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A diffeomorphic to sphere three-manifold of positive sectional curvature
with geodesics of given torus type is constructed.

Theorem 0.1. Given a pair of coprime integers (m,n),|m|,|n| > 2, there
exists a metric of positive sectional curvature in a compact three-manifold M,
with the following properties:

(a) M is diffeomorphic to S3;

(b) there exist geodesic embeddings of S* in M, isotopic to torus knots (m,n)
and (m —n).

In connection to the Theorem 0.1 above, we would like to propose the following
problem.

0.2. Is it true, that a positively curved metric in S admits only finitely many
different geodesic knot types?

The problem 0.2 seems to be conceptually related to a theorem of Choi-Schoen
on compactness of the space of embedded minimal surfaces of a given genius in a
Ricci-positive three-manifold (see 3.4).

1. Topology of cyclic quotients

1.1. Here we collect the facts we need on the topology of cyclic quotients.
Let N be a smooth manifold with a smooth action of a cyclic group Z,. Assume
that

(a) all stationary subgroups of points in N are either trivial or Z,, itself (this
is automatically so, if n is prime);
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(b) all components of the fixed point set Fix(N) are of codimension 2.

Then the quotient N/Zj, has a canonical structure of a smooth manifold.
Indeed, let @ C Fix(N) be a connected component. Fix an invariant Riemannian
metric in N. Let 1 be the rank two normal bundle to @) and let €D be the disc
bundle 7 of radius . For ¢ small the exponential map establishes a diffeomorphism
of eD onto a tubular neighbourhood of ). We may assume 7 to be orientable
(see below). Consider 7 as a complex line bundle. Then cut Ezp(eD) off and
glue the unit disc bundle of n®" to (N\Exp(eD))/Zy. Doing this simultaneously
for all @, we get a new manifold, homeomorphic to N/Z,. If n is not orientable,
consider the double covering 7 : Q — @ such that 7j = 7*7 is orientable. Denote
7 the involution of Q and 7 such that Q /T =@ and 7/T = 7, Observe that 7 is
an orthogonal and antilinear automorphism of 7, so it induces an orthogonal and
antilinear automorphism of 7®" which we denote again by 7. Now, glue 7"/
to (N\Ezp(eD))/Zy,.

1.2. Example. Let n be a smooth quasiprojective variety over R. Let 7
be the canonical involution of N(C), coming from Gal(C/R). Then N(C)/7 is a
(real) smooth manifold. In particular, CP? /7 is a four-sphere, |5, 6].

1.3. Cyeclic quotients of the three-sphere. Consider S? as a unit sphere
in the Hermitian space C? with the coordinates (21, z0). Denote by K and L the
geodesic circles zo = 0 and z; = 0. For a,b > 0 with a? + b = 1 consider a
torus Typ : |21| = a,|22] = b. The family T, form a fibration of S?\(K U L),
"converging" to K and L. Now, any Hopf circle, i.e. an intersection of §® with
a complex line, lies in one of T, p, namely, {25 = Az1} N S lies on T, with

1
a = ————— and b = ———. Observe that all tori T,; are equidistant
VI+P VI+ AP >

from K and L in spherical metric. Any such torus is a Heegard surface of the
decomposition S = D? x S U S' x D?.

Now, consider a Z,-action (z1,22) — (21, 6%22). It has K as a fixed point
set and acts free in S®\ K. According to 1.1, S3/Z, is a manifold. We claim
83 /7, ~ S3. Indeed, the action in the handle, which contains L, is free and
the quotient is obviously a handle again. The action in the other handle, which
contains K is fiber like, as in 1.1, and since the normal bundle to K is trivial, the
quotient is again a handle, which proves the statement.

Let n be an integer, coprime to m. Consider action of Zy, x Zn by (21,22) —
(ezﬁk 21, e%zg). Applying the diffeomorphism above twice, we get a following

lemmas.

Lemma 1.4. The quotient S3/Zy X Zy, is diffeomorphic to Ss.
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2. Constructing a metric in the cyclic quotient

The construction below uses the computations of Gromov and Thurston [4].
In that paper, Gromov and Thurston introduced negatively curved metrics on
ramified coverings of hyperbolic manifolds. Our situation is "dual" to that con-
sidered in [4], in particular, lifting to a ramified covering is replaced by descending
to a cyclic quotient.

Lemma 2.1. (Comp [4], p. 4). Given n € N and p > 0, there ezists a smooth
function o(r) with the following properties:
(i) o(r) = sinr for small r,
(i) o'(r) > 0 and " (r) <0,
si

(iii) o(r) = % forr>p.

The proof is immediate.
Now, the metric of S®\L can be written as

g = dr? + sin? rd©®? + cos?® rdt?.

Here t is the length parameter along K and (r, ©) are polar coordinates in geodesic
two-spheres, orthogonal to K.
Consider the cyclic quotient S3/Z,, and equip it with the metric

§ = dr’® + 0%(r)dO? + cos? rdt?,

where O here is the new angle parameter. Outside the p-neighbourhood of K/Z,
this is just a descend of the spherical metric by the (free) action of Z,,. The crucial
fact is the following.

Lemma 2.2. The metric § is a well-defined smooth metric on S3/Zy, of
strictly positive curvature, which is invariant under the (descend of) the Z,-
action. Qut of the small neighbourhood of K, the curvature of g is constant.

