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Let G be a CILLC-group, i.e., the inductive limit of an increasing se-
quence of its closed locally compact subgroups. Every nonsingular action of
G on a measure space (X, B, u) generates a continuous action of G on the
underlying Boolean o-algebra M[u] = B/I,, where I, is the ideal of p-null
subsets. It is known that the converse is true for any locally compact G:
every abstract Boolean G-space is associated with some Borel nonsingular
action of G. In the present work this assertion is generalized to arbitrary
CILLC-groups. In addition, we conctruct a free measure preserving action
of G on a standard probability space.

Introduction

By a large group we mean a non locally compact (infinite dimensional) one.
For the last past decades such groups were studied intensively in representation
theory, PDE with infinite variables, measure theory in infinite dimensional vector
spaces, probability theory, quantum physics, etc. However, despite the achieved
progress, the ergodic theory for these groups is still developed inadequately. In-
deed, even the basic notions of ergodic theory such as ergodicity, smoothness
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(type I) of an action, or orbit partition are not as clear as in the classical (lo-
cally compact) case, since the classically equivalent definitions can lead now to
nonequivalent concepts or fail at all. The present paper is devoted to study and
classification of measured actions of large groups.

The principal difference of a large group with a locally compact one is the
absence of the Haar measure. This makes impossible many of the classical con-
structions in ergodic theory. For example, given a measurable action of a large
group, we can not use the canonical von Neumann cross-product construction.
Thus classically the most important and useful connection of measurable dy-
namical systems and operator algebras is absent for general non locally compact
systems. Among other specific problems we mention the lack of quasiinvariant
measures on the orbits [M1, R3| and the lack of the full countable sections for
free measurable actions of large groups [FR].

In the present paper we consider only those groups which can be represented
as topological inductive limits of increasing sequences of locally compact second
countable subgroups, which seem to be the simplest large groups. We shall call
them CILLC-groups. It is easy to see that a nonsingular Borel action of an
CILLC-group G on a measure space (X, B, u) generates an action of G on the
Boolean o-algebra B/Z(u), where I(y) is the ideal of p-null subsets. The stan-
dard lifting problem of ergodic theory is formulated as follows: whether or not
each abstract Boolean G-space arises in this way, i.e., has point realization, and
to what extent these realizations can differ? Very satisfying solution of this
problem was obtained by P. Halmos and J. von Neumann [HN] for countable G
and later by G. Mackey [M2] and A. Ramsay [R1, R3] for locally compact G.
However, in the capacity of the “universal” space for the point realization they
chose either L? (G, \) [M2, R1] or the closed unit ball of the algebra of bounded
linear operators in L2(G, ) [R3|, where X is a Haar measure on G, so these con-
structions are both no longer valid for large CILLC-groups. Another approach
to point realization of Boolean finite measure preserving actions was proposed by
AM. Vershik [V]. It is based on two well-known statements of functional analysis:
the Minlos theorem about characteristic functionals on nuclear vector spaces and
the Gelfand—Kost'uchenko—G.I. Kats theorem about Gérding domains for unitary
representations of locally compact groups. The main purpose of the present paper
is to develop this method and solve in positive the point realization problem for
nonsingular actions of arbitrary CILLC-groups (Theorems 2, 2/, and 7). Notice
that the first step toward this end was done in [D], where existence of the special
strong Garding domains was proved for unitary representations of CILLC-groups.
Thus we may disregard the difference between a nonsingular point action and a
Boolean one and use those which is more convenient in the specific situation. For
example, in the entropy theory the Boolean algebra point of view seems to be more
elegant, but in the orbit theory points are preferable. As a corollary we obtain
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that the two possible natural definitions of ergodicity coincide for nonsingular ac-
tions of CILLC-groups (Corollary 8). Moreover, we construct free finite measure
preserving actions for such groups (Example 11). We observe also that the well
known results on the classification and structure of locally compact group actions
with pure point spectrum are generalized naturally to CILLC-group actions.

