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The paper solves the problem of analytic continuation for the holomor-
phic discrete series of representations for the quantum group SU(2,2). In
particular, a new realization of the ladder representation of this group is pro-
duced. Besides, g-analogues are constructed for the Shilov boundary of the
unit ball in the space of complex 2 x 2 matrices and the principal degenerate
series representations of SU(2,2) associated to that boundary. A possibi-
lity is discussed of transferring some well known geometric constructions
of the representation theory to the quantum case: the Penrose transform,
the Beilinson-Bernstein approach to the construction of Harish—Chandra
modules (for the case of the principal nondegenerate series).

1. Introduction

We consider some series of modules over the quantum universal enveloping
Drinfeld-Jimbo algebra U,g in the special case dimg < oo, 0 < ¢ < 1. The
finite dimensional U,g-modules are closely related to compact quantum groups;
those were investigated well enough [4, 13]. Infinite dimensional U,g-modules we
deal with in this work originate from our earlier paper [19], together with some
applications therein to the theory of g-Cartan domains. To make the exposition
more transparent, we restrict ourselves to a g-analogue of the ball in the space of
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Geometric realizations for some series

all complex 2 x 2 matrices U = {z € Maty|z2* < 1}, which is among the simplest
Cartan domains.

The classes of infinite dimensional U,g-modules in question differ from those
considered by Letzter [11]. The problem of producing and investigating of the
principal series of quantum Harish—Chandra modules in our case appears to be
essentially more complicated.

It is worthwhile to note that some properties of the ladder representation of
the quantum SUj 2 described below are already well known [2].

Everywhere in the sequel 0 < g < 1, the ground field is C, and all the algebras
are assumed to be unital, unless the contrary is stated explicitly.

Consider the Hopf algebra U,g = Uysl, determined by the standard lists of
generators Ej, Fj, K;Cl, j = 1,2,3, and relations [4, 13]. The coproduct A, the
counit €, and the antipode S are given as follows:

AEj = E;®1+K; ® B, e(Ej) =0,  S(Ej)=-K;'E
AF;=F;@ K;' +1& Fj, e(Fy) =0, 5(Fj) = —FjKj,
AK; = K; ® K;, e(K) =1,  S(K;)=K;"

We call a U,g-module V R3-admissible if V = @ V), with p = (u1, 2, p3) €
7

R, Vi = {v € V| K;'v = ¢™v, j = 1,2,3}. Let Ujt C Uyg be the Hopf
subalgebra generated by K;El, E;, Fj, K;El, Jj = 1,3. Every Uzg-module inherits
a structure of Ugt-module. We are interested in quantum (g,¥%)-modules,
i.e., R3-admissible U,g-modules which are direct sums of finite dimensional
Ugt-modules.

Equip the Hopf algebra U,g with an involution:

E} = —KyF, Fy=-EK,'  Kj;=Ko,

Ej = K, F}, Ff = EjKj‘l, K; = Kj, j=1,3.

We thus get a *-Hopf algebra (U,g,*) which is a g-analogue of Usuyo and its
subalgebra (Ugt, *) is a g-analogue of Us(ug X ug).

A quantum (g, €)-module V is said to be unitarizable if (vy,v2) = (v1,E&*v9)
for some Hermitian scalar product in V' and all v1,v3 € V, £ € Uyg. Our purpose
here is to produce some series of unitarizable quantum (g, £)-modules by means
of non-commutative geometry and non-commutative function theory in g-Cartan
domains [19, 15-18].

The third named author would like to express his gratitude to H.P. Jakobsen,
A. Klimyk, A. Stolin, and L. Turowska for helpful discussions.
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2. The Ugsu, ;-module algebra Pol(Pls 4)q x

Let e, e, €3, e4 be the standard basis in C*. Associate to every linear operator
in C? its graph, a two-dimensional subspace in C* = C? x C2?, which has trivial
intersection with the linear span of e1,es. We are interested in the pairs (L,w),
with L a subspace as above and w its non-zero volume form (an skew-symmetric
bilinear form) in L. We need a g-analogue of this algebraic variety which we call

p
)

L, together with ¢! related to the volume element w, work as 'coordinates’ on
P12,4.

An algebra F is called a Uyg-module algebra if the multiplication m : FQ F — F
is a morphism of U,g-modules, and the unit 1 € F'is a Uyg-invariant. To rephrase,
one can say that for all fi,fo € F, 5 =1,2,3,

the Pliicker manifold Plp 4. The matrix elements (: ) of the linear operator

Ej(f1f2) = Ej(fi)f2 + (K; f1)(Ej f2), E;1=0,
Fi(f1f2) = (Fif1)(K; ' f2) + f1(Fj f2), Fj1=0,
K (fuf2) = (K7 f1) (K fa), K'1=1

In the case of a *-algebra F' one should impose an additional compatibility
requirement for involutions:

(€)= (SE)"f" (€U, fEF.

Once the x-algebra F' is given by the list of its generators and relations, the
Uyg-module structure in F' is determined unambiguously by the action of the
generators Ej;, Fj, Kfl, j =1,2,3, on the generators of F.

