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The dynamical entropy for actions of &Z, k = 2,3, ..., on C*-algebras
which is studied in this work, is a generalization of Connes—Narnhofer—
Thirring entropy for actions of the torsion groups on C*-algebras. The
properties of such entropy are investigated and a formula for quantum dy-
namical entropy of the Bogoliubov action of ®Zy, k = 2,3, ..., on the CAR-
algebra is obtained. It is proved that the part of action corresponding to
the singular spectrum gives zero contribution to the entropy.

1. In late 50-th Kolmogorov and Sinai introduced the notion of entropy in
ergodic theory. That made it possible to solve a number of important problems
in this theory. In particular, the existence of nonisomorphic ergodic systems
with the same continuous spectrum was established using the entropy theory of
Bernoulli automorphisms (this is in a sharp contrast to the case of discret spec-
trum). Thus the problem of extending this notion onto automorphisms of von
Neumann algebras and C*-algebras arose in a natural way. In 1975 Connes and
Stgrmer presented a solution of this problem for some class of von Neumann al-
gebras (I factors), and in 1987 Connes, Narnhofer and Thirring extended the
definition of the entropy to the case of automorphisms of C*-algebras which pre-
serve a given state [1]. Recently this entropy has been studied extensively from
different points of view. In [2] Stgrmer and Voiculescu computed the dynamical
entropy for a Bogoliubov automorphism on the algebra of canonical anticommu-
tation relations (CAR-algebra) and showed that only absolutely continuous part
of the unitary operator defining the Bogoliubov automorphism should be taken

© V.M. Oleksenko, 2000



On the entropy for actions of groups and its calculation

into account. Bezuglyi and Golodets [3] generalized those results to actions of
free Abelian groups Z™, n > 1, on the CAR-algebra.

The principal goal of this paper is to study the dynamical entropy for actions
of the groups &7, k = 2,3, ..., by automorphisms of C*-algebras. We note that
such groups are not free, and even in the classical case there is no good entropy
theory for groups like those.

The structure of this paper is as follows: in Section 2 we introduce the dynam-
ical entropy for actions of Z/kZ ® Z/kZ & ..., k =2,3,..., on C*-algebras, list
the properties of this entropy. In particular, it is shown that the entropy for the
tensor product of group actions with respect to states on various C*-algebras has
as a lower bound the sum of entropies for each action of the group with respect to
the related state. The analogue of the Kolmogorov-Sinai theorem is announced.
A relationship between the entropy of a group and the entropy of a subgroup
is studied. The formula for the entropy of a finite index subgroup is found. In
Section 3 the entropy of a Bogoliubov state-preserving action corresponding to
singular spectrum is shown to be zero. Next, the formula for the entropy of a
Bogoliubov action corresponding to absolutely continuous spectrum is found and
the entropy for some simple cases is calculated. Furthermore, the general case is
studied. It is demonstrated that only absolutely continuous part of the unitary
representation defining the Bogoliubov action should be taken into account.

2. Let us remind briefly some terminology and definitions (see [1, 2] more
details). The term "unital" stands for containing or preserving the unit element.
A completely positive unital map ¢ between two unital C*-algebras A and B is a
positive unital map such that the map ¢ between M, (A) and M, (B) the n x n
matrices with elements from A (respectively B ), (¢(a));; = #(as;) is positive. In
the vector space of linear maps the completely positive unital maps constitute a
closed convex set. If B C A a positive unital map with ¢(biaby) = b1d(a)bs, b; €
B, a € A, is called a unital conditional expectation. It is automatically completely
positive.

Let A be a unital C*-algebra, C1, ..., Cy finite dimensional C*-algebras, and
7v; : Cj — A unitial completely positive maps, j = 1,...,k. Let ¢ be a state on A
and P a unital completely positive map from A into a finite dimensional Abelian
C*-algebra B such that there is a state 1 on B for which ®po P = ¢. If py,...,p,
are the minimal projections in B, then there are states ¢;,i =1,...,7, on A such
that

P(@) = ¢i(z)pi, z€A, and $=> 4(p:)ei.