1. CILLC-groups

Let G; C G4 C ... be a sequence of locally compact second countable groups

with Gy, being closed in Gpi1, n € N. Then G % [J%, G,, endowed with the
inductive limit topology ¢ is a Hausdorff topological group. We call G a CILLC-
group. Denote by B(t) the Borel o-algebra generated by ¢. Some facts about ¢
and B() we collect in

Proposition 1. (i) G is o-compact, and separable;

(ii) G is locally compact if and only if there exists N € N with Gp41/Gy, is
discrete for alln > N;

(i) B(¢) is standard and generated by the Borel o-algebras on G,, n € N;

(iv) every Borel homomorphism from G into a Polish group H is continuous;

(v) if G is not locally compact, there exists no locally compact topology T on
G compatible with the group structure and such that B(1) = B(1).

Proof. (i) is trivial.

(ii) The “if” part is obvious and we prove the “only if” one. Let G be locally
compact and let A be a Haar measure on it. Then there exists N € N with
AGpn) > 0. It follows that G is open in G as well as in G, for all n > N.

(iii) Follows directly from [M1].

(iv) Let ¢ : G — H be a Borel homomorphism. Then ¢ | Gy, is also Borel and
hence continuous since G, is a Polish group for all n € N. By the definition of ¢
we have that ¢ is continuous.

(v) It follows readily from (iv) that ¢ is stronger than 7. Since 7 is locally
compact, there is n € N with A(G,,) > 0, where X is a Haar measure on (G, B(7)).
Then G, is 7-open and hence ¢t-open. But this contradicts to (ii). |

2. Statement of the main theorem. Auxiliary lemmas

Let (X, B) be a standard Borel space, G a CILLC-group, and T : G x X >
(9,2) — Tyx € X a Borel action. As usual, G x X is endowed with the product
Borel structure. Then (X, B) is called a standard Borel G-space. Now let u be
a nonatomic probability measure on (X,B). Denote by M][u] the Boolean p-
measurable o-algebra, i.e., the quotient B/I(u), where I(u) is the ideal of p-null
Borel subsets. The quotient homomorphism B — M|u] will be denoted by . It
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is known that M[u] endowed with the natural metric is a Polish space. Moreover,
M[p] is isomorphic as topological o-algebra to the Boolean o-algebra of projectors
of the von Neumann algebra L*®(X,u) acting on L?(X,u) via multiplication
[M2, R1]. We call M[u] a Boolean G-space if G acts on the left on M[u] and the
map G 3 g — gB € M|[u] is Borel for each B € M|u].

It is easy to see that if (X, B) is a standard Borel G-space and p is a quasiin-
variant measure on it, i.e., y o T, ~ p for all g € G, then

T,~(B) = «(T,B), Be B, g€ G,

defines an action T of G on M|u] so that M][u] is a Boolean G-space (for the case
of locally compact G we refer to [M2]). Our purpose is to prove that each Boolean
G-space arises this way, i.e., to generalize Theorem 1 of [M2] and Theorem 3.3 of
[R1] to arbitrary CILLC-groups.

Theorem 2. Let G be a CILLC-group and M[u] a Boolean G-space. Then
there is a Borel p-nonsingular action T of G on X (i.e., u is quasiinvariant) with
T¢B = gB for all B € Mlu] and g € G.

It is convenient for us to rephrase this theorem in equivalent terms. We denote
by U the unitary group of the (real) Hilbert space L?(X, u) and set

Ui (X, p) ={V €U |VPV* € M[u] for all P € M[u] and V1 € L% (X, p)},

U o(X, 1) = {V €U (X, ) | V1= 1),

where L2 (X, ) is the (closed) cone of nonnegative L2-functions. It is known that
U (X, p) and Uy (X, ) are the closed subgroups of U equipped with the weak
(or, equivalently, *-strong) operator topology. Notice that they are homeomor-
phic to the groups of py-nonsingular and p-preserving transformations (u-mod 0)
of X respectively equipped with the weak automorphism topology [HO]. Each
nonsingular action 7" of G on X generates a Borel representation

Ur:G> g~ Ur(g) €U (X, p)
as follows:

du o Tg_1

2
g @ mEeX,g€G, fElN(X,p). (21)

(Ur(9)f)(z) = {(T; 'z)

By Proposition 1(iv), Ur is continuous. Given a continuous representation U :
G — U (X, ), we have the structure of Boolean G-space on M [u]:

gP =U(g)PU(g7"), Pe My, g€q. (2.2)
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Conversely, it is easy to deduce from [R2] that each Boolean G-space determines
a continuous unitary representation U : G — Uy (X, ) so that (2.2) is satisfied.
Thus Theorem 2 can be reformulated as follows

Theorem 2'. Let G be an CILLC-group and U : G 3 g — U(g) € U (X, 1)
a continuous representation of G in L?(X, ). Then there is a Borel nonsingular
action T of G on X with U(g) = Ur(g) for all g € G. Moreover, if U(g) €
Uy o(X,p) for some g € G, then the associated transformation T, preserves p.

