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The structure of completions of Banach spaces with respect to total non-
norming subspaces of dual spaces is studied. The obtained results imply,
in particular, that such completions can be non-isomorphic to quotients of
the space. In a separable case any one of the completions is isomorphic to
a completion of [;.

Let X be a Banach space and X* be its dual space. A subspace M of X* is
said to be total if for every z € X,z # 0 there is an f € M such that f(z) # 0.
Let M be a total subspace of X*. Define the completion of X with respect to M
as a completion of X under the norm

lz|lar = sup{|f (=) - f € M,]|f|| <1}

We shall denote this completion by Xjs. Each element of X may be considered
as an element of X5s. We denote this canonical mapping of X to X by Chy.

Such completions are of interest in connections with the questions of regu-
larizability of superpositions of regularizable operators (see [2| and [8]) and for
Fréchet space theory (see [6]).

If the norm || - ||5s is equivalent to the initial norm of X then subspace M is
said to be norming. It is clear that if M is norming then Cjs is an isomorphism
onto. Much more interesting is the case when M is nonnorming. Banach spaces
which are isomorphic to X s for some Banach space X and some total nonnorming
subspace M C X* were characterized in [10]. The present paper is devoted to
the question: how closely related are the structures of the spaces X and X7
In particular, we study the properties of the canonical embedding Cys : X —
X and find conditions onto a pair (X, Z) of Banach spaces under which Z is
isomorphic to Xjs for some total nonnorming M C X*.
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Our sources for basic concepts and results of Banach space theory are 5] and
[11]. The unit ball of a Banach space X will be denoted by B(X).

Let X be a Banach space and let M be a subspace of its dual. Every element
of X may be considered as a functional on M. So there is a natural mapping of
X into M*. We shall denote this mapping by Hy,.

Proposition 1. Let X be a separable Banach space and M C X* be a total
subspace. Then there exists an infinite dimensional Banach space Y and a quo-
tient mapping Q : Xar — Y such that QCys is surjective.

If clHp (X)) has infinite codimension in M*, then the space Y may be chosen
to be non-quasi-reflexive.

Proof. By separability of X, there exists a normalized weak* null sequence
{yp}52, C M C (Xp)*. By Theorem III.1 of [4] (see also [5, p. 11]) there exists
a subsequence {y;(i)}éﬁl C {y;;}o2, such that both {y}}>2, and {C},y;}o2, are

w* basic. Let
Y = (Xan)/(({gngiy on) )

and @ : X»r — Y be the natural quotient mapping. It follows from the definition
of the w* basic sequence (see also Proposition 1.b.9 of [5]) that im(QCxs)* is weak*
closed and that (QCxs)* is an isomorphic embedding. Hence QCys is a quotient
mapping.

Now let clHps(X) be of infinite codimension in M*. By Theorem 1 of [1] there
exists a weak® null (we mean weak* topology of (Xjr)*) sequence {y;}5°, C M
and a partition {I;}3>; of N onto a collection of pairwise disjoint infinite subsets
such that for some sequence {my}3° ; C M* we have

w1, if nel,
ik () = {0, if n¢ I

By Theorem III.1 of [4] (see also [5, p. 11]) there exists a subsequence
{Yn@yi21 € {yn}az, such that

(a) {y;(i)}fil is a w* basic sequence in (X7)*;

(b) {C*yz(i)}{ﬁl is a w* basic sequence in X*;

(c) the sequence {n(i)}$°; has infinite intersections with every Ij (k € N).
Condition (c) implies that the space

Y = (Xan)/(({ype) 3220 )

is non-quasi-reflexive. [

Remark 1. There exist total nonnorming subspaces such that clHy, (X)
has finite codimension in M* (see Proposition 2.3 in [9]).
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Remark 2. Itmay happen that X and Xs do not have common infinite
dimensional subspaces. For example, in [7] it was proved that for some total
subspace M C l the space ¢y is isomorphic to (I1)as.

