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The long-time asymptotic behaviour of non-localized solutions of Korte-
weg—de Vries (KdV) equation is studied and is proved that these solutions
split in infinite sequence of solitons.

Introduction

One of the remarkable results obtained by the inverse scattering transform
method [10] is that for any localized initial data (i.e., rapidly decreasing with
& — +00) the solution of the Korteweg—de Vries (KdV) equation

Uy — 6UUy + Uppy = 0

splits into a finite number n (0 < n < oo) of solitons as time tends to infinity
(t — o0) [9]. Other integrable nonlinear evolution equations exhibit similar
splitting, though the authors do not know the exact references. This effect is an
additional argument in favor of the physical interpretation of solitons as stable
”long-living” particles.

The Cauchy problem for the KdV equation with non-localized initial data

C2
~ —

ug(z), namely, in the ”step-like” form wug(z) (£1—-1) as 2 — +oo, was solved

47V+1

in 1975 [3]. It was proved, that [ ] soliton-like objects appear in some neigh-

bourhoods G () (N = 1,2,...) of the leading edge (the front of the solution).
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N+1lnt}. The
c

form of these objects is similar to ordinary solitons, but their velocities depend
on t. In contrast to ordinary solitons, they are not exact solutions of the KdV
equation, however they satisfy it with increasing accuracy when t — +o0o. For
this reason such objects are called asymptotic solitons. The number of these as-
ymptotic solitons infinitely increases when t — 400, if the observation domain in
the neighbourhood of the solution front is extended correspondingly. In a more
general form the same phenomenon is observed also for other non-localized initial
data, as well as for other KdV-like equations [4]. Physically, one can consider
this phenomenon as a manifestation of the fact that any non-localized initial da-
ta consists of an infinite number of solitons, which are gradually ejected at the
front. The existence of a sufficiently wide living space for solitons is a natural
(but not the unique) condition for this phenomenon. As usual, a beam (7'(¢), 00),
belonging to the positive half-axis x, is taken as the domain, where the solution
vanishes or tends to a constant (if there exist solitons on the background for the
corresponding equation). As it was shown in [4], the existence of a continuous
spectrum of multiplicity one of the L-operator of the corresponding Lax pair is a
sufficient (nearly necessary) condition of the splitting. Moreover, the structure of
the simple continuous spectrum of the operator L depends only on the behaviour
of the initial data as  — —oo. Thus a wide class of initial data generate the
same asymptotic formulae.

In this paper we study one non-localized solution of the KdV equation, which
vanishes as # — +oo. Its behaviour at * — —oco is not well understood yet.
This solution belongs to the closure of the class of reflectionless potentials, which
was introduced by V.A. Marchenko and D.S. Lundina in [6, 7] and H. Stephan
in [8]. We derive a determinant asymptotic formula (1.5), which describes the
oscillation structure of the solution in the neighbourhood of the front, and prove
that as ¢ — oo the solution splits into an infinite series of solitons moving along
the z-axis to the right. Our method to find and prove asympotic formula, being
close conceptually to the method proposed in [3], is based on the reduction of
the problem to the solution of an integral equation with a suitable degenerate
kernel. However, as distinct from [3], where the well-known Marchenko integral
equation is utilized, in the present paper we consider an integral operators acting
on functions depending on the spectral parameter [5, 8]. To implement the idea
mentioned above new techniques were developed which can be applied also to
the solution of other nonlinear evolution equations within the framework of the
Riemann—Hilbert problem ([10]).

The proposed method allows one also to investigate the asymptotic behaviour
of the solution in the neighbourhood of the trailing edge (back of solution): G'n(t)

At large times these domains are G (t) = {$ ER, z > 4%t —
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N+1
as t — —oo, and to show that T—I_] solitons are selected from the solution in

this domain. These solitons move along the z-axis to the left as ¢ - —oco and
have smaller amplitudes than those of the solitons at the front.