We preface the proof of Theorem 2’ with some auxiliary statements. For the
terminology and background of the locally convex spaces we refer to [S]. In the
present paper we consider only vector spaces over the real field R. The following
assertion was proved in somewhat more strong formulation as Main Theorem

of [D].

Lemma 3. Let U : G 35 g — U(g) be a strongly continuous unitary represen-
tation of G in a separable Hilbert space H. Then there exist a separable nuclear
reflexive space F and continuous one-to-one linear map J : F — H such that the
following properties are satisfied:

(i) the dual vector space F' endowed with the strong topology B(F',F) is a sepa-
rable Fréchet space;

(ii) Im J is dense in H;

(iii) U(g)Im J =Im J for all g € G;

(iv) Ly def J7U(g)J € L(F,F) for all g € G, where L(F,F) is the algebra of

continuous linear operators in F;

(v) G3 g+~ Ly € L(F,F) is a continuous map if L(F,F) is endowed with the
weak operator topology.

We shall prove here that the action of G on F' generated by the conjugate
representation to U(G) | Im J is Borel.

Let &£ be a vector space. Given a locally convex topology ¢ on £, we denote
by B(t) the Borel o-algebra generated by ¢.

Lemma 4. Let (£, F) be a duality system and let £ endowed with the Mackey
topology 7(E,F) be second countable. Then B(1) = B(7(E,F)) for each topology
v compatible with (€,F).

Proof Since by the Mackey theorem o(€,F) < ¢ < 7(€,F), it suffices
to prove that B(t(£,F)) = B(co(€,F)). The inclusion D is evident. On the
other hand, consider a subset O € 7(£,F). Since £ endowed with 7(&,F) is
metrizable and separable, O = (J,,cn(en + On), where e, € £ and Oy, is a convex
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7(&,F)-closed neighborhood of zero, n € N. By a corollary from the Hahn-
Banach theorem every convex 7(&,F)-closed subset is o(€,F)-closed. Hence
Oy, € B(a(E,F)) for each n € N. Therefore O € B(o(E,F)). [ |

Note that for a separable Banach space & the fact B(a(&,&")) = B(7(€,E"))
was proved earlier by E. Mourier.

Now we use the notations of Lemma 3. Having in mind the duality system
(F,F'), we denote by V(g) the adjoint operator to Ly. Let us endow F' with
B(F,F) = 7(F',F). Then V(g) € L(F',F') and V(gh) = V(h)V(g) for all
g,h €G.

Lemma 5. The map V:G xF' 3 (g,f) = V(9)f € F' is continuous.

Proof It follows from Lemma 3 that the map G > g — V(g)f € F'
is weakly continuous for each f € F’. Since F' is a separable Fréchet space, it
follows from Lemma 4 that V is Borel in the variable g. Moreover, V is continuous
in the variable f because of V(g) € L(F', F'). The Lebesgue-Kuratovski theorem
[K, §31.V, Theorem 2| implies that V | (G, x F') is jointly Borel for all n € N.
It follows from [Mo, Proposition 1.4] that V' [ (G, x F') is continuous for all n,
as desired. ]

3. Proof of the main theorem

This section is devoted to the proof of Theorem 2'. Let
U:G2g—Ulg) €U (X, p)

be a continuous homomorphism. Then by Lemma 3 there exists a separable nu-

clear reflexive space F and a continuous one-to-one map J : F = H def L2(X, p)

such that the properties (i)-(v) of Lemma 3 are satisfied. Denote by S, the
adjoint operator to L;l. It follows from Lemma 5 that

S:GxF' >(g,f)— SyfeF

is a continuous action of G on F'. So, (F',B(8(F',F))) is a standard Borel
G-space. The map x : F — C given by

x(f) = / exp(i(J f)()) du(z)

X

is a continuous positively defined functional with x(0) = 1. Since F is nuclear, by
the Minlos theorem [VTC, Chapter VI, Theorem 4.3] there exists a probability
measure v on F’ such that

x(f) = / expi(f,y)) dv(y)

:FI
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for all f € F. It is easy to derive from [VTC, Chapter IV, Theorem 2.5] that there
exists a Borel onto map ¢ : X — F' such that v = pop ! and Jf(z) = (f, p(z))
at p-a.e. z for all f € F. Then we have

/|Jf )2 du(x) /|f, duly), feF.