Consider the x-algebra Pol(Maty), given by its generators a, 3, vy, d and the
following commutation relations (the initial six of those are well known and the
rest was obtained in [16]):

{aﬁzqﬁa {ow:qva {ﬂ“r:’yﬁ

v§ = géy Bs = g¢ép ’ ad = ba+(q—q By’
6" = 6" * * — *
5*1(; _ Zﬁa* 7o = qay — (q 1 Q)ﬁ(s
; Y8 = By ;
6* = 5* * * *
7 77 Yy = @yt — (1 —-¢*)86* +1— ¢

56 = ¢%66" +1—¢?

{ Bra = qaf*— (¢t —q)vo*
BB = BB —(1—¢»)o6*+1—¢* "’

a*a=gaa* — (1—¢*)(BB* +77*) + (g7t — ¢)200" +1 - ¢%
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The *-algebra Pol(Ply4)e, is given by the generators «, 3, v, 6, t, t~1 the
commutation relations as in the above definition of Pol(Mats),, and the additional
relations t#t~! =t~ = 1, tt* = t*¢, 2t = qtz, 2t* = qt*z, with z € {a, 3,7, }*.

An application of a g-analogue for the above geometric interpretation of the
Pliicker manifold allows one to prove

Proposition 2.1. i) There ezists a unique structure of Uysug 2-module algebra
in Pol(Matg), such that

Eia E:f\ _ 12 (0 « Esa E3B\ _ 12(0 0

El’y Elé —4 0 Y ’ Eg’y E35 14 87 ,8 ’
Fla FIf\ _ 42(B 0 Fza Ff g\

Fy Fos)-% \s o) Fyy F36 ’
(Kla K1ﬂ> _ (qa qlﬁ) (Ksa Kaﬁ) _ ( g qﬂ )
Kiy Kié oy q'6)’ Kzy K3 gy q7'6

Eya B\ _ 1y (a7'By 0B Fa F2ﬁ g\

Eyy By 7 sy 8%) \ Py ’
(Kza K2ﬂ> _ (Oé Qﬁ)

Kyy Kb o ¢*)

i) There ezists a unique structure of Uysug 2-module algebra in Pol(Pla 4)q.5 such
that the action of Ej;, F}, K;El on a, B, 7, § is given by the above equations and

Eit = 0 Byt = ¢ Y5
th = 0, j:1,3; FQt =0
Kit =t Kot = q7't

Note that a much more general result is obtained in [16].

To produce the series of quantum (g,€)-modules considered in the sequel
we use essentially the specific dependencies of the elements Eot?, Fyt?, K;Elt’\
By ((ad —gBy)"), Fa((ad —qBy)Y), K ((ad —gBy)*) on ¢*. Tt is easily deducible
from the definitions that for all A € Z4

—2A

-3/24

g2 — 5t Fth =0, KF'th = g7,

Bal(ad — apo)) =~ 5= (a0 - g

*The notation x = tt* and Pol(Pls,4),,, are justified by the fact that the algebra Pol(Pls 4)g,»
in question can be derived as a localization of another useful algebra Pol(Pl; 4), with respect to
the multiplicative system z".
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—2X _ 1
Fy((ad — gBy)*) = q1/2qq_27_10(045 — By, A#0,

K3 ((ad — gB)*) = ¢ (ad — ¢B7)*.

For instance, the first relation is obvious for A = 0, and the general case is
accessible via an induction argument:

2

22
Ey(MY) = (Bat)t) + (Kot)(Byt?) = ¢~ /246t + ¢~ 1tq™%/ 261_271&,\
q p—
-2\ _ —2(A+1) _
_ _5/9q 1 _ _a/9q 1
— (q 1/2+q 5/2 - q (PP —q 3/2 — ST
g *—1 g~ —1

3. The analytic continuation of the holomorphic discrete series:
step one

Consider the subalgebra C[Pls 4]+ C Pol(Ply4)sr generated by «, S, 7,
5, t, t~L. Equip it with a Z-grading: dega = degf = degy = degd = 0,
deg(t*!) = +1. The homogeneous components of this algebra are quantum (g, £)-
modules*.

Consider the subalgebra C[Mats], C Pol(Mats), generated by «, 3, v, d. This
algebra constitutes a famous subject of a research in the quantum group theory.
Associate to each A € Z a linear operator iy : C[Matg], = C[Plaalgs, ix : f —
ft=*. This isomorphism between the vector space C[Mats], and a homogeneous
component of C[Ply 4], allows one to transfer the structure of Uysls-module from
C[Pl2,4]q, to C[Matz],. Thus we obtain a representation of Uysly in C[Maty],, to
be denoted by m,x. For all £ € Uysly, f € C[Maty],, the vector valued function
7,2 (€)f appears to be a Laurent polynomial of an indeterminate ¢ = ¢*. This
leads to the canonical analytic continuation of the operator valued function .
The term ’analytic continuation of the holomorphic discrete series’ stands for the
above family m,» of representations of Ugsly.

The results of the work by H.P. Jakobsen [5] imply that the quantum
(g, €)-modules 7, are unitarizable for all A > 1. We follow [17] in finding an
explicit form for the related scalar product.