1. Formulation of the problem and main results

Let ¢(p) be an arbitrary positive function defined on the interval ]a,b[ (b >
a > 0) of the form

e(n) = (1= a)*(b— 1) ¢o(n) ,

where
1

vo(k) € C=[a,b]; wo(a) >0, @o(6) >0, a,f> 2.

Consider a Fredholm integral equation with respect to the unknown function

g(X;z,t) of the variable A €]a, b[:

e,ua; 4,ut

—)\(x—4)\2t)
At p ’

a<A<bh.

(1.1)

Here the variables z,t € R are considered to be parameters. This equation has an
unique solution ¢(X;z,t) € C*(a,b), smoothly depending on z € R and ¢ € R.
The methods developed in [5, 8] allow us to show that the function

gz, )+ e 4A2t)/ P()g(p; z, t)dp = e

b
d [ o ae
u(e,t) =2 [ e 00 yg (s, 1), (1.2)

which is a functional of the solution g of (1.1), satisfies the KdV equation
Uy — 6UU, + Upyy = 0.
It is easy to see the solution (1.2) tends exponentially to zero as # — 400, however

its behaviour is unknown as z — —oo.

Remark. Taking into account results of [1], one can suppose that in the

case of () = /(b— p)(p —a)go(p), (i-e., the special case o = 3 =1/2), the

solution, deﬁned by (1.2), asymptotlcally tends to the periodic one-gap solution
of the KdV equation as z — —oc.

The principal goal of the present paper is to investigate the asymptotic be-
haviour of the solution u(z,?) which is determined by (1.1) and (1.2), in the

Matematicheskaya fizika, analiz, geometriya , 2000, v. 5, No. 1/2 51



Evgenii Ya. Khruslov and Holger Stephan™

neighbourhood of the leading edge when ¢ — oo. We define the front leading
edge as the domain

Ox(t) = {m ER: z>4b% - %lnt[NWH]} : (1.3)

where N is an arbitrary positive integer and ¢ > 1.
Let us introduce the notations:

@+ . '
iy = W’ 1,] = 07 17 cee g (14)

) = {Cz’j}%':o is the matrix of order N + 1 with the entries Cj;;

b
(o, t) = [ 06— o0 dps

TN (z,t) = {Ii+j($vt)}?]j:o and AN (z,t) = CMTWN)(z ¢) are the matrix-
N

functions of order N+1 with the entries I;y;(z,t) and A;;(z,t) = > Ciplpyj(2,1),
k=0

respectively.
For fixed parameter b, the numbers C;; are fixed too, but in Theorem 1 we
consider Cyg to be a freely varying parameter.

Theorem 1. The solution u(z,t), which is determined by (1.1) and (1.2)
everywhere in R?, is represented in the form

2

, _ (V) 1 A(N) (V)
u(z, t) 28$800010gdet{E + AN (@, 1)] + AN (2, 1) (1.5)

in the domain G§ = | Q% (t) € R?, where EWN) is the identity matriz of order
t>1

N, and the function A(N)(a;,t) satisfies the inequalities

‘A(N)(imt)‘
, as — NEOH fb s gy > Ny g
S i N+1
min{BTNJ{(bza) ’ N}v as x—4b2t2_wln ba’t>1

The constants K and K depend on the parameters a, b, o, § and the function
¢o(A). Taking into account inequalities obtained in Section 2, it is easy to carry
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out upper estimates for Ky and K, however they are rather combersome. What
is only important for us is that lim A(N)(ac,t) = 0 uniformly with respect to

N—oo
T > 4b% — Wln,/%, t > 1, and lim AW)(z,¢) = 0 uniformly with

t—4o00
respect to z € Q% (¢) for any fixed N.
The asymptotic analysis of (1.5) allows us to prove that solution u(z, ) splits

ZV 1
into T—I_] solitons in the domain Q () as t — +00. The following theorem
holds.