It follows that each continuous linear functional on F' is square v-integrable.
Since Im J is dense in L2(X, i), ¢ is one-to-one on a Borel p-conull subset and
F is dense in L?(F',v). Changing ¢ on a u-null subset, we may regard ¢ as a
Borel isomorphism of X onto F'. So, ¢ generates an isomorphism of M|u] onto
M[v] (as Boolean o-algebras) and a unitary operator ® : L%(F',v) — L*(X, )
with @~ 'U (X, u)® = U (F',v), @l = 1x and ®f = Jf for all f € F. It is
easy to verify that @ 1U(g)®f = Lyf for all f € F and g € G. Let { f, | n € N}
be a dense subset in F. Then there exists a v-nonsingular transformation Dy of
F' and a Borel v-conull subset Cy with

<fnaSgy> < lfna >—( lU( _l)q)fn)( )

= fn(Dgy)p(9,y) = fnlp(g,y) - Dgy)

for all y € Cy and n € N, g € G, where p(g,y) = dV;VD-" (y) [HN, M2|. Since

{fn | n € N} as a family of functions on F' separates points it follows that

Sqy = p(g,y) - Dgy for a.e. y € F'. (3.1)

Let ~ denote the equivalence relation on F' — {0} defined by y1 ~ vy if yo = A1
for some A > 0, and 7 : ' — Z the ~-quotient mapping. Notice that Z endowed
with the quotient topology is homeomorphic to the unit sphere in F'. It is easy
to see that 7 intertwines S with some Borel (even continuous) action S = {S,}
of G on Z. Since F is dense in L%(F’',v), there exists a sequence {f,}n, C F
such that lim, o0(fn,y) = 1 for v-a.e. y € F'. At the same time it is clear
that the pointwise limit of f, is a Borel linear functional defined on a Borel v-
conull linear subspace & C F'. Therefore if yi,y2 € &, y1 ~ Y2, Y1 # y2, and
limy, o0 (fn,y1) = 1, we have limy, o0(fn,y2) # 1. Thus there exists a Borel
v-conull subset of F' which meets each ~-equivalent class at most once. Hence
changing 7 on a v-null subset, we can transform it into a Borel isomorphism
of F' onto Z. Moreover, it follows from (3.1) that S, coincides v o 7~ !-almost
everywhere with a nonsingular transformation — the “image” of D, under 7 for
all ¢ € G. Now the desired action T' = {T,}4e¢ may be defined as follows:

Tg:go*loﬂfloggowocp.

Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 1 41



Alexandre 1. Danilenko

Remark 6. Notice that we have proved more than claimed in the statement
of Theorem 2: every Boolean G-action may be realized as a continuous (not only
Borel) pointwise nonsingular action of G on a Polish space.

4. Essential uniqueness of point realization

Let u and v be probability measures on standard Borel spaces (X,B) and
(Y, G) respectively. Given a Borel map ¢ : X — Y with v ~ p o ¢!, we denote
by ¢* : M[v] — M]u] the associated homomorphism of the underlying Boolean o-
algebras [M2, R1]. The following assertion is a generalization of [M2, Theorem 2]
to CILLC-groups.

Theorem 7. Let u and v be quasiinvariant probability measures on standard
Borel G-spaces (X, B) and (Y, G) respectively. If there is a G-equivariant isomor-
phism 9 of the underlying Boolean o-algebra M[v] onto M(p], then there exist
G-invariant Borel conull subsets Xo C X and Yy CY and a Borel G-equivariant
isomorphism ¢ : Xog — Yy such that ¢* = 9.