Consider the Pol(Matz),-module given by a single generator v and the rela-
tions o*v = f*v = y*v = 6*v = 0. The associated representation 7" of Pol(Mats),
in the vector space H = C[Mats],v is faithful; it is called the vacuum representa-
tion.

*The notation C[Pl 4]+ can be justified in the same way as the notation Pol(Pls 4)q.. in-
troduced in the previous section.
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Let p be the linear operator in H that realizes the action of the 'half-sum of
positive coroots’:

1
pla®y %) = 2 (3a-+2b + 2 + d)a’ By o,
with a,b,c,d € Z,. We need also the element

y=1—(aa* + BB + vy + 00%) + (ad — gBv)(ad — qBv)*,

which is a g-analogue of the determinant det(1 — zz*), with z = (: g)

As a consequence of the results of [17] we have

Proposition 3.1. i) For X\ > 3 the linear functional

aef tr(T(fy*)g~>")
/ fava = tr(T(y*)q—27)

Uq

is well defined and positive on Pol(Maty),.

ii) For X\ > 3 the scalar product (f1, fa)px = [ f5fidvy in C[Matg], is well
Uq
defined, positive, and

(ﬂ-q)\ (f)flan)q”‘ = (f177rq>‘(§*)f2)q2>\a £ € Uqga fi.f2 € C[Mat2]q-

The representations mx, A = 3,4,5,..., are g-analogues of the holomorphic
discrete series representations, and the completions of C[Mats], with respect to

the norms ||f|,2x = (f, f )léf are g-analogues of the weighted Bergman spaces.
Our intention in what folfows is to present explicit formulae for the analytic
continuation of the scalar product (f1, f2),2xn with respect to the parameter g
and to prove the positivity of this scalar product for A > 1.

To conclude, consider the U, ¢-invariants

Y1 =aa" + 36" +yy" + 66", yo = (ad —qBy)(ad — qBy)".

Prove that T'(y1)T(y2) = T(y2)T(y1), or equivalently, y1y2 = yoy1. In fact,
observe that H admits a structure of Ugk-module (£(fv) = (£f)v, £ € Uk, f €
C[Mats],) and splits into a sum of pairwise non-isomorphic simple Uj€-modules

H= @ Hkk) ghuk) = 1 eskr1—F2(af — gBy)F2v. What remains is to
k1>k2>0

take into account that the restrictions of T'(y1), T(y2) onto H®*1#2) are scalar
operators by the ’Schur lemma’. Those scalars are easily deducible:

T(y1)| gt i) = 1 — ¢ +¢72(1 — ¢°*),
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T (y2)| gy = g 2(1 — g?*2) (1 — g*F1HD),

Just as one could expect, the joint spectrum of the operators T'(y1), T(y2) tends
to

{(tr(zz*),det(z2*))| z € U} = {(y1,12)| 0 <11 <2 & 0<1y, <yi/4}

as q goes to 1.

4. An invariant integral on the Shilov boundary

Let ¢ = ad — gBy and C[GLz], be the localization of C[Mats], with respect
to the multiplicative system c. It is easy to prove the existence and uniqueness
of an extension of the U,g-module structure from C[Mats], onto C[GLz],. Equip
the Uyg-module algebra C[G Ls], with an involution:

o =g *(ad — gBy)7's, B =—q (ab —qBy) ",
v =—q""(ad — gBy)7'B, §* = (ad — gBv) " 'a,

and introduce the notation Pol(S(U)), = (C[GL2]g, *)-
The following propositions justify our choice of the involution.

Proposition 4.1. For all f € Pol(S(U)),, £ € Uyg one has

€)= (SE)"f*

Proposition 4.2. There exists a unique homomorphism of U,g-module *-
algebras j : Pol(Maty), — Pol(S(U)), such that j(a) = «, j(B) = B, j(v) =7,
j(6) = 4.

These statements are proved in an essentially more general form in [18]. It also
follows from the results of the work that the U,g-module *-algebra Pol(S(U)), is
a g-analogue of the polynomial algebra on the Shilov boundary S(U) of the unit
ball U in the space Mats of complex 2 x 2 matrices.

The Ugt-module Pol(S(U)), splits into a sum of pairwise non-isomorphic
simple finite dimensional submodules. In particular, the trivial Ug€-module ap-
pears in Pol(S(U)), with multiplicity 1 and there exists a unique Uj¢-invariant
integral p: Pol(S(U))y = C, f— [ fdu,with [ 1ldp=1.

S(U)q S(U)q

Proposition 4.3. The above Ugt-invariant integral is positive definite.
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Proof. Consider the x-algebra Pol(Uy), of regular functions on the quantum
Us [9], together with the *-homomorphism of algebras i : Pol(S(U)), — Pol(Us),
given by

i(a) =q ', i(B) =q7'B,
i(y) =1 i(0) = 4.

The positivity of an invariant integral on the quantum group Us constitutes
a well known fact. So, what remains is to prove the invariance of the integral

Pol(Us), — C, f / i~ f)dp
S(U)q

with respect to the action of Ujus by right translations on the quantum U,. This
is a consequence of the invariance of y with respect to the action of the subalgebra
in U,k generated by Ei, Fi, KI', (K1 K3K3)*!. n

~

Now introduce an auxiliary Ugzg-module *-algebra Pol(S(U)),, to be used in
a construction of the principal degenerate series of quantum (g, €)-modules.

