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The Beurling—Malliavin multiplier theorem is deduced from the first re-
sult stated in the introduction, on polynomials. Work is largely based on
de Branges’ description of the extremal annihilating measures correspond-
ing to certain spaces of bounded functions generated by weighted imaginary
exponentials.

To Lars Hedberg, for his sixtieth birthday.

Introduction

The following two results have been known since the 1960’s.

I.  There are numerical constants ng > 0 and k such that, for any polynomial

P(z) with

=71 <10

i log® | P(n)|
14 n?

— 00

one has, in the whole complex plane,
|P(Z)| S C’f/ekn|2|7

where C,, depends only on 7.

II. Let W(z) > 1 be a function defined on R, with either
a) log W (z) uniformly Lip 1 there,
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or
b) W(z) = |F(z)| for some entire function I'(z) of exponential type,
and suppose that

/de<m‘
1+ 22

Then there are entire functions ¢(z) Z 0 of arbitrarily small exponential type
making p(z)W (z) bounded on R.

The second result is the celebrated theorem on the multiplier due to Beurling
and Malliavin, and we propose here to deduce it from the first one. That has
indeed already been done in an earlier paper published in this journal ([1]), but
I am no longer satisfied with the procedure followed there. Essential use was
made in that paper of a lemma on Poisson integrals going back to Beurling, and
we know now (see [2]) that Il can be obtained directly from the lemma, without
appeal to 1. Here the passage from I to Il will be effected without resorting to
Beurling’s lemma; in place of the latter a result of de Branges will play a key role.
(Note: Although [1] was published after [2], the work described in it was done
earlier, at the end of 1991. A badly corrupted version of [1] appeared in 1994, in
a different journal.)

1. Result I is readily extended to entire functions of small exponential type.

Theorem 1 Let f(z) be entire, of exponential type o, and such that

< log™T |f(n

11 n2 =17 < o0.

— 00

Provided that o and 1 are both less than a certain numerical constant co > 0 we
have, for all z,

|f(2)] < C pertetmlzl,

Here, C, ,, depends only on o and 1, and k is a numerical constant.

Since a proof of this is given in § 1 of [1], we merely indicate its main steps.
One first considers even entire functions f(z) of exponential type « given in

f(Z)=H<1—;—i),

k

the form
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where the A; are real and > 0. Taking the polynomials

A<N

one shows by calculation that

o~ log® [Py (n)] _ <= log™ | f(n)]

_ij T S _Zo:o Gz FCa+oll)
with a numerical constant C', and o(1) term tending to 0 as N — co. When
n+ Ca < ng, the constant figuring in I, that result holds for the Py(z) with
N large, and yields our theorem for functions f(z) of the above form. Passage
from these to general entire functions f(z) having the properties in question is
standard; see [1].

Corollary 1 Let W(n) > 1 be a function defined on Z with W(n) — oo for
n — too and
1
3 og W (n) <o
14 n?

— 00

Then, for an h > 0 independent of W, finite linear combinations of the functions
e /W (n), —h < X < h, are not uniformly dense in Co(Z).

For the proof, see p. 219 and then p. 218 of [1]. It is not explicitly stated
there that h can be taken independent of W, but that clearly follows from the
arguments given — any value < ¢g, the constant in Theorem 1, will work.

Corollary 2 Ifg(z), with |g(z)| > 1 on R, is entire and of exponential type < cq,
the constant appearing in Theorem 1, and if

o0

log |g(2)]
there is an entire function ¢(z) Z 0 of exponential type < 7 with ¢(z)g(z) bounded
on R.

A somewhat elaborate proof of this corollary was given in §2 of [1]; here is a
shorter argument.
From (1) it follows that

= log |g(n)]
_z():o 14+ n2 <0
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(see p. 217 of [1] or [3], Ch.VIII, §B.11); we can thus apply Corollary 1 with
W(n) = (1 + n?)|g(n)|, and from its conclusion we arrive, by duality, at the

existence of a complex sequence {v,}, not identically zero, with Z |7n| < oo and

00 ei/\n
n———— — for — h <A <h,
_Z:.Ofy Wn) 0 for <AL
i.e.,
00 eint \
—1)"y,—— =0, —h <[t <.
S gy =0 Tkl S

For h we may take any number < ¢, as mentioned above.
Denote by ®(t) the last left-hand sum and put

1 [
o(z) = — P (t)dt;
o) = 5 [ e

-

then ¢(z) is #Z 0, entire, of exponential type < m — h (sic!), and we have

o(n) = (~1)" %n n €.