We set up
ey(P) = S(dl$i);
=1
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where S(¢|¢;) is the relative entropy of the ¢ and ¢; (see [1]). The entropy defect
sy(P) is given by
sy(P) = S(¥) — ey(P),

where S(1) = —>.7_; ¥(pi)logy(p;) is the entropy of .

Let Bj, j = 1,...,k, be C*-subalgebras of B and E; : B — Bj a -preser-
ving conditional expectation. Then (B, Ej, P,1) is called an abelian model for
(A, b,71,---,7)- The entropy of such an Abelian model is defined to be

k
SWlye_, Z

where p; = EjoPo-y; : C; — Bj. The supremum of entropies for all such abelian
models is denoted by Hy(v1,-..,7k). Properties of this function can be found in
[1, Proposition IIL.6]. If « is a ¢-preserving automorphism of A and v: C — A
is a unital completely positive map of a finite dimensional C*-algebra C, then we
denote by

hg,a(y) = lim %an(% aovy,...,a" ory).

The entropy of a with respect to ¢ is defined by the formula
hg(a) = sup hy o (7)-
v

In the sequel we study the entropy for actions of Z/kZ @ Z/kZ & ..., k =
2,3,..., on C*-algebras. To simplify the exposition, we restrict our observations
to Z/2Z @ Z/2Z & .. .-actions. It is clear that the general case may be considered
in a similar way.

Now let A be a unital C*-algebra, I' = @;°, Z;, I'(n) = &I, Z;, I'[n,m] =

i n+1 Zi, I'y = @, n+1 Z;, where Z; = Z/2Z. Let ¢ be a state on A and
a: T — Aut(A, ¢) a ¢-preserving action of I' on A by *-automorphisms, i.e. « is
an injective homomorphism from I" into Aut(A) such that «() is a ¢-preserving
x-automorphism of A for any £ € T'. Let 7 be a representation of 4 corresponding
to ¢ via the GNS-construction, M = 7(A)".

Define the dynamical entropy for the action « of I' on A.

According to the above definition of entropy, if v : C — A is a unital com-
pletely positive linear map of a finite dimensional C*-algebra C, then the function
Hy(a(&)oy,& €T'(n)) can be defined as a supremum of entropies for Abelian mo-
dels of (A, ¢,a(£) oy, £ €T(n)).

Set up Hy (7) = Hy(a(€) 0 7,€ € T(n)).

The properties of Hy(vy) are as in [1, Proposition III.6]. We remind only some
of them.

(a) Let 6; : A'; — A; be completely positive unital maps, then
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Hy(a(€j) 0y 005,€5 € T'(n)) < Hy(a(§) 07,€ € T'(n)).

Equality holds if A; C A’; and 6; is a conditional expectation forall j =1,...,2".
(b) If  : A — A is a completely positive unital map with po = ¢, then

Hy(0 0 (&) 0v,€ € T(n)) < Hy(a(§) 0 7,¢ € T(n)).

Equality holds if 8 is an automorphism of A.
(c) Let Ly = {a(§)ov,£ €'(n)} and L be an another canal. Then

maz {Hy(L1), Hy(L2)} < Hy(Ln UL2) < Hy(L1) + Hy(Lo2).

It follows from (c) that Hp41(7y) < 2Hp(y).
Therefore, 521 Hnt1(7) < 57 Hn(7), and there exists a limit

. 1
lim Q—an(’)’) = h(b,a('YaF)'

n—oo

Definition 1. The dynamical entropy of I'-action o with respect to ¢ on a
C*-algebra A is
hg(a,T') = sup hg (7, T).
¥

For reader’s convenience sometime we will write hg(cr) instead of hg(a,T).
We formulate now the statements that generalize those from |1, 2] when I' = Z.
Our propositions can be proved by a similar method with Definition 1 being taken
into account (see [4]).