Theorem 2. The solution u(z,t) can be represented in the form
[557]

u(z,t) = —

2b? 1
+0 <_)
kZ::l cosh? [b (:U — 4b%t 4+ % In $2k—1468 4 562)} NG

in the domain Q¥ (t) as t — +oo. The numbers z%) are constant phases, which
are given by
o 1 [(k- 1)!]2A(lk—1)Agk—l)ka—3+2521ok—5+4ﬁ
RAEPTa (B A )
Po(b)(b— a)*A7A;
where A} and A% are the determinants of the matrices with the entries (i + k)!
and (i +k+1405), i,k=0,1,...,n— 1, respectively.

3

2. Proof of Theorem 1
Let us introduce the Hilbert space Ly,[a,b] of the real functions g(u) on the
interval (a,b) with the norm
) 1/2
lgll = { / gQ(u)@(u)du} ,

where a,b > 0. The function ¢(p) > 0 was introduced in Section 1. In this space
let us consider the operator A that depends on parameters z,t € R:

b e~ (M) z+4(X+u)t

g = [

a

e(wg(pdp, A€ (a,b). (2.1)
Lemma 1. The operator (E + A)~™! exists and satisfies the relation

I(E+A)7H <1
for all z,t € R (E is the identity operator in Ly,la,b]).
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Proof. Since a, b> 0, Ais a completely continuous operator in Lg,[a, b].
Let g € Ly,[a, b] be the solution of the equation

(E+A)g =1, (2.2)

where f € Lgy[a,b]. After scalar multiplication of (2.2) by g and application of
(2.1) and equality

b :/e_(“+>‘)5ds,
0

we obtain

b b

00 2 b
[ s wetdu+ [ ds ( / e‘“s‘“(g”“‘“Qt)w(u)g(u)du) = [ Fgtme(odn

(2.3)
Hence the homogeneous equation, which corresponds to (2.2), has only the triv-
ial solution, and consequently equation (2.2) is uniquely solvable for any f €
Ly,la,b]. In addition, (2.3) yields

gl < 1111

Thus the Lemma is proved. [
Using the expansion

1 = () : :
oy U i ey,
o il (2b) o+l
let us write the operator A as a sum of the two operators

b
(Angl) = [ e OO0 S (5= 2 (b= P g )

a 1,§=0

b

(Brgl(n) = [ OO S =0 (b - P e )y, (2.4

a (i,7)eRN)

where the numbers C;; are defined by (1.4) and R(™Y) is the following set of the
couples (7, j):

RM = {(i,j): 0<i<oo, 0<j<oo}\{(i,j): 0<i<N,0<j<N)}.
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Since 0 < a < A, p < b, C;; > 0 and R C 6 {(¢,7): i+ j=k} the
E=N+1
following inequalities hold:

0< X Calb-NG-wi< Y Culb-Nib-p)
(i,7)eRN) i+j=N+1
=& k! 1 & (=N -
= 2 Zi'(k—i)!(2b)k+1(b_/\)2(b_ﬂ)k =5 2 [( );)( H)]

k=N+1i=0 " k=N+1

<L[<b—A>+<b—u>]N“ ! <L<b—a)N+l
= 2b 2b 1-b2 =24\ b '

These inequalities allow us to estimate the norm of the operator By at ¢ > 0:

(2.5)

b b
[I1Bn||* < sty L (b= @\
N7 < e 2\ B e(A)p(p)dAdp

22 sh_aNeNED [
< (2%2( b ) (/e TSI b — ) (- a)dp

a

2

3

2 2(N+1
< %0 <b - “) ( )(g, _ a)H1+0+B) =20(6)

where

@0 = rﬁ%?wo(/\)y E=z—4b*, p(&)=E&(0b+a)—[E|(b— a).

It follows from this that
N+1 8 B
b—a\ 2 bz(b—a)ltotz
N e (2:)

a

N+143 b
attZOande—%ln

b—a-
Let us estimate the norm of By when

[N+ 1+ 7] b [N+ 1+ 7]
T Wi o T

Int, t>1, &=uz—4b%.

