that

le+ull” =D Eelf + Y IEyll} +e < lle|” + [lyll” +e.
1€ 1Uig 1€l

The lemma is proved. [

Corollary 1. The Lorentz sequence spaces d (a,p) (p # 2), Baernstein spaces
B, (p # 2), and Schreier space S have the Lyapunov property.
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HexoTopsie HoBble 060611eHUA TeopeMbl JIAnyHOBa

0. Bragumupcras

llorazano, 9To npoctpadcTBo Ilpuepa, npoctpancTBa JlopeHma, npocT-
paHcTBa bepHmiTeiina, He cojep#alirie U30MOpGhHBIX KOMHIl MpoCTpaHCTBa
l5, o6nagaioT cBolicTBoM JlAnyHOBA.

HeAri HOBI y3araibHeHHA TeopeMu JiAnyHoBa

0. Braagumupchbka

Tosepeno, mo npoctip Mlpiepa, npocTopu Jlopenna, npoctopu BepHiTeii-
Ha, Kl He BMIN[AIOTh 130MOPGHUX Komiil mpocTopy [y, MalOTh BAACTUBICTh
JanyHoBa.
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