Proposition 2. Let ¢ be a pure state on a unital C*-algebra A, and o a
¢-preserving I'-action on A. Then hy(a,T') = 0.

Proposition 3. Let ¢ be a state on a unital C*-algebra A, and o a ¢-pre-
serving T'-action on A. Suppose B is a C*-subalgebra of A such that there is an
expectation E : A — B with ¢o E = ¢, and a(§)E = Ea(f), £ € I'.Then a|g is
an action of I' on B and hy(a|s,T) < hy(a,T).

Proposition 4. Let A be a C*-algebra, ¢ a state, and « a p-preserving action
of ' on A. Let {Aj};?il be an increasing sequence of C*-subalgebras such that
the expectations Ej : A — A; satisfy the following conditions:

(i) a(g)E] = Eja(é.)a §el, j=1,2,...;

(1) Ej1Ej = EjEjp = Ej, j=1,2,...;
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(i1i) E; — id 4 in the pointwise-norm topology.
Suppose that the norm closure of U]- Aj is A. Then a|a; is an action on A; for
j €N and
he(a,T) <liminfhy(ala;,T).
j

Moreover, if po Ej = ¢,j € N, then
hg(a,T) = lijmhd)(auj,f‘).
Proposition 5. Let Ay and Ay be two C*-algebras with states ¢1 and ¢o
respectively. Let a; be T-action on (A;, ¢;) such that ¢; o oy = ¢y, i = 1,2. Then
hg o (01 ® a2, T') > hy, (a1,T) + hg, (a2, T).

Proposition 6. Let A be a nuclear C*-algebra, A, be finite dimensional C*-
subalgebras, a and ¢ as above. Let 1, be a sequence of completely positive unital
maps T, : Ap, — A such that for suitable completely positive unital maps o, :
A — A, one has 7, o oy, :— id 4 in the pointwise norm topology. Then

lim hg o(7,T) = he(a,T).

n—oo

Proposition 7. Let A be a nuclear C*-algebra, a and ¢ as above. Let M =
7y (A)". Then
sup h¢,a (’Ya P) = sgp h¢,a (N7 P)a
¥

where N runs through aoll the finite dimensional subalgebras of M.

Proposition 8. Let M, ¢, a be as above. Let Ny be an ascending sequence of
finite dimensional von Neumann algebras with |J,, Ny, weakly dense in M. Then

ho(enT) = Tim hyo(Ny,T).
Proposition 9. For all automorphisms o of A (respectively M) we have
hg(a,T) = hpoo (07 o0 0,T),
where o € Aut(A).

Proposition 10.
hg(a,T'n) = 2"hg(a,T).

Proposition 11. For all 0 < XA <1 we have

h)\¢1+(17)\)¢2 (a,T) = )‘h¢1 (,T) +(1— A)hcﬁz (o, T).
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Proposition 12. Let D C T be a subgroup of the group I', ¢ and a as above.
Then
h¢(0[, P) < h¢(0[, D)

Proof. Let D, =D(\['(n). Then D, € I'(n) is a subgroup of the group
['(n). Let 2k» = |T(n) : Dy| be an index of Dy, in T'(n), and T'(n) = UZZE 9iDn,g; €
TI" a decomposition into co-sets. If v : C' — A be a unital completely positive linear
unitar map of finite dimensional C*-algebra C, then

kn

Hy((€) 07,€ €T(n)) = Hy(a(€) 07,€ € Uiz} 9:Dn) < 2 Hy(a(€) 07,€ €
D,).

The inequality is due to properties of Hy(-y). Therefore

1 1
2 Hole(6) 07,6 € T(n)) < o Hy(a(€) 07,€ € Dy).
That is why
h¢,a (7, F) < h¢,a (7, D)
and hence

he(7,T) < hg (v, D).

Proposition 13. Let D C T be a subgroup of T such that T' = D x D', where
D' is also a subgroup of T', and ¢, o as above. If hy(a, D) < 0o and cardD' = oo
then hy(o,T') = 0.