Using the inequalities (2.5), we can write

b b
B prsiasy L T(b=A) 4 (b= p)12VHY
||BN||2 < //6 2(Ap)e+8(A+pu)t (20)2 [( )Qb( :u) SD(/\)SD(N)dAd/L
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1
= (2@)2 Z ijlk(a;,t)lj(m,t), (2.7)
k+i=2(N+1)
where
b
(oyt) = [ 200 - kg ) (2)

Lemma 2. The integrals I;(z,t) have the following asymptotic representa-
tion: b1
P1Vq L(k+p+1)
tk+6+1

Ii(z,1) = e 4 8i(1,€),

2
at t — oo and & = x — 4b% > —t'12. Here 1 = po(b) (b — a)®, v = (ﬁ) and
I'(z) is Fuler’s I'-function. The functions 6;(t,£) can be estimated by

I'(k+5+42 -
|6:(t, )] < WDHM% p(€)

where the constant D depends on parameters of the problem and p(§) = £(b+
@) - IEl(b - a).

Proof. Changing variables z = 4b% + ¢ and y = b — v, we find

b—a
Ii(z,t) = e”2%¢ / ee=Br(b=1)(2b=0)t ko _ 1) dy. (2.9)
0

Let us consider the function p = p(v) = 8v(b—v)(2b — v). It can be shown, that
there exists the inverse function v = v(p) with v(0) = 0 and the series

_ _ 2 _ 1)?
v=v(p)=viptrep” + .., Vl_(@) ;

dv
— =v1 +2v9p+ ...,
p
(b—a—-v(p)*polb—v(p)) =1+ wep+..., ¢r1=(b—a)¢o(b) (2.10)

converge absolutely and uniformly at |[p| < p < %. Let us choose such a

number 4; that 0 < é; < min {%,p(l)— a)} (p(b— a) = a(b* — a*) > 0), and
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set 6 = v(d1) (8 < b—a). Then, taking into account the equality ¢(b — v) =
V(b —a—v)%po(b—v) and (2.9), we write

1
In(z,t) = e™ 2% / 2o P kB (h — g — 1) oo (b — v)dy
0

b—a
4e7 28 / 2Pt RHB(h — q — 1) o (b — v)dy = T} (z,t) + I} (,1) .
5

It’s easy to see that
k+1+8+a

]/c/($7 t) S @06_17(6)6—5175L

i (2.11)

where

fo= max o). p(€) = b+ a) = [€](b = a).

Let us estimate the integral I} (z,t). Using (2.10), we obtain
k48 . dv kB4l k48 |, kBt
v @Mb—a—V@Ds%w—V@D@;—wwl P+ p P (p),

e =14 pE(p, ) (2.12)
at |p| < 8. The functions ®;(p) and E(p,£) can be estimated as follows:

|E(p, &) < Al¢|eble+e)]

Oi(p) < (k+ 4+ 1) B0y (2.13)
The constants A and B depend only on a, b, and ¢g(A), and are determined by
2
A = max v(p) ,
p<b1 P

3

B = maxmax{‘M
p<d1 P

(2

wolb—v(p)) (b —a—wv(p)”
wo(b) (b—a)

JG@%KNM@,

where

G(p)=v'(p)
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According to (2.12), the integral I7(, k) can be represented in the form

81
d
(&) = 6_255/62”(”56_”1/“’3(9)(5— a—v(p))*polb—v(p ))d—ydp
0
Y —2b§/ ot kB _ oy kAT —2b5/ ~rt gk 64
0 51
&1
e [ (B, €) 1 B4 (p) dp
0
&1
b [t 0y d,o—ZI
0

It is evident that
—op¢

100 = ek 4 B4+ 1) s

Taking into account (2.13), we obtain estimates for the other summands:

