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Some properties of projections of sets with non-vanishing Hausdorff k-
measure onto k-planes are studied. It is stated that there is a wide class of
k-planes in R™ such that a projection of a closed k-dimensional set onto any
plane of that class has dimension equal to k.

1. Introduction and statement of the main results

It is well-known that there is a subset X in R? of positive Hausdorff 1-measure
such that an orthogonal projection of X onto any liner is a set of zero measure [1].
In this paper we consider projections of k-dimensional subsets of R”™ onto
k-dimensional planes (here a k-dimensional set is a set whose topological dimen-
sion is equal to £ [2]). It must be pointed out that any k-dimensional set is a set
of positive Hausdorff k-measure. The inverse statement is not true.

Here we show that for any k-dimensional F,-subset X of R” the set of
k-dimensional projections of X onto k-dimensional planes is large (Theorem 1.2).
Moreover, in the case K = 1,n — 1 the complement to this set is a nowhere dense
set of zero measure in the Grassmannian manifold G} (Theorem 1.3). In the last
two sections we consider applications to studying of a class of maps of R” into
R™ (Section 5) and Cartesian products of Baire spaces (Section 6).

Let X C R", [, and s be k-dimensional and (n — k)-dimensional planes,
respectively. Denote by pj(X) the projection of the set X onto the plane [ along
the plane s. The projection pj(X) is well-defined if and only if the planes / and
s are transverse.

Theorem 1.1. Let dim X > k. Then in any coordinate system in R" there
are k-dimensional and (n — k)-dimensional coordinate planes | and s such that
the projection pj(X) is a set of second category in .
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Theorem 1.1 implies the following

Theorem 1.2. Let X be a k-dimensional F,-subset of R". Then in any coor-
dinate system in R"™ there are k-dimensional and (n — k)-dimensional coordinate
planes | and s such that

dimpj(X) =k .

It is easy to see that if X is an Fj,-subset of R", then the projections p;j(X)
is an F,-set. Any F,-subset of second category has a non-empty interior, and
Theorem 1.2 is a consequence of Theorem 1.1.

For k-dimensional sets which are not Fj,-subsets of R” Theorem 1.2 fails. In
Section 3, we construct an (n — 1)-dimensional subset X of R"™ such that for
any k > [5] any projection of X onto k-dimensional coordinate plane of a fixed
coordinate system in R” along an (n — k)-dimensional coordinate plane has an
empty interior (i.e., dimension of this projection is less than k).

Let X C R". Denote by V*(X) the set of all / € G} such that for any
s € G7_, the projection pj(X) is a set of first category in [. It is easy to see that
if X is an F,-subset of R", then [ € V' (X) if and only if for any s € G} we have
dimp; (X)) < k.

Theorem 1.3. Let dim X > k and k = 1,n — 1. Then V;*(X) is a nowhere
dense set of zero measure.

2. Proof of Theorem 1.1
2.1. Notation. Let

I={iy,....,ix} C{1,...,n}
and
a=(ay,..,a;) € RF.

Denote by I;(a) the (n — k)-dimensional plane in R" defined by the following
conditions:
T = A1, .., T, = A
Let
{1, ooy gkt = {1, ...,n}\ 1.

Consider the projection
pr:R* — R*F,

pl(fﬁ, ey xn) = (lev sy xjn—k) .
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Then
pr:li(a) — R"F

is a homeomorphism.

2.2. Essential dense sets. In this subsection we consider a relation between
Baire category and a class of everywhere dense subsets of R".

Definition 2.1. A set A C R" is called essential dense if it satisfies one of
the following conditions:

(i) n =1 and the set A is everywhere dense;
(i1) n > 1 and there exists everywhere dense subset C'(A) of R and essential
dense subset B(A) of R™™! such that

pi(li(z) N A) = B(A)
forany x € C(A) and any i =1, ..., n.

Lemma 2.1. Let X be a set of first category in R"”. Then there exists an
essential dense subset A of R such that AN X = ().

We exploit the following lemma to prove Lemma 2.1.

Lemma 2.2. Let X be a subset of R" with an empty interior. Then there
exists an everywhere dense subset A of R" such that X N A = (.

Proof of Lemma 2.2. Let B bean everywhere dense subset of R”
and

Bi=BNX,By=B\B; ,B £0.
It is easy to see that for any € X there exists a sequence {y;(z)}{2, such that
lim y;(z) =2 and y(z) ¢ X, Vi=1,2,....
11— 00
Then the set

U {yi(z) 2y U By

r€B,

is desired.