Proof. Let D/ be any subgroup of finite index in D’ such that |D’ : D | = 2".
Then |I': I'™| = 2", where I' = D x Dj},. In view of Proposition 10

hg(a,I"™) = 2"hy(a,T).
As far as D C I'" then by a virtue of Proposition 12 we have

ho(e, T™) < hy(a, D).

Therefore
2"hy(a,T') < hy(a, D)

that is he(a, I') < she(a, D).
Since n it take arbitrary, hy(c,I') = 0. [ ]

3. We remind some definitions concerning the CAR-algebra. Let H be a
Hilbert space. The CAR-algebra A(H) is a C*-algebra with the property that
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there is a linear map f — a(f) of H into A(H) whose range generates A(H) as
a C*-algebra, and satisfyies the canonical anticommutation relations

a(f)alg)” + al9)"a(f) = (f,9)1,

a(falg) +a(g)a(f) =0, f,geH

where (.,.) is the inner product on H, and I is the unit of A(H). Let 0 < A< T
be an operator on H. The quasifree state wyq on A(H) is defined by its values on
products of the form a(f,)*... a(f1)*a(g1) .- a(gm), n, m € N, given by

wala(fn)*-- a(fi)*a(g1) - a(gm)) = dnm det((Ags, f}))-

If U is a unitary representation of T in H such that U(£)A = AU(¢), € €T,
then U defines an action a of T" on A(H) by

aye)(a(f)) = a(UE)(f)), £ €T.

The action ag is called a Bogoliubov action.

Let ' = Z/2Z & Z/2Z @ ..., X be the dual group (X = I'), and x a Haar
measure on X. X can be realized as the space of infinite sequences z = z1xo...,
where z; = 0 or 1, and p a product measure on X that is p = [[2; p; with p;
being a measure on X; = {0,1} given by u;(0) = p;(1) = %

Every element ¢ € T is a sequence & = ({1, &2, -..), with &; zero or one, and only
finitely many components &; being non zero. Assosiate to every £ € I' a character
Xe of X:

xe(w) = [[(=1), ke {t|& = 1}.
k

If we have a unitary representation U of I' in the Hilbert space H, then (see
[5]) it can be disintegrated into irreducible one-dimensional representations such
that U = [y ®U,dv(z), where v is a Borel measure on X. Observe that we
can consider v as sum v = v, + Vs, where v, is a Borel measure on X which
is absolutely continuous with respect to the Haar measure y on X, and v; is a
singular measure. In accordance with this, the representation £ — U(§) of T' is
a sum U(€) = Uy(§) @ Us(€), where U, is the absolutely continuous part of U
and U; the singular part. Let us decompose the unitary representation U, into
irreducible one-dimensional representations such that U, = [  ®Uzdv,(z). Then
the Hilbert space H, becomes the direct integral H, = [ ®@Hydve(z).

The function m(U)(z) = dimHj is cald the multiplicity function of the rep-
resentation U,.
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Lemma 14. Let H = H; ® Hy, A; be an operator on H;, 0 < A; < I, and
U; be a unitary representation of T' in H;, i = 1, 2. Suppose A;U;(€) = U;(€) As,
EeTl, i=1,2. Then we have

thl DAy (aUl@Uw F) > thl (aU1 ’ F)'

Proof Let E: A(H; ® Hy) — A(H;) ® A(Hz)e be the expectation
E = %(zd + arg-1), where I denoting the identity on both H; and Hs, and
A(Hs), the even CAR-algebra. Since I @ —I commutes with A; & Ao, arg_g is
WA, @A, —Preserving, as is E. Thus by Propositions 3 and 5 we have

WA SAg (aU163U2 |.A(H1)®.A(H2)e)
WA, Q@WAy (aUl ® ay, |A(H1)®A(H2)e)
wa, (Qui|agEy)) + hwa, (s | A(m).)

wa, (QUy | AgHy))-

hwa,ea, (v av,)

h
h
h
h

v v

Lemma 15. Let U and V be unitary representations of I' and A € [0, 1].
Then we have, identifying A and A,

(i) If there is a unitary operator W such that V(¢) = WU(EW™L, € € T,
then hy, (ay,T) = hy, (ay,T).