The x-algebra Pol(S(U)), is defined by adding ¢, ¢! to the list o, 3, 7, 6, ¢!
of generators of Pol(S(U)), and

wl=t"t=1, =1t

2t = qtz, 2t* = qt*z, with z € {a, 8,7,d}

to the list of relations.
The next two statements follow from the results of [18].

Proposition 4.4. i) There exists a unique exstension of the structure

~

of Ugg-module x-algebra from Pol(S(U)), onto Pol(S(U)), such that

Eit =0 Ext = ¢ V%5
Fit = 0, j=13, Bt = 0
Kit = 0 Kot = gt

ii) There ezists a unique homomorphism j : Pol(Pla4)gz — Pol(§(U))q of
Uyg-module x-algebras such that

3\((1) =, }\(ﬁ) =B, ./7\(’7) =7 ./7\(5) =4, ;(til) ==
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Proposition 4.5. The subspace t*"2Pol(S(U)),t™2 is a submodule of the

~

U,g-module Pol(S(U)),, and the linear functional

t*2Pol(S(U)),t 2 — C, 2t / fdu
S(U)q

is an invariant integral (i.e., a morphism of Uyg-modules).

5. An analytic continuation of the holomorphic discrete series:
step two

Just as in the classical case ¢ = 1, one has

C[Matg]q = @ C[Matg](gkl’k2) = Uq%lﬂ—kz (ad — qlg,),)kz’
k1>k2>0

with (C[Matg],(lkl’kz) being simple pairwise non-isomorphic UgE-submodules of
the Ujt-module C[Mats],. Introduce the notation f (k1:k2) for a projection of f
onto the Ugt-isotypic component (C[Matg](gkl’h) parallel to the sum of all other
Ugt-isotypic components.

By the 'Schur lemma’, every Ujt-invariant Hermitian form (f1, f2) on C[Maty],

is given by

(Fi:f2) = D el ko) / (5 plEkay,

Fi2ks 20 S

We are going to obtain this decomposition for (f1, f2)42x, A > 3. Recall the
m—1

notation (a;¢%)m = [] (1 — ag¥).

7=0
Proposition 5.1. For all A > 3, fi1, fo € C[Mats],,

/f;fldy*: > ek k2, g™ /(fz(kl’kz))*ffkl’k”du,
Uq

F12ka20 S
with

(q4;q2)k1 (q2;q2)k2 (5 1)
(@ )k, (POD5¢), '

C(kla k?a q2)\) =
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Proof Inthe case ¢ = 1 a similar result was obtained by Faraut and
Koranyi [3] in a very big generality. Our proof here imitates that of [3].

First introduce the subalgebra C[Mats], C Pol(Mats), generated by o*, 3*,
v*, 6%, and the algebra C[Mato]o® which differs from C[Mats], by replacement
of the multiplication law with the opposite one. We use the algebra C[Matg X
Mat,], def C[Mats], ® C[Maty]g® as a g-analogue for the algebra of (degenerate)
kernels of integral operators.

Equip C[Mats x Mats], with a bigrading

deg(a®1) =deg(f®1) =deg(y®1) =deg(d ®1) = (1,0),

deg(l ®@ @) = deg(1 ® 5*) = deg(1 ® v*) = deg(1 ® §*) = (0,1)

and the associated topology. The completed algebra C[[Mats x Mats]], will work
as the algebra of generalized kernels of integral operators [17].

Just as in the case ¢ = 1 one can deduce Proposition 5.1. from the following
three lemmas.

Lemma 5.2. Given k1,ko € Z, k1 > ko > 0, denote by Py, i, the projection in

C[Matg], onto the component (C[Matg]gkl’kz) parallel to the sum of all other U,e-

isotypic components. There erists a unique element py, r, € C[Maty x Mats],
such that

Pio o f (2) = / Do ka2 ) F(Q)da(€)

S(U)q
for all f € C[Mats],.

Introduce the notation L%(dvy),, LZ(dvy), for completions of vector
spaces Pol(Matz),, C[Mats], respectively, with respect to the norm |[|fl|,x =

1/2
( [ fdu,\> . These are well defined for A > 3, and certainly L2(dvy), C
Uq

L2 (dl/)‘)q.

Lemma 5.3. Given A > 3, denote by Py the orthogonal projection in L2(d1/)\)q
onto L2(dvy),. There ezists a unique K € C[[Mato x Mats]], such that

Puf(z) = / Kx(2,0)F(€)dva(C).
U,

for all f € Pol(Mats),.
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Lemma 5.4. In C[[Maty x Maty]], one has

1
Ky, = E —
A C(kl,kQ,A)pkl’kQ’
k1>k2>0

with c(k1, ke, A) being given by (5.1).

Lemmas 5.2, 5.3 can be proved in the same way as in the case ¢ = 1. Turn
to the proof of Lemma 5.4.

We are going to use the Schur polynomials

k1—ka+1 k1—ko+1
. '/L‘]. - x2

Sklkz(xlaxQ) = ($1$2)k2 Tl — Ty

These are expressible in terms of elementary symmetric polynomials:
Skiks (T1,2) = Ukyky (T1 + T2, T172).