(1) k+B+1 ~3y e 2
|I (57 )| < 8‘91(2’/ ) F(k +6+ 1) th+B+1?
k 3 P1 1 tk+ﬁ+27

(3) k+p+1 e~ 2etollel+e)
(70 < (k+ B+ 1)@ |€[AB Lk + B +3) g

Hence
—2b¢

€
(€ 1) = @u T (k4 B+ 1) ey + 6(6.1),

where it is implied that the function 6;,(&,¢) obeyes the estimation

U(k+58+2) & _
|84.(¢,1)] < WDIWHG p(¢)

at £ > —t'/2. The constant Dy depends on A, B, 1,11, and dq, i.e., on parameters
of the problem. The last statements and inequality (2.11) conclude the proof. m

Inserting the asymptotic expressions for the integrals I,,(z, t) obtained in Lem-
ma 2 into (2.7), we get

B2N+2+48) I'2(N+2+ ﬁ)) ()
t2(N-|—2-|—/3) !

1Bn* <
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and consequently, .
B[ < Knt™! (2.14)

at £ > —Wln t, where Ky is a constant depending on N, ©o(A) and the
problem parameters a,b, o, and 3. The inequalities (2.6) and (2.14) give us a
necessary estimations of the norm of By.

Now let us return to the equation (1.1) and rewrite it in the form

g+ ANg+ Bng=f (2.15)

in Lyy[a,b], where the operators Ay and By are determined by (2.4). Here Ay is
the operator with the degenerate kernel. According to (2.6) and (2.14), the norm
of the operator By becomes small if N — oo or t — oo in the corresponding
range of z. The solution of (2.15) is represented in the form

9 =gn + 0N, (2.16)

where g is the solution of the equation

gNn +Angn = f. (2.17)
Therefore
oy = —(E—I—A)_IBNgN. (2.18)
According to (1.2),
d
u(z,t) =2— 2.1
u(z,t) = 27-(f,9), (2.19)

where f = f(u) = e~#e—14’t)  The parentheses denote the scalar product in
Lay[a,b]. The self-adjointness of A in Ly,[a,b], (2.16), and (2.18) allow us to
write

(f,9) = (f;9n) + (f, 0n), (2.20)

(£,08) = (£, (E+ A)" " Bngn) = (B +A)7'f, Byaw)

= (gv + én, Bngn) = (9n, Bngn) — ((E‘|‘ A)"'Byan, BN!]N) : (2.21)

In Section 3 we will show that

|(f,gn)| < CN (2.22)

for £ > —Wln t, t > 1, where the constant C does not depend on N, &,
and t. Therefore, by the virtue of the positiveness of Ay, from equation (2.17)
follows that

llgn|I> < CN. (2.23)
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Applicating this inequality, (2.6), (2.14), and Lemma 1 to (2.21), we obtain

N+1
ind Kx nNpr(b=a) 2 N8 b
(.60 < mln{ L NK ( b ) }, as &> T LY At
b =
K
‘tN7 as _W]n /%>52_W1nt7 t>1,

(2.24)
where the constants K7, and K’ depend on the function ¢y(A) and the problem
parameters a, b, o, and . Taking into account (2.18) and Lemma 1, it is easy to
show that the function F'(z) = (f,dn) can be continuated up to a function F(z)
of exponential type 3b from the real axis into the complex plane C. In a similar
way one can prove that the estimates (2.24) hold for the function F(z) when z
belongs to any beam z = £ 4 in, & > —Wln t. Hence, due to the Cauchy
theorem, we conclude that estimates of the type given by (2.24) are valid for the
function

A, 1) = 20 (f,8), (225

i.e., the last conclusion of Theorem 1 concerning the residual A(N)(m, t) is proved.
According to (2.19) and (2.20), we have to show that

d
(f,98) = Fo—Indet (BN 4+ AN (@, )] (2.26)

Let us find the solution gn(A; z,t) of the integral equation (2.17) with the dege-
nerate kernel