(i) If U and V h ave the same singular parts and m(U) > m(V), then
hw, (a7, T) > by, (v, T).

Proof is obvious. ]

Lemma 16. Let (Uy) be a sequence of unitary representations and U a uni-
tary representation of T, all with absolutely continuous spectrum. Suppose m(Uy,)
is an increasing sequence with pointwise limit m(U). Then hy, (ow,,T') is an in-
creasing sequence and

huw, (o, T) = n1i>nolo hw, (av,,T)-

Proof  Since the singular part of each unitary n question is zero the
assumption on the multiplicity functions implies that we may assume U acts in
a Hilbert space H and U, = Uy, , where H,, C H,y1 C H, H, are invariant
subspaces of H with respect to U and H = |J;2; Hp, n € N. Thus the Lemma
follows from Propositions 3 and 5 and the fact that the projections onto the H,
define expectations on A(H) satisfying the conditions in the propositions. [ |
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We first study the case when the unitary representation U of I' has nontrivial
singular part Us, then we turn the case U = U,, and finally reach the utmost
generality in considering U = U, @ Us.

Proposition 17. Let U = U, be a unitary representation of I' in H. Assume
that P is a finite rank orthogonal projection onto a subspace of H and let € > 0
be given. Then there is kg € N such that for each k > kg there exists a finite
rank projection Qp with the properties:

() I = QrUEP| <e &€T(k);
(ii) dimQy, < 2Fe.

Theorem 18. Let U = U be a unitary representation of I' in H. If ¢ is a
state on A(H) such that oy is ¢-preserving, then

hg(ay,T') = 0.

The proof of this theorem (see [4]) is based on Proposition 17 and the method
involved is just the same as that used in the proof of theorem from [2].

Now we calculate the entropy for some special cases.
Let H = Lo(X, ), fe(x) = xe(x), where £ € T' and x¢(x) being a character
of X. The representation of I' in the space H is denoted by

Ucfe(x) = x¢(@) fe(z) = fesc(2),

where £, ¢ € I'. Then this representation determines the Bogoliubov action «
of T':

ac(a(f)) = a(Ucf), alf) € A(H).
Let A =cl be an operator on H, where 0 < ¢ < 1, and w4 the assosiated

quasifree state on A(H). It is clear that the action a¢, ¢ € T, of I' preserves this
state.

Lemma 19. Let H, A(H), o and A be as above. Then
hu 4 (@, T) = S(we) = n(c) + n(1 —¢),

where 1(c) = —c log c. Furthermore, the same formula holds for the restrictions
of we and o on A(H)e.

Given B € T'(n), we consider Hg = La(X(B),p|x(s)) C H. Let Us be the
restriction of U onto Hg. Then we have the representation £ — Ug(&) of ' in Hpg
which determines the action ag of T on A(Hpg).
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Lemma 20. Let Hg, Ug, ag and A = cl be as above. Then

1 1
huclag, T) = 5 S(we) = (n(e) + (1~ o)),
where n(c) = —c log c. Furthermore, the same formula holds for the restrictions

of we and ag on A(Hg)e.

Now we calculate the entropy for actions of I' on CAR-algebra in more intri-
cate cases.

Lemma 21. Let H; be an infinite dimensional separable Hilbert space with I;
being the identity map and U; a unitary representation of I' in H; such that for
eachi=1,2,...,r there are n; € N with U; being unitarily equivalent to Ug, (see
Lemma 20) for some B; € T'(n;). Let U = @;_, U; and A = @;_, ¢il;, where
0 <c¢; < 1. Then we have the formula

T T 1
th(a’ I) = Z wcl = Z nl n(ci) +n(l —¢)).
i=1 i=1

Furthermore, the same formula holds for the restrictions of w. and a on
A(H),, where H = ®]_, H;.