It is not clear whether X, should contain a subspace isomorphic to a quotient
space of X. At the moment I am able to show only that X, itself is not necessarily
a quotient of X and, in particular, that (cg)as is not necessarily isomorphic to a
quotient of ¢y. To give the examples we need the following result.

Theorem 1. Let X and Y be separable Banach spaces. Suppose that X* and
Y™ contain isomorphic copies of l1. Then for arbitrary separable Banach space Z
there ezists a total nonnorming subspace M C (X @& Z)* such that (X & Z) is
isomorphic to X @Y.

Proof By Lemma 1 of [3] spaces X* and Y* contain norming subspaces
isomorphic to /1. We denote them by E and F respectively. Let {e}°, C E
and {f/}32; C F be equivalent to the unit vector basis of ;. Without loss of
generality we may suppose that {e}}2; contains a subset {g;-*, j}?,?'zl such that for
each j the sequence {g;;}7°, is weak® null. Let {A;}22, = {e;}2\{g;,;}55 -
Let M C (X ®Y)" be the linear span of {hj}32, U{g;; + f;}75_; (we identify
(X®Y)* with X*® Y™ and z* € X* with the pair (z*,0) € X* ®Y™).

Standard verification (see [3, p. 56]) shows that M C (X @ Y)* is norming.
Let T: X ®Z — X @Y be defined by T'(z,2) = (z,Wz), where W : Z - Y is
some injective operator with dense range.

The operator T satisfies the following conditions:

(a) T is an injective operator with dense range;

(b) T*|as is an isomorphism.

The statement (a) is obvious. So we turn to statement (b).

Since sequences {e; }7°, and {f;}2; are equivalent to the unit vector basis of
l1 then there exist c¢1,co > 0 such that for every

I* = Z akh}; + Z bi,j(g;‘,j + f;) eEM
k i,J

there exists z € X, ||z|| = 1 such that

F((2,0) = [ D arhiy + bijgr; | @) = [ D lanl + D [bigl | > calll|l-
k 1,j k 1]

Hence

IT*Fll = sup [(T)@2) = sup ()@, W) = el
(2,2)€S(XD2) (2,2)€S(XDZ)
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where we choose z = 0.
Statements (a) and (b) immediately imply that (X @ Z)p () is isomorphic
to (X ®Y). ]
Example Let X =2Z2Z=c andY = 1l;. By Theorem 1 there exists
a subspace M C (c¢p)* such that (c¢g)ps is isomorphic to ¢g @ ;. On the other
hand, it is well-known (and easy to verify) that ¢y @ [; is not isomorphic to a
quotient space of c¢g.

Remark If X is isomorphic to l; then X contains a complemented
infinite dimensional subspace isomorphic to I;.

In fact, the canonical embedding Cjs : X — X/ is noncompact (since the re-
striction of its conjugate to M is an isomorphism). It is easy to see that Cps(B(X))
contains a sequence that is equivalent to the unit vector basis of [; and spans a
complemented subspace isomorphic to 1. We "lift" this subspace to X and get
the required subspace.

Now we prove some special form of "universality" of the space I;.

Theorem 2. Let X be a separable Banach space. Then for arbitrary total
nonnorming subspace M C X* there exists a total subspace J C (I1)* such that
X is isomorphic to (11) .

Proof Recall that if U and V are subspaces of a Banach space Z then
the number §(U, V') is defined by 6(U,V) = inf{||lu —v|| : v € S(U),v € V} and
is called the inclination of U to V.

In [10, Corollary 2.3| it was proved:

Theorem A. A Banach space Z is isomorphic to the completion of some
Banach space with respect to a total nonnorming subspace if and only if Z*
contains subspaces K and N such that K is norming, N s weak* closed and
infinite-dimensional, the quotient Z/(N ) is separable and §(K, N) > 0.