The product ¢(n)|g(n)| = (=1)"y,/(1 4+ n?) is in particular bounded on Z.
Suppose now that ¢g(z) has exponential type < h; then the product ¢(z)g(z)

will be entire and of exponential type < m. Being bounded on Z, that product

must then be bounded on R according to a well known theorem of Miss Cartwright

([4], p. 180).

2. During the remainder of this paper we shall frequently have to deal with
entire functions of (sometimes unrestricted) exponential type enjoying the other
properties required of g(z) in Corollary 2 to Theorem 1. Quite generally, the
entire functions f(z) of exponential type with

7 log* | f(2)]

T 22 dx < oo

— 00
are said to belong to the Cartwright class, and that term will be used from now on.

Various well known results about such functions will be invoked where needed,
often without specific reference. Most of them are established in Chapters III

and VI of [3].
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Lemma If g(2), of Cartwright class and with |g(z)| > 1 on R, is of sufficiently
small exponential type, there is an entire function F(z), also of Cartwright class
but having only simple zeros, all in Z, such that

lg(z)| < |F(z+1)| forzeR.

Proof There is no loss of generality in supposing that |g(z)| — oo for 2 — Fo0;
otherwise replace g(z) by (z+1)g(z). That being the case, we see as in the proof
of Corollary 2 to Theorem 1 that Corollary 1 of that result is applicable to
W (n) = |g(n)|. Finite linear combinations of the e**"/|g(n)|, —h < X\ < h, are
therefore not uniformly dense in Co(Z), where h is a certain number > 0. This
puts a theorem of de Branges at our disposal.

That result (see Ch. VI, §F.2 in [3]) furnishes an entire function F(z) of
exponential type h and Cartwright class whose zeros, all simple, lie in Z and for

which

vEA
A denoting the set of those zeros.
More information about the growth of F'(z) is obtained in the course of prov-
ing de Branges’ theorem. Then it is seen that
tAz tAv

€ €
=N —° for —h<A<h,
F(2) %F’(V)(Z—V) -

and from this and the preceding relation it readily follows (on taking A = £h)
that ' .
|F(7“€“9)| > ehr|smz9| (2)

for large enough r (depending on ¥), as long as ¥ # 0, 7 (mod 27).
Assume now that ¢(z) is of exponential type < h. Then it is claimed that

9() = PR Y )

alwiE-v)

To see this, observe that the right side represents an entire function of exponential
type — the series converges absolutely and uniformly when dist(z, Z) > 1/4. That
makes the difference of the two sides — call it f(z) — also entire and of exponential
type. For v € A we have f(v) = 0, so the ratio f(z)/F(z) is entire, and indeed
of exponential type by a theorem of Lindel6f ([3], Ch. III, § B).

Look at the relation

fe) _ o9le) 9(v)
F(z)  F(2) %F’(V)(Z—V)'
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Since g(z) is of exponential type < h, we see from (2) that the first term on the
right goes to zero as z — oo along each of the 4 rays arg z = :i:%jzts7 4 > 0 being

sufficiently small. The second term on the right clearly has the same behaviour
(dominated convergence). So f(z)/F(z) is bounded on each of those 4 rays,
hence (by Phragmén-Lindelof) bounded in the complex plane and thus finally
identically zero. This proves (3).

From (3) we get, for z € R,

g(v)
'(v)

lg(z+14)| < [Flz+i)])
vEA

Y

with the sum on the right equal, without loss of generality, to 1. Here, since ¢(z)
is of Cartwright class, we may just as well take it to have all its zeros in the lower
half plane, and then (after multiplication of ¢g(z) by an imaginary exponential,
should that be necessary) |g(z + 7y)| will be an increasing function of y fory > 0
(see [4], p. 226). Thus,

lg(z)] < lg(z + )| < |F(z +1)| forz eR,
and we are done.