Proof of Lemma 2.1. Inthecasen =1 Lemma 2.11is a consequence
of Lemma 2.2.
Let n > 1 and

E= U{ z € R|/[;(z)N X is a set of second category in [;(z) } .
=1
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The Kuratovsky—Ulam theorem [3] shows that F is a set of first category in R.
Therefore it has an empty interior and Lemma 2.2 implies the existence of a
denumerable everywhere dense subset C' of R such that C' N E = (). Consider

X, 1= LnJ U pz(lz(x) ﬁ)() .

i=1zeC

It is a set of first category in R”~1. The inductive hypothesis implies the existence
of an essential dense subset B of R” such that BN X,,_y = . Let B;(z) be a
subset of /;(z) such that B = p;(B;(z)). Then the set

A= O U Bi(z)

i=1zeC
is as desired.
2.3. (k,n)-sets. Let X C R" and

Xp= U pmX).
[I|=n—k

Let A ¢ RF and

viA) = U U ).

|I|:k z€A

Definition 2.2. A setY is called a (k,n)-set if there exists an essential dense

subset A of R® such that Y = Y(A).

Lemma 2.3. Let X be a subset of R™ such that Xy, is a set of first category.
Then there exists a (k,n)-set Y such that X NY = {.

Proof of Lemma 2.3. Lemma 2.1 guarantees the existence of an
essential dense subset A of R¥ such that AN X = §. Then X N Y (A) = §.
Theorem 1.1 is a consequence of Lemma 2.3 and the following

Lemma 2.4. Let X C R" and dim X > k. Then X intersects any (k, n)-set.

Proof of Lemma 24. We show that the dimension of the comple-
ment to any (k,n)-set in R” is less than k. In the case n =1 it is trivial.
Let n > 1 and Y be a (k,n)-set. Then there exists an essential dense subset

A of R¥*! such that Y = Y1 (A). Let X = R"\ Y and C(A) be the subset of
R from Definition 2.1. Then

pili(z)NY) =Y/ (B(A), Vi=1,..,n, VzeC(A),
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where B(A) is the essential subset of R* from Definition 2.1. Therefore
pilli(z)Nn X)=R" '\ Y/ (B(A)), Vi=1,...,n, Vz € C(A).

It is easy to see that Y;* "' (B(A)) is a (k,n — 1)-set and the inductive hypothesis
implies that

diml;(z)Nn X <k-1, Vi=1,..,n, Vz€B. (2.1)

Let

and A be an n-dimensional cube of R” such that any vertex of A is a point of
the set C'(A)". Equation (2.1) shows that

dimdANX <k -1.

The set C'(A)" is everywhere dense, and dim X < k [2].

3. Example

Now we construct an (n — 1)-dimensional subset X of R” such that for any
k> [%] and any I C {1,...,n}, [I| = n — k, we have

dimpr(X) < k. (3.1)

Let m = [5]+1. Forany I C {1,...,n} such that [/| = m consider denumerable
everywhere dense subsets {A,{}?;L ; of R such that A/ n A}I =0,if I #.J or
i . Let

Ar= Al x .. x AL

and

Y = U U li(a) .

|[I|=m a€Ar

The set Y is the denumerable union of non-intersecting (n — m)-dimensional
planes and R*"\Y =n—1 [4]. Let X = R™\ Y. Then equation (3.1) is satisfied
for kK = m. An immediate verification shows that it is satisfied for any k& > m.
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4. Proof of Theorem 1.3 and irregular subsets
of the Grassmannian manifolds

In this section we consider a class of subsets in the Grassmannian manifold
G7%. We exploit properties of these sets to prove Theorem 1.3.

4.1. Definition and elementary properties of irregular sets. Let
L={l,.., lcg}
be a collection of k-dimensional planes, where

n!

kl(n —k)!~

cp =

Definition 4.1. The collection L is called regular if there exists a coordinate
system in R”™ such that any l; (i=1,...,¢c}) is a coordinate plane of this system.

It must be pointed out that any coordinate system in R"™ has ¢} distinct
k-dimensional planes.

Definition 4.2. A set V. C G7 is called irregular if for any 1 € G7, ...,
len € G} the collection {l1,... ,ch} is not reqular.

Definition 4.3. An irregular set V. C G7 is called mazimal if for any irregular

set W such that V. C W one has V = W.

It is not difficult to see that for any irregular set V there exists maximal
irregular set W such that V. C W. In what follows we exploit the following
simple

Lemma 4.1. An irregular set V. C GY is mazimal if and only if for any
l € GE\V there exists l; € V..., lcg—l € V such that the collection

{ly ooy lepony 1}
is reqular.