(The polynomials ug,k, are closely related to the well known Chebyshev polyno-
mials of the second kind Uy, —k,(z))-

J_ g o0 .
Recall the notation [j]; = %, (a;¢%)0 = [] (1 —ag¥) and consider the
q—q j=0

kernels x1 = a®a* + 3L +7®@7*+I®6*, x2 = c®c* with ¢ = (ad —gBy) €
Pol(Matg),.

Lemma 5.5. 1) pkl,k2 = qk1+k2 . [k1 - kJQ + l]q . ukle(Xl,Xg),

-1
i) K = [T (1= P Dx; + ¢* A Hi)yy) (HO (1—¢¥x1 + q4ij)> :
J= J=

The first statement of Lemma 5.5 are easily deducible from the orthogonality
relations for matrix elements of representations of the quantum group Us. The
second statement follows from the results of [17].

Lemma 5.4 is a consequence of Lemma 5.5 and the following well known
relation in the theory of Schur polynomials [12]:

(@213 (622:6°) s

(331;(12)00 - (902;(12)00
S (@ @), (P75 ¢)
(4% ¢H) k(4% 4P ks

k
2 [k)l — kg + 1]q . q(k1+k2)8k1k2 (.’L‘l, 3:2).
k1>k2>0

The above proof of Proposition 5.1 is transferable quite literally onto the case of
quantum SU, , and a g-analogue of the unit ball in the space of n x n matrices.
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6. Analytic continuation of the holomorphic discrete series:
ladder representation of the quantum group SU,»

It is explained in [3] that the results like our Proposition 5.1 allow one to solve
the problems of irreducibility, unitarizability, and composition series of the rep-
resentations m,x. We restrict ourselves to some simplest corollaries from Propo-
sition 5.1.

Proposition 6.1. Suppose that either A > 1 or ImA € 1quZ- Then the
sesquilinear form (f1, fa)2x is positive definite, and for all fi1, fo € C[Maty]y,
€ € Uyg one has

(ﬂ-q/\(g)flafZ)q”‘ = (f1,7Tq>\ (5*)f2)q2)" (62)

Proof. The positivity follows from Proposition 5.1. Let ¢ = ¢*. If Im¢ = 0,
both sides of (6.2) are rational functions of {. So, what remains is to use the fact
that this equality is true for 0 < ¢ < ¢3. [ |

Turn to the case A = 1. It follows from Proposition 6.1 that the kernel of
the sesquilinear form (f, fo) = )\lilln 0(1 — ) (f1, f2)42» is a common invariant
-1+

subspace for all the operators my(£), £ € Uyg. Explicitly, this kernel is

L = @ CMat] 0.

oo
k=0

On L one has a well defined Hermitian form (f1, fo) = \ lilliJlr 0( f1, f2) 2r, and hence
%

the quantum (g, ¢)-module associated to the restriction 7|y, is unitarizable. The
representation 74|z is a g-analogue of the well known ladder representation.

In the case ¢ = 1 the subspace @5, C[Mat]#?) coincides with the kernel

of the covariant differential operator 0 = — — — iﬁ Our intention is to
Oadd 0B Oy

obtain a g-analogue of this result*.

We use a notion of the first order differential calculus over an algebra A and
a covariant first order differential calculus as in [10].

Among well known U,e-invariant first order differential calculi over C[Mats),
one has to distinguish a unique Ujg-invariant calculus. A general method of
producing such differential calculi (with hidden symmetry) for g-Cartan domains

is described in [19].

* A similar result was obtained by V. Dobrev [2] and H.P. Jakobsen [6] in a different context.
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The first order differential calculus we need is determined by the following
‘commutation relations between coordinates and differentials’ (these are written
in R-matrix form in [16]):

da - a = ¢*ada, do - 8 = qBda — (1 — ¢*)adp,

do -y = qydo — (1 — ¢°)ady, do- 6 = dda — (¢ — q)(vdB + Bdry)
+ (¢ " —g)%ads,

df - a = qa-dp, dg - B = q’Bdp,

dB -y =ydB — (¢~ — q)ods, df -8 = qddB — (1 — q°)Bds,

dy - a=qady, dy -y = ¢*vdy,

dy- B =Bdy— (¢ — q)ads, dy - 6 = qédy — (1 — ¢*)yds,

dd - a = add, dd - v = grydo,

dé - B = qfds, dé -8 = ¢%6ds.

It is worthwhile to note that it admits an extension up to a Uyg-module first
order differential calculus over Uyg-module algebra C[Plg 4], dt -t = g tdt,

dz -t =q tdz, dt-z=q ‘zdt+ (g2 —1)tdz for all z € {a,p,,d}.

Turn back to C[Matg],. The operator d is given on the generators of this
algebra in an obvious way and is extended onto the entire algebra via the Leibnitz

rule. The operators 86 8(; aa 865 in C[Mats], are imposed in a standard way:
3f L of 3f L 9F s
df = 8 3 =5df -|- 8 5

As an easy consequence of the definitions one has

0 0 0 0
Proposition 6.2. Let [, = 5 95 qﬁa_ﬁ’

i) Oy intertwines mq and g3 !