Theorem 2 Corresponding to any entire function g(z) of Cartwright class and
sufficiently small exponential type with |g(z)| > 1 on R there is a function
w(z) > 0 defined there such that

lw(z) —w(@')| < Mlz—2'|, =, 2’ €R,

and

[ w(@)
/1+$2dx < 00.

Here, M is a numerical constant.

Remark The result holds as long as g(z) is of exponential type < ¢q, the
constant figuring in Theorem 1.

Proof of theorem (cf. [1],§4). According to the lemma, if the exponential type
of g(z) is small enough, an entire function F'(z) with the properties enumerated
there is available. For the entire function

G(z) = Fz+ 1), (4)
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like F'(z), of Cartwright class, we have in particular
1< lg()| < G()], z€R,

and it suffices to exhibit a majorant w(z) of log |G (z)| with the required proper-
ties.

Start by fixing a number M > 0 (in a way to be described presently), and
form the open subset

Op ={z €R; log|G(€)| - log|G(x)| > M(€ — z) for some £ > 2} (5)

of R. (4 is a countable union of certain disjoint open intervals, and it is first
necessary to verify that none of those can be unbounded. Since that point was
dispatched somewhat hastily in [1] (and in [2] !), we treat it more carefully here.

Take any component (a, b) of O, —c0o < a < b < o0. For z € (a, b) we
denote by &, the supremum of the £ corresponding to it as in the right side
of (5). Then & > b. Indeed, if that were not so, & would belong to (a, b),
and there would be a & > &, with log|G(&')| — log |G (&) > M(& — &:). At
the same time (&, being, in the present circumstances, finite), we would have
log |G(€,)] — log|G(@)| > M(E, — 2), making log |G(€)| — log|G(z)] > M(¢' — 2)
with & > &, contradicting the specification of &,.

Knowing that &, > b for 2 € (a, b), it is easy to see that b cannot be infinite.
Otherwise, for fixed z € (a, b), we would have a sequence of {’s tending to oo
for which the relations on the right side of (5) hold. With these £’s, we would
eventually have

log |G(§)] > ME/2,

contradicting the known fact that functions of Cartwright class have zero expo-
nential growth along the real axis ([3], Ch. VI, §E.2; [4], p. 97).

Finally, @ cannot be —oo. If that were so, we would have a sequence z,, - —o0
and (since &, > b) corresponding &, > b — 1 with

log |G/(&n)[ — log |G (@n)| > M (& — 2n).

Since log |G(€,,)| is either bounded above (if the £, are) or, at worst, o(§,,) (should
the &, be unbounded — see above), this would make log |G (z,)| — —oo, contra-
dicting the relation |G(z)| > 1.

We can thus write

Oy = [J(ax, by)

k

with the (ag, by) of finite length and disjoint; these intervals are obtained by the
familiar construction of F. Riesz shown in figure 1.
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log | G(x)|

figure 1
If z € O4 with, say, ar < z < bg, we have
log |Gi(z)| < log |G/ (bg)| — M (bx — x); (6)

for = a; and = = by, this relation goes over to an equality. On the other hand,
when z ¢ Oy,
log |G ()| ~ log | G(2)| < M (s’ — 2)

for all 2’ > z, according to (5).

Put
log |G(z)| forz & Oy,

wy(z) =
log |G(bk)| — M(bk — .r) if ap <z < by.

Then w4 () is continuous, and

log |G(z)] <wy(z) forzeR

by (6).

But it is also claimed that
wi(2) < 3log|G(a)], @ €R,

provided that our numerical constant M is chosen suitably. Since that is obvious
for 2 ¢ Oy, we need only look at the z belonging to the intervals (ag, bg).
For that purpose, we consider the Hadamard factorization of F'(z) (related to

G(z) by (4)), which, here, takes the form

F(z) = ce® 2! 11 (1 — i) el (7)
vEA v
v#0

with [ = 0 or 1 and A C Z. Moreover, a is real in the present circumstances.
That follows from (2) and the fact that /'(z) is of exponential type h. These two
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properties, taken together, and the particular form of (7) imply that |e?¥| has
the same behaviour for y — +o00 as for y — —oo, which can only happen when
a € R. That being the case, logarithmic differentiation of (7) yields

PoalFati) _ - v 5
dy iz —v)i+ty
The functions |F(z + iy)| and |G(z + ty)| = |F(z + ity + )| are, in particular,
increasing with y when y > 0.
Let, now, z lie in one of the intervals (ag, bx); the idea is to move from by to
x along the path shown in figure 2.