We apply Theorem A to the space Xjs and denote by K and N the obtained
subspaces. The subspace N C X,/ is separable. Hence there exists a quotient
mapping F : I; = NT. Since N is weak* closed and is of infinite codimension
in (Xpr)*, then the quotient (Xps)/(N') is infinite dimensional. Let {z;}2,
be a normalized basic sequence in (X3s)/(N"). Denote the quotient mapping
Xar = (Xar)/(NT) by 9. Let z; € Xar (i € N) be such that ||z]| < 2 and
Y(2i) = ;.

Let ¢ = (K, N). Introduce an operator F; : Iy — Xy by

Fi({ai}2)) = D aizi + F({ai}2):
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We need the following definition. Let a > 0,b > 0. We shall say that subset
A C X* is (a,b)-norming if the following conditions are satisfied:

(Vo € X)(sup{|z”(z)| : 2" € A} > al|z]]);

sup{||z*|| : z* € A} <b.

It is clear that Fj is injective and that the canonical image of F;(B(l1)) in K*
is a (§, 1+ £)—norming subset.

Let L = cl(Fi(l1)). Let {m;} be (finite or infinite) normalized complete mini-
mal system in (Xs)/L. Denote the quotient mapping X — (Xar)/L by x. Let
{u;} C X be such that ||u;|| <2 and x(u;) = m;.

Let Fy : 1§ @111 — Xy (where d is the cardinality of {m;}) be defined by

d
Fy({ai¥y, {}2) = 7 D aiui + FL({b:}2).
i=1

It is clear that the canonical image of Fo(B(l¢ @ 11)) in K* is a (§, 1+
$)—norming subset. Hence the restriction Fi |k is an isomorphism.

So F5 satisfies the following conditions:

1. Fy : l1(= l‘f @ l1) — X is injective and has dense image.

2. F5|k is an isomorphism.

Since K is a norming subspace of (Xjs)* these two conditions imply that for
J := F;(K) we have: (l1); is isomorphic to Xjy. ]
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ITonosTHEeHNsT OTHOCUTEIBHO TOTAJIBHBIX HEHOPMUPYIOMINX
TOAITIPOCTPAHCTB

M.N. OcTpoBckmii

N3yuaercs: cTpyKTypa NOMOJIHEHNH HAHAXOBA MPOCTPAHCTBA OTHOCUTEI b~
HO TOTAJIbHBIX HEHOPMUPYIOIIXX MOANPOCTPAHCTB COMPSI)KEHHOIO MPOCTPAH-
crBa. U3 mogydeHHBIX PE3YJIbTATOB BBITEKAET, B YACTHOCTHU, YTO TAKUE ITO-
[IOJTHEHUST MOTYT HE OBbITH M30MOPGHBI (PAKTOP-MPOCTPAHCTBAM ITOMOJIHSIE-
Moro npocrpascrsa. JlokazaHo, uro B cenapabesbHOM ciay4ae Jaiboe Takoe
NONOJIHEHUE U30MOPGHO HEKOTOPOMY MOMOJIHEHUIO IPOCTPAHCTBA, 1.

ITonnoBHEeHHs BiI[HOCHO TOTAJIBHUX HEHOPDMYIOYUX
nigmmpocTopis

M.J. OcrpoBcbkuit

Bupyaerhcst cTpyKTypa NOMOBHEHb HAHAX0OBA MPOCTOPY BiJIHOCHO TOTAJIb-
HUX HEHOPMYIOYHUX MiIITPOCTOPIB CIPSIXKEHOrO MPOCTOPY. 3 OIEPKAHUX Pe-
3yJIbTATIB BUILUIMBAE, 30KPEMA, 10 TaKi ITOMOBHEHHS MOXKYTb OyTu Hei30-
MopdHUME 10 (DAKTOP-TIPOCTOPIB MOMOBHIOBAHOrO mpocTopy. JloBemeHo,
o y cenapabesibHOMY BUNAJIKY Oy/b-sIKe IIONOBHEHHSI BKA3AHOIO BULJISIITY €
isoMOpdHUM /10 1€SKOr0 IOINOBHEHHS IIPOCTOPY [1.
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