Proof. It follows from [M2, Theorem 2| that for each n € N there are G-
invariant Borel conull subsets X, C X and Y;, C Y and a Borel G,,-equivariant
map ¢, : X, = Y, with ¢} = p. We let

Cn={z € XyNXns1|on(r) = pni1(z) }-

It is obvious that C), and ¢, (C,) are Borel conull and G,-invariant. Now we set
A = Np>k Ons Xo = Upen Ak, and o(z) = @i (z) for all z € Ay, k € N. A simple
verification shows that Xy and ¢ are as desired. ]

Corollary 8. Let (X, B) be a standard Borel G-space and p a finite invariant
measure on it. If E is a Borel subset of X with u(EAgE) = 0 for all g € G,
there is a Borel G-invariant subset Ey such that u(EAEy) = 0.

The proof of this statement coincides almost literally with that of Theorem 3
from [M2]. So, the two natural definitions of ergodicity are equivalent for nonsin-
gular actions of CILLC-groups. Notice however that the statement of Corollary 8
is not valid for actions of general groups.

Example 9[V]. Let X = {0,1}", S, be the Polish group of bijections of N
acting on X via permutations of coordinates, and p1 and uo two distinct Bernoulli
measures on X. Since pLlps, there is a Borel subset E C X with pi(E) =1
and po(F) = 0. We set u = 0.5u1 + 0.5u2. It is clear that py is Seo-invariant
and u(gEAE) = 0 for all g € Sy. Since Sy, acts transitively on a u-conull Borel
subset, there is no any So-invariant subset Ey with p(Ey) = p(E) = 0.5.
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We consider also an application to actions with pure point spectrum. A finite
measure preserving action of an Abelian CILLC-group G on a standard mea-
sure space (X, B, u) is said to have pure point spectrum if the linear span of all
eigenfunctions of the associated unitary representation Ur is dense in L2(X, p).
Denote by G the dual group of G (i.e., the group of continuous characters of G)
and by SpT the set of all eigenvalues of Ur. It is clear that SpT is a countable
subgroup of G. Notice that if G = injlim,_, Gy, G, is locally compact, then
G = proj limy, o @n, where the canonical projection @n+1 — @n is associated to
the embedding G, = Gpy1, n € N.

Theorem 10. (i) Two ergodic G-actions T and S with pure point spectrum
are conjugate if and only if SpT=Sp S;

(ii) For every countable subgroup T of G there erists an ergodic action T of
G with pure point spectrum such that SpT =T .

Proof follows easily from Theorem 7, the Pontryagin’s duality theorem

for Abelian CILLC-groups — G is canonically isomorphic to G [Sa], and the fact
that the multiplicity of each eigenvalue of an ergodic G-action is one. [

5. Free actions of CILLC-groups

It is well known that an arbitrary locally compact group admits free finite
measure preserving actions. The main purpose of this section is to demonstrate

Example 11. For an arbitrary CILLC-group G = injlim,,_,, G,, there ex-
ists a free measure preserving Borel G-action on a standard probability space.

Notice that the below argument is a modification of that from [Fed, § 6] where
the case of locally compact groups and their measured actions was studied. Our
Borel approach requires the use of new tools. We proceed in several steps.

19, We let Gy = {e}, X, = G, 1\Gy, and e, = G, 1 € X, for all n € N.
Then X = [[>°, X,, endowed with the product topology is a Polish space. To
define a G-action T on X we first choose Borel cross-sections s, : X, = G, of
the quotient maps G, — X, with s,(e,) = e, n € N, and then set

Tox = (Y1s---»Yn, Tnt1: Tnt2,---), T =(zp) €X, g€G,CQG,

where s1(21)...50(2n)g™t = s1(y1) ... sn(yn). It is routine to verify that T =
{T(g9)}4cc is well defined, Borel, and free. Notice that the G-orbit of a point
x = (zp) is exactly the set {y = (yn) € X | AN € N with y, = z,, for all n > N}.
Let pp be a Gp-quasiinvariant measure on X, n € N. Then p = @77 | pp is a
G-quasiinvariant measure on X, since the map

X oz = (z) = s1(z1) ... sn(zn) € Gy
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intertwines the action {7,}4ecq, with the shiftwise action of G, on itself and
takes p to a Haar-equivalent measure. It follows that for each n € N there
exists a closed U(Gy,)-invariant subspace H, C L%(X, u), so that Up(Gy,) | Hy is
unitarily equivalent to the left regular representation of G,. So, Ur is faithful.