————=——=b,+ iy

T |
I I
| |
| |
V ]
| |
| |
L |
ék X =——Y — b k
figure 2
Take
y= bk - Z,
and observe first of all that
|G (bx + iy)| > [G(br)] 9)

(see above). Again, log|G(z)| > log|G(Rez)| > 0 for Imz > 0, so, log|G(z)|

being harmonic there, we get, by Harnack,
log |Gi(z + iy)| = log |G (bx — y +1y)| = élog |G (b + iy)].-
Referring to (9), we see that
log |Gz + )| > 3 log [G(by) (10)
From (4) and (8) we now have, for n > 0,

dlog|G(z +in)| _ T n+1
on (z—v)?+(n+1)*

veA
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with the sum on the right

o0

n+1
LGt

because A C Z. The last sum is evidently bounded by a numerical constant C'
when 1 > 0 (comparison with [*°_((n+ 1)/((z — )* 4+ (74 1)?))dt), so finally

dlog |G(z + in)|
on

Thence, log |G(z)| > log |G(z + iy)| — Cy, so by (10),

<C, n>0. (11)

log|G()| > = (log |G (bw)] ~ 3C (b — 2)).

Take now M = 3C'". According to the above definition of w4 (z), that makes the

right side of the last relation equal to §w+(m), since ar < x < by. This shows

that
w4 (2) < 3log|G(2)|

for x € O4, and hence for all z € R, as we had claimed. An immediate conse-

*aale), [ oBIGG)
———dz < ———d: 12
/_Ool+$2:v_3_oo 1 a2 z < 00, (12)

G(z) being of Cartwright class.

quence is that

Almost half of what is needed in the proof of our theorem is now in our
possession. Fortunately, a good part of what remains follows from the work
already done, and we do not need to go into much detail.

A repetition of the construction made to obtain wy (z) with, however, —z
playing the role of z, yields a second majorant w_(z) of log|G(z)|. Here, the
procedure is to form the open subset

O_ ={z eR; log|G)|—log|G(z)] > M(z — &) for some { < z}

of R, check (by an argument like one already made) that O_ is the union of
certain disjoint bounded intervals (g, Ox), and then put

log|G(z), = ¢O-,
w_(z)=
log |G(ag)| — M(z —ay) if ar < z < .

The function w_(z) has properties analogous (and symmetric) to those of
w4 (z); some of them are apparent from figure 3. They can be verified most

Matematicheskaya fizika, analiz, geometriya , 1998, v. 5, No. 1/2 77



Paul Koosis

rapidly by simply invoking the results already obtained for w, (z) after replacing

G/ (z) by the entire function G(—%). In particular, we have

[ w_(2) 7 log |G(x)]
dr < —
/1_}_:6295_3/ 1+ 22 T < 00,

provided that M is taken equal to 3C.

It now remains only to put
w(z) = max(wy (¢), w_(2)).

This function is continuous, and clearly a majorant of log|G(z)| > log|g(z)|.
Since w(z) < wy(z) + w_(z), we have, by the last inequality and (12),

[ w(@)
/ 1+$2dm < 0.

Finally,
lw(z") —w(z)] < M(z' —z) for z, 2’ €R.

This property, which seems evident when one imagines the superposition of
figures 1 and 3, is carefully verified in §4 of [1], but the procedure adopted there
cannot be used in the circumstances of Theorem 3, to be given below. That is
why we include here the following argument which is always valid.

We have, then, to prove that

~M(z' —2) <w(@) —w(@) < M(z'—z) forz' >z,
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and consider first the right-hand inequality. That relation is implied by a local
version of it asserting the existence, for each z € R, of a d, > 0 such that

w(z')—w(@) < M(z' —z) forz<a' <z+6,,

and we proceed to verify this.