Let ¢} : G} — G7_, be the canonical homeomorphism; i.e., ¢} (l) = I+
(where [t is the orthogonal complement to [). Then we have the following

Lemma 4.2. The canonical homeomorphism ¢} maps any irreqular subset V
of G into an irreqular subset of G._,.. Moreover, if V is a mazrimal irreqular
set, then ¢} (V') is mazimal.
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Proof. Animmediate verification shows that ¢} maps any regular collec-
tion of k-dimensional plane into a regular collection of (n — k)-dimensional plane.
Lemma 4.2 is a consequence of this statement.

4.2. Irregular subset of G} (k=1,n—1). Let s € G}, and

nioy— ) 11EGE|ICsY, m>Fk,
Gk(s)—{{mamscu, m<k.

Then G7(s) is irregular.

Proposition 4.1. Let V C G} be a mazimal irreqular set and k = 1,n — 1.
Then there is s € GT_,. such that V = G’ (s).

Proof. Consider the case k = 1. Let and [ € G7\V. Lemma 4.1 guarantees
the existence of [ € V,...,l,_1 € V such that the collection

{lyy oy by, 1}

is regular. Consider the (n — 1)-dimensional plane s generated by l1,...,{,—1. It
is not difficult to see that V' = G7(s). In the case k = n — 1 the statement is a
consequence of Lemma 4.2 and the following equation:

er(Gr(s) = Gh_i (1 (9)) -

Any irregular set is a subset of a maximal irregular set. Therefore we have
the following

Proposition 4.2. Any irregular subset of G} (k = 1,n — 1) is a nowhere
dense set of zero measure.

Theorem 1.1 shows us that if X C R"” and dim X > k, then the set V;*(X) is
irregular. Therefore Theorem 1.3 is a consequence of Proposition 4.2.

5. Hausdorff maps

5.1. Recall the following

Theorem 5.1. (A.Y. Dubovitsky [5]). Let f € CY(R",R™) and n > m.
Then dimension of a typical level set of the map f is not greater than n — m.

It must be pointed out that in the case n < m a typical level set is empty. In
this paper we prove an extension of Theorem 5.1. Let f: R®™ — R™ be a map.
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Definition 5.1. We say that
(7) a typical level set of the map f satisfies to a condition A, if

mes{ y| f~"(y) do not satisfyto A} =0;
(7%) a condition B is k-nontypical for level sets of the map f, if
mesg{y | f~(y) satisfies to B } = 0;
Here mes is Lebesgue measure and mesy, is the Hausdorfl' k-measure.

Definition 5.2. Let k and | be natural numbers such that k < n and [ < m.
Then the map f is called Hausdorff (k,l)-map if it maps any set of zero Hausdorff
k-measure into a set of zero Hausdorff l-measure.

Theorem 5.2. Let f: R" — R™ be a Hausdorff (k,l)-map. Then level sets
of the map f whose dimension is greater than n — k are [-nontypical.

Proof. LetY” bean (i,n)-set. Then Lemma 2.4 implies that

{y|dimf~'(y) > i} C f(Y7) . (5.1)

It is easy to see that Y, , is a denumerable union of (k£ — 1)-dimensional
planes; i.e., it is a set of zero Hausdorff k-measure. Therefore Theorem 5.2 is a
consequence of equation (5.1) if i =n —k + 1.

Now we consider examples of Hausdorff map.

(i) Any Lipschitzian map of R” into R™ is the Hausdorff (7,7)-map if ¢ <
min(n, m).

(i) Any Gelderian map of R™ into R™ is the Hausdorff (k,[/)-map if lo < £,
where o is Gelderian number of this map.
Theorem 5.2 could be used to find the dimension of typical level set of these
maps.

5.2. Now we take advantage of Lemma 2.4 to prove the following

Theorem 5.3. (A.Y. Dubovitsky [5, 6]). Let f € C*(R";R™) and i = n —
m—k+1. Then

mes{y | dimf~ (y) NX(f) > k} =0;

i.e., dimension of an intersection of a typical level set of the map f with X(f) is
not greater than k — 1.
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Proof. Lemma 2.4 shows that

{y| dim f(y) N 2(f) > k} C FOYP N E(S)) - (5.2)

We prove that
mesf(Yy NX(f)) =0. (5.3)
Theorem 5.3 is a consequence of equations (5.2) and (5.3). Let z € Y;"NX(f).
Then Y} is a denumerable union of (n — k)-dimensional planes, and there exists
an (n — k)-dimensional plane [ lying in Y} such that 2 € X(f|;). The map f|;
satisfies the conditions of the Sard theorem and

mesf(X(fl) =0.