AN(A7N7$7t) =€ ~(u)ata (40 Z CZ] b - b - ) SD(NL

1,§=0

which corresponds to the operator Ayx (2.4). Taking into account the specific
form of the kernel, we seek for the solution in the form

N(Ajz,t) ng z,t)( /\)ke_’\(z_4’\2t). (2.27)

Substituting (2.27) into (2.17), we obtain a system of linear algebraic equations
for the functions g](CN) = g](CN)(L t):

N
VA e =6, k=001,
7=0

where g9 = 1 and g = 0 for k=1,..., N,

N
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The integrals I;(z,t) were defined by (2.8). The solution of this system is given

by
DM (2, 1)

DM (1)’ (2:28)

N
o (@,1) =
where DWN)(z,1) = det {E(N) —}—A(N)(:C,t)} is the determinant of the matrix
EW) 4 AWN)(z,t) with the entries di; + AE;V)(x,t), 1,7=0,..., N, and D](CN)(x,t)
is the determinant of the matrix obtained by replacing the k-th column of the
matrix EV) + AN)(z,¢) by the column (1,0, ...,0)L.
It follows from (2.26) and (2.28) that

G (z,t)

(f}gN)Zziiﬁﬁz;?57

where G(N)(:C, t) is the determinant of the matrix obtained by replacing the first
line of the matrix EXV) + A(N)(m,t) by the line {Io(z,y), 1(z,y),....,In(z,y)}.
Therefore, taking into account that A (z,¢) = CN TN (z,¢) and setting Coo
as a varying parameter, we obtain (2.18). Thus Theorem 1 is proved. ]

3. Proof of Theorem 2

Let us denote via D(N)(:U, t; Ao, ..., An) the determinant of the matrix AN 4
AN (z,t), where A(N) = diag(Xo, ..., Aw) is the diagonal matrix depending on
N + 1 parameters Ao, ..., Ay. It is evident that DUV (z,¢;1,...,1) = DWN)(z,t) =
det {E(N) + A(N)(:C, t)} This determinant is a polynom with respect to Ax:

DM (2,8 X0, ey AN) = Aowe An + oA AvDE (2, 8) + Aodi Az A D (2, 1)

Foo At Agehy A, D@ty + DY) (2, 1), (3.1)

21...’ik

where Dz(f)u (z,t) is the determinant of the matrix of the order k with the entries

Aiip(x,t), 7, p=1,...,k; the hat means that the corresponding parameter is ab-

N
sent. Taking into account that A;; = Y Cy;1;4k(z,t), we obtain from Lemma 2
=0

that
DY . (z,1) = det CW det 1¥ (2, 1) + d®) (1)
—2bké
_ k k) € (k)
= det C*) det I'( )W +dy’ (z,t),
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when 19 =0, io=1,..., i =k —1,l.e., a8 8y + ig+ ... + 1 = k(k2—1)7 and
—kp(€)
D0 8)] < Co ez

when i1 +i24 ...+ ik > M%l Here & =z —4b%t, p(&) = &(b+a) — €| (b—a), CP),
and I'(®) are matrices of order k with the elements C;; and FEJ) = VH']-HB-H (z—}—
JHB+1), 4,5 =0,..k—1, respectively, ['(z) is Euler’s I'- functlon7 and the

functions d®)(z,t) and dgk)(ac, t) satisfy the estimates

e—kp(€)

k
[#9.0], s

e, < G

Setting A\; = 1,7=0,..., N,in (3.1), it follows that

_2bke
S (Bl 1), (32)

det |EDN) 4 AN )(x t)} =1+ Zdetc k) dot T(*) £ o o

k=1
where the functions 0y (z, ) satisfy the estimates

|0k (z,1)] < % (3.3)

A more detailed analysis of the determinants Dl(lk)“C

these functions with respect to x and the parameter Cyg obey the same estimates:

shows, that the derivatives of

06y,
9Co0|’

93
Oz

EE
0%z

P
NG

(3.4)

R em ar k. The last estimates follow also from the possibility to continue
analytically the functions §; = &x(z,t,Cqo) into the strips |[ImCqo| < C and
|Imz| < C with respect to 2 and Cpyo. The estimates (3.3) remain valid there.