Remark 22. Suppose we are in the conditions of Lemma 21. Then since

WX (B) = i

the formula can be written as follows
wA a F Z,u C’L)+77(1 _cz))

Lemma 23. Let& — U(&) be a unitary representation of T' in H with Lebesgue
spectrum consisting of nonintersect subset F; C X such that F; = UﬁEF(ni) X(6:),
where 1 € J C N and n; € N, ny < ng. Let H; = Lo(F;, plr,) considered as
a subspace of Ly(X, p), and write U = @, ; U; with U; = Ul|g,. Suppose U;
has constant finite multiplicity m;, and let 0 < A; < I act on H; and commute
with U;. Writing U; = V;®...@V; (m; times) we assume A; = @), cjxlj, where
I; is the identity on the space on which representation V; acts. Let B; denote the

diagonal matrix
le 0

0 ijj
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Then Aj; = B; ® I;, and we have the formula

th ay, T Z,u’ TTm] B) +77(I_BJ))a
JjE€J

where T'ry,; is the usual trace on My, (C), A = @, A;. Furthermore, the same
formula holds for the restrictions of wa on A(H)e.

Proof. Wefirst assume J is finite, say J = 1, 2,...,7. We may write
U=Vie.on)e.oV,e..0V,),
m my
A=(c1i ®...®cim 1) D ... ® (er1 Ly ® ... D crm, Ir).

In view of Remark 22 we have

by, (au) = ZM(FJ‘) Z(n(cij) +n(1 — cij))

—Zu Trm; (n(By) +n(I - B))).

If J is infinite we may assume J = N. Let W, = @;_, U;. Then W, A = AW,
so if @, is the orthogonal projection of H onto @;-:1 Hj then the expectations
E; of A(H) onto A(Dj_, H;) defined by @, satiafying the conditions of Propo-
sition 4. Thus by Proposition 4 the proof is complete. ]

Now we consider the case when a singular part Us of U is absent.
Let m(U) denotes the multiplicity function of U,, that is m(U) = m(U,). Let
A=A, 0< A<, and wy = wyg.

Theorem 24. IfU = U, be a unitary representation of I' in H and 0 < A <1,
then

hwy (av,T) = (n(A) +n(1 = X)) /m(U)(I)du(m),
X

where n(l) = —l log 1, 0<1<1.

Proof The cases @ =0 and @ = 1 can be treated as in the proof of [2,
Theorem 6.1]. Let 0 < A < 1. We consider the entropy hy, (ar) as a map which
assigns to the multiplicity m(U) a quantity ¢(m(U)) = %hwk (ar(m(0))),
where S(wy) = n(A) +n(1 — A). The remainder of the proof follows from
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Lemma 25. Let S be the additive semigroup of functions f : X — N|J0
which are measurable with respect to Haar measure on X, 1 be a constant function
equal to 1 on X, and Tp, : § = S, n € N, given by (T f)(z) = X yer(m) f(9 + ),
z € X. Suppose the map t : S — R satisfies the following conditions:

(1) t(nl) =

(11) f<g= t(f) < t(g),

(wi) fj 7 f=1(f;) 7 f), jEN,

(i) t(Tnf) = 2"¢(f),

(V) t(f) =1t(g) if f = g(mod 0) with respect to the Haar measure.

Then
=/j@mmm
X

If S consists of the multiplicity functions f(z) = m(U)(z), one can prove that
t(m(U)) satiafies the conditions (i) — (V). For example, the condition (iV) is the
corollary of Proposition 10. Thus the formula holds when U = U,. [

Now we consider the general case.
The following lemma is a refinement of Lemma 21.