20 Now we remind one of the simplest constructions of a faithful unitary
representation of the (real) unitary group U(L?(X,u)) with the image in U .
Let k be a Haussian measure on R with d x(t) = 7~ /2 exp(—t?) dt and (Y, \) =
(R, x)N. Choose an orthonormal basis {f,}5% in L?(X,u). It is clear that the
subset

q

> s v i) vk

k=p

;fj@u ﬂ{ )eUXY : <1/N}

1 M=1 M<p<q

is Borel. We define a Borel function
A:UXY D (v,y) = A(7,y) = (A(7,9)n) €Y

as follows:

A, Y)n { Zk 1<fn17fk>yka if(v,y) €D

0, otherwise.

It is easy to deduce from [SF, §9.1] that
(i) for every v € U we have A(y~+, A(y,y)) =y for A-a.e. y;
(ii) for every v € U we have Aoy - = )\, where

Aoy H(B) =A{y | A(v,y) € B})

for each Borel subset B C Y.
Furthermore, using the similar argument, one can show that
(iii) for every 71, 72 € U we have A(y1v2,y) = A(71, A(72,y)) for A-a.e. y.
It follows from [R1, Lemma 3.1] that A well defines a unitary representation
(see (2.1)) Ua : U — Uy o(Y, X). Moreover, Uy is clearly continuous and faithful.

30. Let H be a locally compact second countable group and (Z, B) a standard
Borel H-space. For every point z € Z denote by H(z) the stability group at z. It
follows from [Va, Theorem 3.2| that H(z) is closed for all z € Z. Denote by 27
the space of closed subsets of H. In the topology introduced by J.M.G. Fell [Fel]
it is compact and metric. Furthermore, the map Z 3> z ~ H(z) € 2% is Borel
[AM, Proposition 2.3; R1, Lemma 9.4].

Lemma 12. (i) For each subset B € 2% the function
f:285A4— AnBe2H

is Borel.
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(ii) Let v be an invariant probability measure on (Z,B) so that the associated
unitary representation of H is faithful. Then for each element h # e € H there
s a compact neighborhood W of h such that the subset

Dw={z€Z|H(z)NnW =0}
is of positive v-measure.

Proof (i) The Fell topology on 2¥ has as subbase all sets of the form
Ot ={A €2y | ANO # B}, where O is an open subset of H, plus all sets of the
form C~ = {A € 27 | ANC = 0}, where C is a compact subset of H [Fel]. Let
us choose a sequence of open subsets B, C H with (72| B, = B. It is easy to
see that fz'(C~) = (CNB)~ and fz'(0O") = N°2,(0 N B,)*. The assertion of
(1) follows.

(ii) Suppose the contrary. Let W,, n € N, be a fundamental sequence of

compact neighborhoods of h and Dw, = {z € Z | H(z) N W,, = 0}. Then the

subset M % N,(Z — Dyw,) is Borel by (i) and v-conull. It follows that h € H(z)

for a. a. z € Z and hence h belongs to the kernel of the associated representation,
contrary to the hypotheses of the lemma. [

It is worthwhile to observe that fg may be discontinuous.

49 Tt follows from 19, 29 and Theorem 2', and Remark 6 that there is a
continuous action T of G on a Polish space Z and a finite invariant Borel measure
v on Z such that the associated unitary representation is faithful. So, we may
apply Lemma 12(ii): there are two sequences of compact subsets W), C G and
Borel subsets Ay C Z with Jpo, Wi = G — {e}, u(Ax) > 0, and Tyz # z for all
g € Wi, z € A, k € N. Consider the diagonal action D of G on the Polish space
Q=2zN

(Dgw); = Tywy, leN, w=(v)eQ, ged.
Clearly, D is continuous and preserves the measure x = vN. Moreover, the Borel
subset A = Uy 1(Z — Ap)N is snull. If w = (w;) ¢ A and g € G — {e}, there is
k € N with g € Wy, and w ¢ (2 — Ag)N. Hence Tywp # wy for some n € N and
therefore Dyw # w. Thus the Borel invariant subset

Qo = {w € Q| the stabilizer G,,(w) is trivial for all n € N}

contains a conull subset and we are done.
As a corollary we obtain

Example 13. For each CILLC-group G and a countable group I' there is
a free, Borel, finite measure preserving action of G x I' so that the I'-action is
ergodic. In particular, G can be embedded into the normalizer of the type Iy
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full group [I'] so that the G-action is strictly outer (for the definitions we refer to
[HO, GS]).