Let us take the advantage of the following equality, which is proved, for ex-
ample, in [2]:
kdet CF) = det 7Y,

J)! 1,7=0,..,k—1,

where C'(() )i is the matrix of the order £ with the elements s

i
and C}k_ ) is the matrix of the order k — 1 with the elements (Z;]?!)', 1,] =
1,...,k— 1. From this we obtain the relation

T det C*) = 2k det C*) | _ o (3.5)
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Now, taking into account Theorem 1 and (3.2)—(3.5), we obtain asymptotic for-
mula for the solution:

—2bke

N
u(z,t) = Qd—ln [1 + ) det ) det TF) e(k-q—ﬁ)
k=1

2 ‘|

dg E=x—4b%¢

in the domain Q% (¢) = {a: > 4b%t — 5 In t[N+1+5]} as t — oo.
Introduce the notations:

o—2bkE
An(&,t) _1—|—ZPk ) (3.7)

N GING
Py = det ¢ det T = k@f(b)(b QA Ay (3.8)

1:[ (i1) 2bk(3k+25) 2k(5k+45)

where A(lk) > 0 and Agk) > 0 are the determinants of the matrices of the order
k with the entries (i 4+ j)!and ['(i +j + 1+ ), ¢,7 = 0,..., k — 1, respectively.
(They are positive since both are Gramm’s determinants.) Then from (3.6) and
(3.7) follows that

d2 A An — (A 2
u($7t) ~ 'uN($7t) = —Qd—éﬂln AN(f,t) =_—X NAQ ( N) (39)
E=x—4b%¢ N
and N
(i — k)2 P, Ppe= 2Rk
AN — Z ”w e p (3.10)

1,k=0

Let us cover the domain & > —(2b) " In tIN+145] by the intervals
ar(t) = {=(2b) 7" In 277F < € < o0},
an(t) = {—(20) " In 12" +F+e < ¢ < —(20) 7" In 2P DHA=eY
anp(t) = (@) N+ < g < —(20) 7 n 25T 0oL
2

Taking into account (3.7) and (3.10), we obtain

P e—Q(n—l)bf P e—2nbE
2 _ |1 n ~1/2
AN = [ H D) 148) T gn(nth) ] (1+o (7))
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and

" RV EETY 2PnPn—1€_2(2n_1)b6 —-1/2
NAN — (AN)" =4b AR (=) (=145) (1 +0 (t )) ’

when £ € a,(t) and ¢t — +oo. Hence, by virtue of (3.6) and (3.9), it follows that

(]

& 2b*
u(z,t) = — +0 (t_l/Q)
=1 cosh? [b (r — 4b% + % In ¢2n—=148 4 x%)}
uniformly with respect to & = = — 4b%* € a,(t), where 20 = %ln Pf:' Thus

together with (3.8) we obtain the required asymptotics of the solution in the
domain Qp(t). Since {%} solitons are confined in Qn(¢), and the integral

of each of them convergs, we simultaneously obtain the inequality (2.22). This
concludes the proof. [

4. Asymptotic behaviour of solutions as t - —oc0

The method developed in the previous sections allows us to study the asymp-
totic behaviour of the solution u(z,t) (determined everywhere in R? by (1.1) and
(1.2)) in the domains

N +1
Qv (1) :{xERl - >4a2t—%ln|t|}, t<—1,
as t — —oo. We call these domains neighbourhoods of the trailing edge (back
of the solution), since u(z,t) exponentially vanish as z — 400 and the graph of
u(z,t) is moving to the left as £ — —oo. It turns out that u(z,¢) also splits into
{%} asymptotic solitons in the domain Q3 as ¢ — —oo. These solitons have

the amplitude 2a? < 2b% and move to the left. The exact result is contained in
the following