The set Y is a denumerable union of (n — k)-dimensional planes. It implies (5.3).
It must be pointed out that in [6] Theorem 5.3 was represented as a conse-
quence of a more strong statement.

6. Residual subsets of Cartesian products of Baire spaces

6.1. We begin this section with the following

Definition 6.1. A topological space X is called Baire if any subset of X with
a non-empty interior is a set of second category.

It is not difficult to see that a space X is Baire if and only if any residual
subset of X (i.e., denumerable intersection of open everywhere dense subsets of
X)) is everywhere dense.

In this section we prove the following extension of Lemma 2.1.

Proposition 6.1. Let X = x:2, X; be a Cartesian product and any X; be a
Baire space with a denumerable base. Then for any residual subset Y of X there
exists everywhere dense subsets A; of X; such that x;2,A; CY.

Proposition 6.1 is true if one of the spaces X; is separable. Any space with
a denumerable base is separable. The inverse statement fails. Proposition 6.1
shows that a denumerable product of Baire spaces with a denumerable base is a
Baire space. 1t must be pointed out that this statement was proved in [7] for a
Cartesian product of any family of Baire spaces with denumerable base.

6.2. Proof of Proposition 6.1.

Lemma 6.1. Let X = X X X9, Xy be a space with a denumerable base and
Y a residual subset of X. Then

{z € Xy | theset (z x X3)NY is residual }

is residual.
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Lemma 6.2. Let X be a separable space and Z be a subset of X with an
empty interior. Then there exists a denumerable everywhere dense subset A of
X such that ANZ = (.

Lemma 6.1 is a consequence of the Ulam—Kuratovski theorem [3]. Lemma 6.2
was proved for the case X = R” (Lemma 2.2). In the general case the proof is
analogous.

Lemma 6.3. Let X = X X Xq, X1 be a separable Baire space and X9 a Baire
space with a denumerable base. Then for any residual subset Y of X there exists
subsets A; of X; (i =1,2) such that Ay X Ay C X, Ay is everywhere dense and
Ag 15 residual.

Lemma 6.3 is a consequence of Lemmas 6.1 and 6.2 (see the proof of Lemma
2.1). It is not difficult to see that Lemma 6.3 implies Proposition 6.1.

63. Remark to Proposition 6.1. Let X = x_,X; bea
Cartesian product of Baire spaces with a denumerable base. Then in Proposition
6.1 one of the sets Ay,..., A, is residual. If one of the sets Xy,...,X,, for
example X7, is separable and has no a denumerable base, then one of the sets
Ay, ..., A, is residual.

Consider the residual set

B=R’\{(z,y) eR*|z=y}.

Proposition 6.1 guarantees the existence of everywhere dense sets A; and A such
that Ay X Ay C B. It is easy to see that A; N Ay = (). Therefore one of these sets
is not residual.
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0 npoeknuax noamMHoskecTB R” ¢ HeHyneBoii k-mepoii
Xaycnopdga Ha k-MepHbIe MIOCKOCTH

M.A. [lankoB

NsyuatoTcsi cBoiicTBa MpOoeKIUI MHOMECTB ¢ HeHyJeBoil k-mepoit Xa-
yenoptda Ha k-mepnblie miaockoctu. [lowasano, uto B R™ ecTh gocTaTtouno
6oabIoil Kaacc k-MepHBIX MIOCKOCTell TaKUX, YTO MpOERIUA 3aMKHYTOr0
k-MepHOro MHO#eCTBa Ha 3THU MJIOCKOCTU UMeeT pa3MepHOCTh k.

IIpo npoekuii migMHOxkKUH R” 3 HeHy/1bOBOIO k-MipoiO
Xaycmop¢ga Ha k-MipHI JIOIMKUHU

M.O. [TankoB

JocaiimyoThe BAIACTUBOCTI MPOEKIIH MHOMHWH 3 HEHYILOBOIO k-Mipoio
Xaycaopda na k-mipai nnomunan. JTosegeno, mo B R” icHye ocuTh mupokuii
KJaac k-MIpHUX TJIOIMIUH TAKHWX, MO MPOEKI[if 3aMKHEHO! k-MipHOT MHOMUHU
Ha I TVIOMWHU Mae PO3MIPHICTD k.
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