73 (§)0g = Ogmg (), £eUyg.

#) L = KerO,.
e 2ks 1— q2(k1+1)

_2.1_q .
2

1—g¢

'5”) (a5 - q’B’Y)Dq|C[Mat2}EIk1’k2) =4q 1 _ q2
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Corollary 6.3. For all s e N

Dq(a‘S —qpy)’ = bq(s) (b — QIB'Y)S_l,

by(s) =q - 1_q228 : 1_q2(s2+1)
1—¢q 1—gq

bq(s) is a g-analogue of the Sato-Bernstein polynomial b(s) = s(s+ 1) for the
prehomogeneous vector space Maty. In a recent preprint [7] and the works cited
therein, another approach to g-analogues for algebras of differential operators was
used to produce g-analogues of the Bernstein polynomials.

Consider the vector space C* (with its standard coordinate system t1, to,
t3, t4), together with the associated projective space CP®. Let L. C CP? be
a projectivization of the plane t3 = t4 = 0. It is well known that in the case ¢ = 1
the ladder representation is isomorphic to the natural representation of Ug in the
cohomologies H*(CP? \ L, O(—2)). A computation of these cohomologies by the
Cech method leads to the Laurent polynomials:

H' ((C]P’?’ \L’ O(_2)) = Z Cj ,j2,j3,j4t{1t%2t§3ti4 >
(j17j27j35j4)6J

with J = {(j1, jo, j3, Ja) € Z*|j1 > 0, jo > 0, j3 <0, ja <0, j1+jo+jz+js = —2}.
So, one has two geometric realizations of the ladder representation of SUs 2
(those in H'(CP3?\ L, O(-2)) and in Ker ).
The lowest weight subspace in H'(CP3\L, O(—2)) is generated by the Laurent

polynomial 5 ltzl, and in the kernel of 0 = by the constant

0a 00 OB 0y
function 1. There exists a unique isomorphism between the two realizations of the
ladder representation which takes t3 ltzl to 1. This operator is very essential in
the mathematical physics and is called the Penrose transform [1]. A replacement
of the commutation relation ¢;t; = t;t; by t;t; = qt;t;, ¢ < j, allows one to transfer
easily the above observations onto the case 0 < ¢ < 1 (more precisely, everything
but the notion of cohomologies for quasi-coherent sheaves). It is just the way
of on which another realization of the ladder representation and the quantum
Penrose transform appear.

7. The principal degenerate series of quantum Harish—Chandra
modules

In the classical theory the principal series of Harish—-Chandra modules are
associated to parabolic subgroups P. Our purpose is to produce a g-analogue of
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the principal series of Harish-Chandra modules associated to a stability group P

for a point of the Shilov boundary p € S(U).

We call a Uyg-module V Z3-admissible if V = @V}, with p = (1, po, u3) € Z2,
B

Vu={veV|Kv=q*v, j=1,2,3}.

A quantum Harish-Chandra module is a finitely generated Z3-admissible U,g-
module V such that

i) V is a sum of finite dimensional simple U ¢-modules,

ii) each simple finite dimensional U ¢-module W occurs in V' with finite mul-
tiplicity (dim Homg, ¢(W, V) < 00).

Quantum Harish-Chandra modules are quantum (g, £)-modules, and the no-
tion of unitarizability is applicable here. The rest of this section is devoted to
producing the principal degenerate series of the unitarizable quantum Harish—
Chandra modules. Note that producing and classification of simple unitarizable
quantum Harish—Chandra modules still constitute an open problem even in our
special case of quantum SU> .

In the case A € —2Z one has a well defined linear operator Pol(S(U)), —
Pol(§(U))q, f— f-(ad —qfy)~*?t~*. The same argument as that applied in
Section 3 to produce g, yields

Proposition 7.1. There ezists a unique one-parameter family T,x of repre-
sentations of Uyg in the space Pol(S(U)), of polynomials on the Shilov boundary
of the quantum matriz ball such that

i) for all X € =27, € € Uyg, f € Pol(S(U)), one has

(T2 () ) (@b — gBy) M2 = €(f(ad — gBy) V27,

i) for all £ € Uyg, f € Pol(S(U)),, the vector function T,x(§)fis a Laurent

polynomial of the indeterminate ¢ = ¢*.

Note that the multiple (ad — qﬂ’y)_)‘/ 2 provides the integral nature for weight
of 7,x. We are to produce a g-analogue of the principal degenerate series of
Harish-Chandra modules associated to the Shilov boundary S(U).

Turn to a construction of the corresponding principal unitary series.