Theorem 3. The solution u(z,t) of the KdV equation has the following as-
ymptotic representation:

[5]

= 1
u(z,t) = — Z 2a* cosh? [a (x — 4a*t + %ln " 332)]
k=1

0

. are constant phases, which are

in the domains Qy(t) as t — —oo. Here z
determined by
;ro = iln [(’Il — 1)’]2 Agn_l)Agn_l)a6n—3+2a210n—5+4a

o2 po(a) (b~ a) ATV ALY

3

where Agn) >0 and A(Qn) > 0 are the same determinants as in Theorem 2.
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Let us outline the key points of the proof. For simplicity we set ¢ < b < 2a.
Using expansion into a series

1 & (=) ; j
A z_: il71(2a)iti+1 (A= a)(u—a),
2,7=0
which converges absolutely and uniformly as @ < A, u < b, we approximate the
operator A (see (2.1)) by an integral operator Ay with a degenerate kernel. We

obtain estimates for the norm of the operator By = A — Ay, which are similar
to those given by (2.6) and (2.7):

b—a\ [ (b_a)ﬁb [N +1+aq a
B < _ t — | t< -1
I NH_( a ) 2a (2a—b) at £ > 2a "WrZa <
and )

By|| < ————— Ip(z, )L (z,t) < CJt|™"

1B < goa—gy 2 Culk(a {0 < CH

k—|—]:2(N-|—1)
N+1 N +1

at —[ + +a]ln,/ a >€>—wln|t|,t<—1,£:x—4a2t,

2a b—a 2a

b
where Ii(z,t) = [ e 20420 (4 — @)k p(p)dp.

a
To estimate the integrals I (z,t), we prove an analogue of Lemma 2

Lemma 3. The integrals I(z,t) have the following asymptotic representation

k+a+1
N I'k+a+1) 20
Ti(, 1) = : [t[F+at er+o \/|

2
ast — —oo and £ = x —4a*t > —\/[t|, where o1 = po(a)(b—a)’ and v, = (;—a) .

Thus the problem is reduced to the solution of an integral equation with the
degenerate kernel

AN g2, 1) Z TOFe O () — a) (i — a) (),

1,5=0

where o

, _ A=

I il71(2a)iti+1 -
After solving this equation the asymptotic behaviour of the solution at t - —oo
can be investigated in a same way as in the previous case. As the result we obtain
the asymptotic formula of Theorem 3.
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Pacnan HeKOTOpPBIX HEJOKATU30BAHHBIX pelIeHUil
ypaBHeHuA KopreBera—ne ®@pusa Ha COIUTOHBI

E. fI. Xpycnos, X. Ctedan

HsyuaeTcd acuMmmnoTwdeckoe TOBe/eHHEe HeIOKAAM30BAHHBIX pelleHU
ypaBHeHus KoprteBera—jme ®@pusa npu GoJblNX BpeMeHaX U 0Ka3bIBAeTCH,
YTO BTU pellleHus pacnafaioTcs B 6eCKOHEYHYIO MOCAeI0BaTedbHOCTh CO/IU-
TOHOB.
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Posnaa neAkuX HeJloKani3oBaHUX PO3B’A3KIB pPIBHAHHHA
KopreBera—me ®piza Ha coaiToHU

&. A. Xpycaos, X. Credan

BuByaeThcAa acMMNTOTHYHA MOBEJIHKA HeJOKa/li30BaHUX PO3B’IBKIB PiB-
ussaus Kopresera—pe @pisa 3a BeIUKUM 4acOM 1 TOBOAUTLCH, 1[0 I[1 pO3B’A3KHU
po3najjafoTheAl Y HeCKIHYeHHY MOCTIIOBHICTD COMITOHIB.
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