Given z € R we have two possibilities: w(z) > log|G(z)| or w(z) = log |G(z)|.

If the firstis realized, one of three things can happen: either wy (z) > w_(z) or
w_(z) > wy(z)or, finally, wi(z) = w_(z) > log|G(z)|. In the first case, wi () >
w_ (z') for the 2’ belonging to a certain interval (z — é,, = + d;), 6, > 0. Then
w(z') = wy(z') for such 2’, making w(z') —w(z) = M(2' —z) forz < 2’ < 2 +46,.
In the second case, w_(z') > wy (') for z — 4, < 2’ < z + &, where &, > 0, and
we find that w(z') —w(z) = —M(2' — 2), < 2’ < 2+ 65. In the third case,
there is a 6, > 0 with w(z') = w_(2') for z — ¢, < 2’ < z and w(z') = w4 (a’) for
z <2’ < x+6,;; here we again have w(z') —w(z) = M (2’ —z) forz < 2’ < 2496,.
The local relation in question thus holds when w(z) > log|G(z)].

There is still the possibility that w(z) = log|G(z)|. When it is realized,
z & O UO_, soin particular,

log |G(€)] — log |Gi(2)] < M(§ —a) for & > a, (13)

by (5). If 2’ > 2 and w(2’) = log |G (z')], this already implies our desired relation
(without the local restriction on z').

Suppose, then, that 2’ > z and w(z’) > log|G(2’)]. In that event we have
two cases: w(z') = wy(z’) or w(z') = w_(z'). In the first of these, 2’ € O4 and
hence 2’ belongs to one of the components (a, by) of that set. Being in R~ Oy,
the point z < 2’ cannot lie in that component, so < a; and by (13),

log |G/(ax)| — log |G (2)| < M (ay - ).

At the same time, wy(2') — log |G(ag)| = M (2" — ai), making w(z’) — w(z) =
wi(2") —log|G(z)| < M(z" — z). In the second case, 2’ lies in one of the compo-
nents (ag, k) of O_, and < ay. Thence, by (13),

log |G/(ax)| — log |Gi(2)] < M{(ay, ),

whilst w_(2') — log|G(ag)| = —M (2’ — a), so that w(z') —w(z) =
w_(z') — log|G(2)| < M(z' — z). The desired relation thus holds (again with
d; = 00) in both cases.

We still have to establish the inequality w(z') —w(z) > —M (2’ —z) for 2’ > z,
or, what comes to the same thing, that

w(@') —w(z) < M(z' —z) fora’ < =.
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This is done by repeating the above reasoning after making the change of variable
t — —z (which causes O4 and O_ to exchange roles).

Verification of the property |w(2') —w(z)| < M|z"— z| is now completed. Our
theorem is thus proved.

Remarks The idea of basing the work in this § on de Branges’ theorem came
to me after | had read a recent paper by M. Sodin ([5]). The argument suggested
by figure 2 has been used by H. Pedersen in his thesis ([6]).

3. We need two more results like Theorem 2. The first is rather straightforward.

Theorem 3 Let w(z) > 0, defined on R, have the properties that

/ l'wf;?dx < oo (14)

and that
|w(z) — w(z')| < Lz — 2’| for z, 2’ € R, (15)

where L is a constant > 0. Corresponding to any [, 0 < | < L, there is then a
function w(z) > w(z) defined on R with

w(e) —w(@)| < llz—2'], =, o €R,

[ w(@)
/ 1+$2dm < 00.

Proof We are going to make the construction used to prove Theorem 2, with
w(z) now playing the role of log |G'(z)], and begin by forming a function w4 (z) >
w(z) corresponding to the slope [ < L instead of M.

For that purpose, we take the set

and

Oy ={z€eR; w() —w(z)>I(§—z) for some & > z}.

As usual, O is a disjoint union of certain intervals (ag, bx), and it is first necessary
to ascertain that those are all of finite length. That will follow just as in the proof
of Theorem 2 provided that we know w(z) to be o(z) for z — oo.