Proposition 7.2. In the case Re A = 2 the quantum Harish—Chandra module
associated to Tyx is unitarizable:

| slp@min= [ op©n) nd (7.3)
S(U)q S(

U)q

for all f1, fo € Pol(S(U)),, & € Uyg.
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Proof. Therepresentation 7, can be defined in a different way, as one can

~

extend the Uyg-module algebra Pol(S(U)), via adding to the list of generators the
powers t*, (t*)*, (ad —¢qBy)* for any A € C. The relations between the generators
of the extended algebra as well as the action of Ej, Fj, K;El, j =1,2,3, on
them are derived from the corresponding formulae for integral powers of ¢, t*,
and ad — gfv via the analytic continuation which uses Laurent polynomials of
the indeterminate ¢ = ¢*». Moreover, this new algebra may be endowed with
an involution as follows

) =), (a6 —gf1)N) =g (ad —gBy) >

(where bar denotes the complex conjugation), and thus it is made a Ug-module
*-algebra.
Now the relation (7.3) follows from

Lemma 7.3. Let Re X = 2. The linear subspace
((ad — gfy) ™2 - 17%)" - Pol(S(U))g - (a6 — gfby) 247
is a Ugg-module, and the linear functional
(06 — gBy) M2t f - (ad — qBy) M2t / fdu
5(U)q

is a Uyg-invariant integral.

Proof of Lemma 7.3. Suppose that A =2+ ip with p € R. Then,
by definitions,

(a6 —gBy) M? -t ) f (b —gBy) M2t
= ()7 (a0 = gBy)") - f - (a8 —gBy) 217
= const(p) - (t*) 72 - ()" - (a0 — qfBy) ™" - f- 477172,
Now it suffices to apply Proposition 4.5, the equality

/fdu= / FO0dp,
S(U)q S(U)q

and the observation that the element t*¢~!(ad — gBy)~! € Pol(§(U))q commutes
with any element of the subalgebra Pol(S(U)), and is a Uyg-invariant.

A construction of the second part Té , of the principal degenerate series of quan-
tum Harish—-Chandra modules we are interested in is described in the following
proposition. Its proof is just the same as that of Proposition 7.1.
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Proposition 7.4. There exists a unique one-parameter family Té,\ of repre-
sentations of Uyg in the space Pol(S(U)), such that
i) for all X € =27, £ € Uyg, f € Pol(S(U))y, one has

(Toa () ) (@8 — gBy) M2t = £(f(ab — gBy) M2

ii) for all & € Uyg, f € Pol(S(U))q, the vector function Té/\ (&)f is a Laurent

polynomial of the indeterminate ¢ = ¢*.

Remark Both parts 7, 7/, of the series of quantum Harish-Chandra
modules in question could be also derived via embeddings of vector spaces
Pol(S(U)), — Pol(S(U)),, f + fti1t*'2. For that, with I; — Iy € Z being fixed,
one should arrange ’an analytic continuation in ¢ = ¢"112°. An equivalence of the
two above approaches to producing the principal degenerate series follows from
properties of the element t*¢~(ad — ¢B7v) ™! (see proof of Lemma 7.3).

8. The principal non-degenerate series of unitarizable quantum
Harish—Chandra modules

The finite dimensional simple admissible Uyg-modules allow a plausible de-
scription in terms of generators and relations when the highest weight vectors
are chosen as generators. In the infinite dimensional case the capability of this
approach is much lower. The well known method of inducing from a parabolic
subgroup in our case is also inapplicable due to the absence of a valuable
g-analogue of the Iwasawa decomposition.

Fortunately, there exists one more approach to a description of Harish—-Chand-
ra modules, that of Beilinson and Bernstein [14]. Within the framework of this
approach simple Harish-Chandra modules are produced in cohomologies with
supports on K-orbits in the space of full flags X = G/B (in our case G = SLu,
K = S(GLy x GL3), and B a standard Borel subgroup). The principal non-
degenerate series is related to an open orbit, which is an affine algebraic variety.
This fact sharply simplifies the problem of producing the principal non-degenerate
series, and makes it possible to solve the problem for 0 < g < 1.

An application of the results of Kostant [8] allows one to obtain an analogue
of Proposition 4.5 for full flags and to distinguish the principal non-degenerate
series of unitarizable quantum Harish—Chandra modules.

The previous section contains an exposition of the principal degenerate series
of Harish-Chandra modules. Its geometric realization could be produced in the
same way as that of the principal non-degenerate series in this section. For that,
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it suffices to replace the space of full flags G/B with G/P ~ Grg(C*). The open
K-orbit in G/P is isomorphic to {z € Maty| det z # 0}.

Appendix 1. A complete list of irreducible x-representations
of Pol(Mat,),

This appendix presents an outline of the results of L. Turowska [20] on clas-
sification of irreducible *-representations of Pol(Matz),.

To forestall the exposition, note that every irreducible representation from the
list of L. Turowska possesses a distinguished vector v (determined up to a scalar
multiple) and is a completion of the Pol(Maty),-module V' = Pol(Matg),v with
respect to a suitable topology. Our intention is to produce the list of relations
which determine the above Pol(Matg),-modules. As one can observe from the
results of L. Turowska, the non-negative linear functionals

lq : Pol(Matg), — C, lg: f— (fv,v)

lead in the classical limit ¢ — 1 to non-negative linear functionals on the poly-
nomial algebra Pol(Matsy). The limit functionals are just the delta-functions in
some points of the closure of the unit ball U.

We list below those points, together with the lists of determining relations for
the associated Pol(Matz),-modules*.