Lemma 26. Let H; be an infinite dimensional separable Hilbert space with I;
being the identity map and U; unitary representation of I' in H; such that for each
i=1,2,...,r there are n; € N that U; is unitarily equivalent to Ug, ®...®Up, (m;
times) where Ug, from Lemma 20 for some §; € T'(n;). Let U = @;_, U; and
A=@®;_,cil;, where 0 < ¢; < 1. Then we have the formula

T T

P, T) =37 S (we) = Y- 22bm(e) +n(L - ).

=1 =1

Furthermore, the same formula holds for the restrictions of w. and a on

A(H)e where H = ®]_, H;.

Theorem 27. Let U be a unitary representation of I' in H with absolutely
continuous part U, acting in H, C H and singular part U acting in H; C H. Let
A= Ay ® As commute with U(E) = Ug(é) ® Us(€), £ €T, 0 < A< I. Assume
A, and U, are as in Lemma 23. Then we have

th (aUa F) = hUJAa (aUa7 P)

and hy, (au,,T') is given by the formula in Lemma 23. Furthermore the same
hold for the restrictions to A(H)e.
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Proof We may restrict our attention to the case when U, consists of a
finite number of disjoint cylinder subset of X. Futhermore, if the multiplicity of
U, on one of the cylinder subsets is infinite then both sides of the formula are
infinite, hence we may assume each multiplicity to be finite.

If we can prove the lemma for U, and A, by the argument of Lemma 26, then
the general case follows. So we assume U, = @;_, U; and A, = @,_; ¢;];.

Assume f;¢, £ € I', is an orthogonal basis of H; such that

(Uic fie)(x) = £fie(z), ¢ € T(ny),

(Uic fig)(®) = fier¢(z), ¢ € Ty
Let

F =[fie(x), E€Tng,n,), i=1, 2,...,7]

be a subspace of H.

For n € N let Fi, = V¢ep(n) Ua(§)F. Then U2, Fy, is dense in H,. Choose an
increasing sequence (Gy,) of finite dimensional subspaces of H, with union dense
in Hy. Then |J,, F,, ® Gy, is dense in H, so by Proposition 8

N (ay) = liVILIl P g s (A(F, ® Gn)).
Let
an:Fn%Ha’ jGn:Gn_)Hs’
Jn = Jr, ®jg,  Fn®G, > H
be the inclusion maps, and let
%, + A(Fn) = A(H,) C A(H)

be the inclusion maps of the corresponding algebras. Fix n € N and let P, be the
orthogonal projection onto G,. Let € > 0, kg € N and Qp for k' > kg be as in
Proposition 17. Let k = n+ k'. Denote by pol (QrUs(d)jg, ) the partial isometry
appearing in the polar decomposition of QxU(d)jg, . Then

HUa((s)an @ Us(‘s)jGn - Ua(é)an @ pol (QkUs(a)JGn)”

is smal, where d € I'(k). Therefore, we can by [1, Proposition IV.3] assume

Hy, (ay(s) o aj,, 6 € T(k))
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< 2% + Hy,(ay, 5)js, opol(@uUs(d)jc,)» 0 € T(K))-

Let v : Qx(Hs) — H; be the inclusion, and let 4, : F;, — Fj, be the identity
map. Then we have

AU, (8)j 7, ®POl(QrUs(0)jc,) = CUa(8)@v © Xip@pol(QrUs(8)jc,, )"

It follows from properties of Hy, () that

Hy (v, (5)j5, ®pol(QrUs(8)jc, )» 0 € T'(K))

< Hy, (@0, (5)jp, ov)

= Hy, (aUa(é)GBIS O jp v, 6 € T'(k)),
where I is the identity on Hs. We may as in [1] identity oy, @y with M, =
A(F, ® Qx(Hy)). Then the last expression in above inequality becomes

Hy ,(ay,s)@1,(My), 6 € T(k)).