Suppose that this were false and that we had w(zg) > dz¢ for some arbitrarily

large values of zg, where 0 < § < 2L. Then, by (15), we would have w(zq) > 50
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§ .
for [1— 2L ) o <z < zg, making

That, however, is incompatible with (14) for values of z¢ tending to co.
We are thus assured that the components (ax,b;) of Oy are bounded, and
can put
wi(z) =w(by) — l(by — z) for ar < z < bg. (16)

Outside of Oy, w4 (z) is taken equal to w(z).
Looking, now, at an interval (ag, by) with by large, we proceed to estimate

by

wy (z)
/ z2 du
ak
in terms of
1 w(a)
w(z
2 dx,
aj
where |
ay = by — 7 (w(br) — wlar)). (17)

A glance at figure 1 shows (taking M = [) that w(by) — w(ax) = l(bx — ax), so,
since 0 < [ < L, we have
ap < aﬁg < bk. (18)

For ap < < by, w4(z) is given by (16) whereas, from (15),
w(z) > w(by) — L(bg — z). (19)

We can thus compare the values assumed by w4 (z) on (ax, bi) with those taken
by w(z) on the smaller interval (a}, by); the manner of doing that can be seen in
figure 4.

Matematicheskaya fizika, analiz, geometriya , 1998, v. 5, No. 1/2 81



Paul Koosis

X

figure 4

It is convenient to introduce a new variable s ranging from 0 to w(by) —w(ay).
Then, putting

z(s) = by — ;,
§s) = br— 7

we see from (16) and (19) that

w(E(s) 2 wb) — s = wi(2(s)), 0< s < wlb) - wlap),

whence
by, w(bg)—w(ag) w(bg)—w(ag)
al), 1 oro(s), 1 we)
Z 2 T 0/ GO / Gz (20

For the values of s figuring in these integrals, we have, surely,
§(s) b= (w(by)/L)
z(s)  br— (w(bi)/1)

Here, since we are taking b; to be large, we can, as seen earlier, ensure that
w(by) < 6by, with 0 < & <. That will make

§s) _ 1= (/1)
o) = T- 07D

n (20), and the right-hand member of that relation will then be

(1) (=) [ e
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by (17); this is the estimate spoken of above. Referring to (18) we get, for the
(ak, b) with by large,

[0 < (1) (122) [ e

ag ag

bk bk

Comparison of (wy (2)/2%)dz with / (w(z)/2*)dz for the intervals
ag Qg

(ak, by) with by very negative proceeds according to the same plan and is even

easier. Finally, wi(z) is bounded on the intervals (ax,bz) lying in any finite
portion of R, and w4 (z) = w(z) on R ~ O4. Convergence of

o0

/ Wy (Qx)dr

— 00

thus follows from (14).

As in the proof of Theorem 2, our next step is to construct a majorant w_(z)
of w(z) with properties symmetric to those of w;(z), using, however, chords of
slope — [ instead of — M (see figure 3). A repetition of the arguments just made

shows then that -
/ w_(f)dm < oo.
z

— 00

We now have all we need. It suffices (as for Theorem 2) to take
w(@) = max(ws (2), w_(2)),
and the present proof is complete.
Theorem 4 Let w(z) > 0, defined on R, have the properties

w(e) —w(@)| < llz—2'|, =, o €R,

[ w(@)
/ 1+m2da@ < 0.

Then there is an entire function F'(z) of Cartwright class and exponential type
< 20 with

|F(z)] > e“®) forz e R.
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This result is established by methods from the theory of weighted approximation
going back to Akhiezer. The proof has been published at least 3 times: first in
[7], then in [3] (Ch. X, §C.1), and more recently in [1].

4. Let us now put together Theorems 2, 3 and 4.

The first of these can be adapted to entire functions of Cartwright class and
unrestricted exponential type. Fiz, indeed, an h > 0 (any value < the ¢
of Theorem 1 will do) such that Theorem 2 holds, as it stands, for the entire
functions g(z) of Cartwright class and exponential type < h. Then, by a simple
change of scale we deduce from that result the following:

If f(z), entire and of Cartwright class, is of exponential type A, with

|f(z)| <1 onR, there is a function w(z) > 0 defined thereon such that

) > |f(z)l, z€R,

()~ w(&)| < Mla—'|, @, o €R,
and -
w(z)

Here, M is the constant appearing in Theorem 2.