Proof. It is elementary to check that g is smooth with respect to the
manifold structure of $3/Z,,. The positivity of curvature follows form computa-
tions of [4], p. 4-5, with obvious changes (cosh — cos etc.). The invariance under
the Zp,-action is obvious from the construction.

2.3. Taking p small and repeating the construction with respect to the Z,,-
action, we come to the following lemma.

Lemma 2.3. The quotient S3/Zy, X Zy, can be equipped with the metric § with
following properties:

(a) the curvature of (S3)Zy, x T, §) is strictly positive

(b) outside arbitrary small neighbourhood of K/Zy, and L/Z,, the metric § is
a descend of the spherical metric of S3.

460 Matematicheskaya fizika, analiz, geometriya , 2000, v. 7, No. 4



Knotted totally geodesic submanifolds

3. Knotted geodesics

Lemma 3.1. The image of any Hopf geodesic circle in S* outside the p-
neighbourhoods of K, L is a torus knot (m,n) in S°/Zy, X Ly, ~ S3.

Proof Lety= (2= X2)NS% A€ C, be a Hopf circle. According
VI+HD?Z o
may be written in parametric form as ¢ — (e*,e"). The quotient map Ty —

Top/Zm X Ln = T2 can be written as (¢'©,e'®) — (€™©,e™7). So the image of
v is t — (e™*, e"™) which is (m,n) torus knot.

to 1.3, v C T, with a = In angle coordinates (e'®,e'™) on Typ, v

3.2. Geodesics of different knot type. Consider a new complex structure

in C? defined by the matrix ( ?) Observe that K and L are still Hopf

—1
0
circles which respect to this new complex structure. The tori 755 have the same
equation |wi| = a,|we| = b with respect to new coordinates w; = z1,we = Zo.
Hence they contain a Hopf circle wy = Aw;, which descends to a geodesic in M,
which is isotopic to the torus knot (m, —n). Since torus knots are invertible, but
not amphicherical ([3]), we get two different knot types among geodesics in M.
This concludes the proof of the Theorem 0.1.

3.3. Questions and remarks

3.3.1. May knots other than torus knots be realized as geodesics of positively
curved metric in §3?

3.3.2. Fix a pinching constant §. Can a three-sphere with a d-pinched metric
have geodesics of arbitrary torus knot type?

3.4. Suppose S9 C (S3,can) be an immersed minimal surface of genus g
whose image do not touch K U L. Applying the construction above, we come
to a minimal surface in M with "a lot of" selfintersections. In particular, one
may start with a Clifford torus close to T N AYN2 This situation contrasts the
compactness theorem of embedded minimal surface of a given genus [7]. For
g > 2, are may therefore ask a following question:

May a compact minimal surface in S% of genus g > 2 avoid a geodesic circle?

3.5. We sketch a different type of examples which lead to Theorem 0.1. in
case when both m,n are odd. Start with a positively curved metric in S2. Let
M = US?, a unit tangent bundle with the Sasaki metric (making US? — S? be
a Riemannian submersion). If the curvature of S? is less than 1//3, then US? is
positively curved. This follows from O’Neil formula for Riemannian submersion
with totally geodesic fibers ([2, Ch. 9]). Since US? ~ RP?, the double cover of
US? is the three-sphere.

Now, we may take the metric of S? to be rotationally invariant. Then the
computations of [1] show that we have the full control on closed geodesics of S2.
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In particular, there are closed trajectories of the geodesic flow in U S?, whose lift to
S3 will be a torus knot of a given type (m,n) if both m,n are odd. Unfortunately,
already the trefoil knot may not be realized in this way.

3.6. Concluding remarks. It looks like that there exists a positively curved
metric on $* with a totally geodesic RP? having the normal Euler number four.
Indeed, look at the standard Kahler metric in CP2. The canonical autoholomor-
phic involution 7 : CP2 — CP? is an isometry and CP?/7 ~ §* . The fixed
point set Fix(7) is a totally geodesic RP? C CP2. It is possible to mimic the
construction of 2.2. and find a perturbation of the quotient metric in CP? /7 in
directions orthogonal to RP? (recall that there exists exactly one totally geodesic
surface, also isometric to RP?, meeting Fix(7) orthogonally at a given point). The
curvature tensor, however, is no more diagonal, and it is a nontrivial problem to
check if the curvature is positive. Observe that the resulting metric admit an
isometric SO(3)-action, and the equidistant from RP? manifolds are lens spaces
SO(3)/Zy ~ S3/74 with a homogeneous metric, which is different from Berger’s
metrics.
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3ay3J/ieHHbIE€ BIIOJIHE I'€0Ae3UYECKNE IIOAMHOro00pa3us
Ha cdepax TMOJIOKUTEJIbHON KPUBU3HbBI

Anekcamnap Pesnunkos

Crpourcst quddeomopdHoe chepe Tpu-MHOrooOpasue MOIOKUTETHHON
CEeKIIMOHHOM KPUBU3HBI C TEOIE3MYECKON HAMEPe]] 33 JAHHOTO TOPHYECKOTO
THUIIA.

3aBy3JieHi IIJIKOM reoIe3nYHi MiJIMHOTOBUAU Ha cdepax
JI0aTHbOIT KPUBUHU

Ounekcanap Pe3nikos

Bynyerbcs nudeomopduuit cdepi Tpu-MHOrOBUI NOAATHBOI CEKIIAHOL
KPUBUWHY 3 T€0JE3WYHOI0 HAIEePe s 331aHOr0 TOPUIHOrO THUILY.
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