Notice that for locally compact groups this was done in [GS, Example 2.13]
and [Fed, Corollary 6.8]. We use a slight modification of those arguments. Let
(X, ) be a free standard Borel G-space with invariant probability measure pu.
Without loss in generality we may assume that each G-orbit is y-null — otherwise
consider the diagonal action of G on the Cartesian product X x X. Form the
space (Y,v) = (X,u)F. Then the diagonal action of G on Y is clearly commutes
with the Bernoulli action of I' determined by

(YY)s = Yoy for y = (ys)ser €Y, ~ye€l.

Thus Y is a Borel (G x I')-space and the I'-action is ergodic. Set

By ={y = (vs5) | vy € Gyc}.

Then B, is Borel, G-invariant, and v-null. It is clear that 0By = Bys-1 5-1-
Therefore the subset Yo =Y — |, e By, is (G x I')-invariant and v-conull.
Now if gy = vz for some g € G, v € T', and y € Yy, we have that g and ~y are the
identities in G and I" respectively.
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48

Toueuynasa peasin3anuda 0yJI€BCKUX AENCTBUM CYETHBIX
VHAYKTUBHBIX [IPE/IeJIOB JIOKAJIbHO KOMMNAKTHBIX Py

AN. Jaunmerko

IIycrs G — CILLC-rpymnmna, T.e. WHAYKTUBHBIN NpEJes BO3PACTAIOIIEH
MOCJIEIOBATEILHOCTH 3aMKHYTHIX JIOKAJIHBHO KOMIAKTHBIX TIOArPYyMIL. JIo6oe
HeCHHryJisipHOe nelicTeue (G Ha npocTpancTse ¢ Mepoit (X, B, p) unmyuupy-
er HempepbiBHOe AeiictBre G Ha GyseBckoit o-aurebpe M[u] = B/1,, rue I,
— Wjea [-HYJIEBBIX TOIMHOXKECTB. V3BECTHO, 4TO 0OpATHOE yTBEPXKICHUE
BEPHO Jisi JIIODOOH JIOKAJIBbHO KOMIAKTHON rpymnibl (1 BCSKOE abCTPAKTHOE
OyneBckoe G-POCTPAHCTBO ACCOLMUPOBAHO C HEKOTOPLIM OOPEJIEBCKUM He-
cunryasipabiv zeiicreuem G. B nacrosimeit pabore 310 yrBepxkienune 0600-
maercst ayisi mpousdBoTbHbIX CILLC-rpynmn. Kpowme Toro, mocrpoeno ¢cBo6o-
HOE COXPAaHSIoIee Mepy JelicTBre rpynnbl G Ha CTAHJAPTHOM BEPOSITHOCT-
HOM IIPOCTPAHCTBE.

ToukoBa peaJizariia OyJiBCbKUX Al 3YNCIEHHUX
IHAYKTUBHUX I'PAHUIL JIOKAJHBHO KOMMAKTHUX TPy

0.1. Harumaesko

Hexait G — CILLC-rpyna, T00TO iHAyKTUBHA, IPAHUIIS 3POCTAIYOI 110~
CJTIOBHOCTI 3aMKHEHUX JIOKAJIBHO KOMIAKTHUX miarpyn. KoxkHa HEcuHry-
asipHa ais G wHa npocropi 3 mipow (X, B, ) unaykye nenepepsHy nito G
Ha OyniBebkiit o-anredpi M[u] = B/I,, ne I, — inean p-HyabOBUX IigMHO-
KuH. Bigomo, 110 3BOPOTHE TBEPAKEHHS € BIPHUM IJIsi KOXKHOI JIOKAJIBHO
KOMINAKTHOI rpynu G: noBinbHuit abcrpakrauii Oysiscbkuit G-nipocrip € aco-
UifiOBaHUM 3 SIKOIOCh OOPEJIiBCHKOI HECUHIYJISIPHOO Ai€t0 G. B wiit pobori ue
TBep/PKeHHsi y3aranbHIeThest it JoBlibaux CILLC-rpyn. Kpim roro, Ha
CTAHIAPTHOMY HMOBIPHOCHOMY MPOCTOPi MOOYIOBAHO CBOOOIHY Iif0 rpymu
G, mo 36epirae mipy.
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