This observation and Theorem 3 lead without further ado to

Theorem 5 Given the entire function f(z) of Cartwright class with |f(z)| > 1
on R we have, for any ! > 0, a function w(z) > 0 on R with

) > |f(2)], z€R,

w(e) —w(@)| < llz—2'|, =, o €R,

[ )

and

Thence, by Theorem 4:

Theorem 6 If f(z) is as in Theorem 5 there are entire functions I'(z) of Cart-
wright class and arbitrarily small exponential type with |F(z)| > |f(z)| on R.
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A result on polynomials and its relation to another...

5. Returning to the two results stated in the introduction, we proceed to deduce
II from L.

In the first place, [ implies 1Ib). Given an entire function F'(z) of Cartwright
class with |F'(z)| > 1 on R, we take any large constant K and apply Theorem 6
to f(z) = F(Kz) so as to get g(z), of Cartwright class and exponential type < ¢g
(the constant figuring in Theorem 1), with

lg(z)] > |F(Kz)|, z€R.

By Corollary 2 to Theorem 1 there is then an entire function ¢(z) # 0 of
exponential type < m with ¢(2)g(z) bounded on R. The entire function ¥ (z) =
¢(z/K) is now # 0 and of exponential type < m/K, and #(z)F(z) is bounded
on R.

I1a) is deduced from IIb) by simple appeal to Theorem 4.

Discussion

We have thus derived II from I. H. Pedersen has recently shown, in [6], how
to get [, not from II but from a more specific intermediate result, obtained in the
course of one of the proofs of II and frequently looked on as a special version of
the latter. From this point of view, [ and II seem to be roughly equivalent.

Pedersen’s procedure has the advantage of yielding not only I, but a consid-
erable refinement of Theorem 1. The argument referred to in §1 can only work
for very small values of the exponential type a of f(z), but Pedersen shows that
Theorem 1 holds for e < 0.44 (and, by a modification of his method, one can see
that this is still the case for values < 2 of a). It would be very good if this could
be extended to all values < m of @ (no upper limit > 7 can work), but it is not
clear at present how that might be done.
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OpuH pe3yabTaT O MOJMHOMAaX U €ro CBA3b
C OPYTUM, OTHOCAIUMCAH K HeJbIiM (PYHKIUAM
HKCIMNOHEHIINAJLHOI0 THIAa

ITon Kycuc

Teopema Bepaunra-MansiBeHa o MyJIbTHININKATOPAaX BEIBOAUTCA U3 Tep-
BOTO pe3yabTaTa 0 MoJduHOMaXx, copMyaupoBaHHOTO BO BBefennu. PaGoTa B
3HAYUTENbHOI CTelmeHW OCHOBAaHA Ha ONMHUCAHWU [e BpaH#a sKCTpeMalbHBIX
AHHYJAUPYIOMUX Mep, KOTOphble COOTBETCTBYIOT HEKOTOPBIM MPOCTpPaHCTBaM
OrpaHUYeHHBIX (YHRIUI, TOPOM#JeHHBIX MHHUMBIMH DKCIOHEHTaMU B MpO-
CTPAHCTBAX C BECOM.

OnuH pe3yibTaT MpPO MOJIHOMHU Ta Oro 3B’A30K
3 IHIUM, AKUI cTOCyeThcA MAUX GyHKIH
3KCMNOHEHUialbHOTO THUILY

ITon Kycic

Teopema Bepainra—MajasiBena npo MyJabTHIIIKATOPH BUBOOUTKLCS 3 Iep-
IOT0 pe3yabTaTy PO MOJIHOMHU, AKHUil chopMyanoBaHo y BeTymi. PoGora B
3HAYHIH Mipi rpYHTYeThCA Ha onucl Ae Bpanma excTpeMalbHUX aHYIIOIOUNX
Mip, IO BIIMOBIIAIOTH AEAKUM TPOCTOpaM oOMeeHUX QYHRIIH, ARl TOpo/-
#eHl YABHUMU €KCIOHEHTAMHU Y IPOCTOPax 3 Barolo.
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