Let Z = @yserky Ua(0)Fn. Then A(Z) is a factor. Moreover, subspace Z is
invariant with respect to A. Therefore Z has an orthonormal basis of eigenvectors
for A and we have

wa = w|az) @ wlAz)e,

where A(Z)° is a relative commutant A(Z) in A(H). Let M = A(Z & Q(H;))
then A(Z)°M =~ A(Qk(Hs)). Since A(Z) is the tensor product with wy a
product state 2¥ copies of A(F) we have, since dim A(Qy(Hy)) < 22k5,

Swalu) = 28S(walar) + S(walazyenm)
< QkS(wA|A(F)) + 2%¢ log 2.

Since M contains ay, 5)er, (Mn), 6 € I'(k), as subalgebras,
Hy,(ay,@)o1,(My), 6 € T'(K))

< QkS('LUALA(F)) + 2Fe log 2.
We thus have, going back in the proof

1
2_kHwA(aU(5) oay,, 0 € L'(k))
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<e + S(walar)) + €log 2.
We therefore conclude that

ha g 00 (@) < S(walary),
whence
b 4 (@) < S(walacr))-

But view of Lemma 26 (or Lemma 21) we have
b, (Qu,) = S(walay)-
By Lemma 14, hy,_(ay,) < hy, (@u), hence they are equel and
ha, () = S(walagpy) = hwy, (av,)-

To see that the entropy is the same for the restriction to the even algebra
A(H), we know by Lemma 14 that

P po | acanye QU LAY ) S o 4] 4y, (@0 A )
< hy,(au) = bu,, (av,).

But by Lemma 23 (for restriction) we have

tha |.A(H)e (aUa |.A(H)e) = tha (aUa)'

Thus the proof is complete. [

Theorem 28. WithU = U,®U; a unitary representation of I' in the Hilbert
space H=H, ® H; and 0 < X < 1, we have

huwy(av, T) = (n(A) + ﬂ(l—A))/)(m(U)(m)dM(m),
where m(U) = m(U,).

The proof of theorem is cumbersome. We skip it but the idea is as in [2].
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OHTponusa neiicTBuii HEKOTOPOTo KJjacca rpynn
U ee BbIYUC/IEHUE

B.M. OJjexcenko

V3y4yeHo nuHaMUYECKYIO SHTPONUIO AeiicrBuii rpyun &2, k = 2,3,...,
na C*-anrebpax, KOTOpasi siBjsiercss 0000menuem suTponuu Konna—Haph-
xodep—Tuppunra aeiicTBuii rpyii, He SIBISOWUXCs CBOOOmHbIMEU HA (-
anredpe. NccmenoBaHbl CBOMCTBA, TaKOW SHTPOMUU U TOIyUeHa (HOpMyJia
JUIsSE KBQHTOBOM NMHAMUYECKON SHTPONUU OOroF000BCKOrO MEeACTBUS TPYIIIT
®Zr, k=2,3,..., na CAR-anrebpe. Joka3aHo, 4TO 4aCTh JEACTBUS, COOT-
BETCTBYIOIIAS] CHHTYJISIPHOMY CIIEKTPY, IaeT HYJIEBOMH BKJIAT B SHTPOIUIO.

Enrponisa aiit nqesikoro kJjacy rpyn Ta 11 o04uc/iaeHHs
B.M. Ousexcenko

Busyeno nuuamiuny ewrtpomioo niti rpyn ®©Zg, k = 2,3,..., ma C*-
anrebpax, sika € y3arajgbHeHHsiM eHtpomii Kona—Hapaxodep—Tippinra miit
rpym, mo He € BuibHuMu HA C*-anrebpi. JlocmimkeHO BIACTUBOCTI TAKOL
eHTpOIil 1 omepKaHo (GOopMyJly JJjis KBAHTOBOI AMHAMIYHOI eHTporii 6oro-
J1I060BCHKOL aii rpyn &Zk, k = 2,3, ..., na CAR-anrebpi. losemeno, mo
YaCTUHA [il, KA BiAMIOBiIA€ CHHTYISPHOMY CIEKTDY, JA€ HYIbOBUII BHECOK
B €HTPOTIIO.
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