0-dimensional leaves

elot 0 av = ei¢1p’ fv=0, ~yv=0, dv= 6i‘p2_1),
0 ei(pz oty = 671‘491’()’ 16*,0 — 0’ ’)’*’U — 0’ Sty = e*l(pz,u’
01, P2 € R/27Z.

2-dimensional leaves

0 0 Bv=0, ~yv=0, ©v=e%,
0 e¥ a*v=0, Bv=0, Yv=0, 0v=e%v, ¢ecR/271Z.

0 e av =0, Pv =€y, v =€,
(eiwz 0 ) aty = _q—le—i(<ﬁ1+tpz)5v’ B*v = e—i(pl,u, YRy = e_i‘pzv,
v = Oa p1,p2 € R/Q'H'Z

*Consider the Poisson bracket {fi, f2} = }lbin}) %, h = 2log(q™!), and associate to
—

each of those points a bounded symplectic leaf containing this point. An important invariant
of the irreducible *-representation is the dimension of the associated symplectic leaf.
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4-dimensional leaves

0 O Bv=0, ~v= ei‘pp,
e’ 0 afv=0, fv=0, yv=e"%v, fv=0, ¢e€R/27Z.

0 e Bv = ei‘pp, v =0,
0 0 afv=0, fv=e v, v'v=0, fv=0, ¢e€R/27Z.

6-dimensional leaves

e 0 av = e,
0 0 afv=e"v, frv=v'v=0v=0, peR/2nZ.

8-dimensional leaf

00 * o [P O .
(0 0) o'y =% =v"v =§"v=0.

It follows from the results of L. Turowska that every of the above Pol(Matg),-
modules can be equipped with a structure of pre-Hilbert space in such a way that
the Pol(Maty),-action is extendable onto the associated Hilbert space, and this
procedure provides a complete list of irreducible *-representations of Pol(Matg),*.
Note that the *-representation associated to the 8-dimensional symplectic leaf is
faithful; it is unique (up to a unitary equivalence) faithful irreducible *-repre-
sentation. The uniqueness is easily deducible from the commutation relations
between «, 8, v, d, o, 5%, v*, %, y (the later element is defined in Section 3).

Another two series of *-representations are related to the leaves that contain
unitary matrices

e 0
( 0 ei‘pZ’) ’

These two series are due to the *-homomorphism Pol(Matg), — C[Uz], described
in the main sections of this work. They could be obtained within the theory of
*-representations of the algebra C[U,], of regular functions on the quantum Us.

0 e
ei(p2 0 ) P1,p2 € IR/27TZ

*More precisely, the work by L. Turowska [20] presents explicit formulae that describe the
action of the operators «, 8,7, in the Hilbert space 1?(Z1)®%2, with d being the dimension of
the corresponding symplectic leaf.
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Teomerpuydeckue peasn3anuyu HEKOTOPBIX cepuii
Ipe/icTaBJIeHN KBaHTOBOI rpymnnsl SU(2,2)

. Hlkasapos, C. Cunensmukos, JI. Bakcman

Pemena 3amaga 06 aHAJIMTHYECKOM NPOAOJIKEHUM TOJOMOPQHON auc-
KDPETHOM Ccepuu MpeCTaBeHuii Jyisi KBauToBoil rpynnsl SU(2,2). B uact-
HOCTH, TIOJTyY€Ha HOBASI PEAJIN3AIINS JIECTHUYHOTO TPEICTABIEHNUS 9TOM IPyTI-
nbl. Kpowme Toro, mocrpoenst g-anasoru rpanuilsl [llumosa equananaoro ma-
Pa B MPOCTPAHCTBE KOMILIEKCHBIX MATPHUI] BTOPOTO TOPSIIKA, M OTBEYAOIIAX
eil mpejCcTaBJIeHUII OCHOBHOW BBIPOXKIEHHOW cepum rpynnsl SU(2,2). O6-
Cy2K/1aeTCsi BO3MOXKHOCTh 0DODIIEHYsI HA KBAHTOBBIM CIIy4ail HEKOTOPBIX XO-
POIIO M3BECTHBIX B TEOPUU IIPEICTABJICHUI I€OMETPUIECKUX KOHCTPYKIU:
npeobpas3osanus [lenpoysa, noaxoaa Beitnuacona— Bepuinreiina K nocrpoe-
a0 Mogyeit Xapum—Yauaps: (11 caydasi OCHOBHOM HEBBIPOXKIEHHOM Ce-
pun).

Teomerpu4Hi peaJsiizanii JedKux cepiili mpeacTaBJIeHb
kBaHTOBOI rpynu SU(2,2)

. Hlkasapos, C. Cunenpmukos, JI. Bakcman

Bupimeno 3a1a4y npo aHagiTUYHE IPOIOBXKEHHS rOJOMOPQHOI JUCKPET-
HOT cepii npexcTasnens nyst kKBanToBOI rpymu SU (2, 2). 30kpema, OTpuMAHO
HOBY PeaJi3alfiio CXOI0BOr0 IPeACTaBIeHHs i€l rpynu. Kpim Toro, nobymo-
Bauno ¢-anasioru Mmexi IllunmoBa omwHWYHO! Kyl B MPOCTOPI KOMIIJIEKCHUX
MaTpHUIb APYTOr0 MOPSAKY Ta IPEACTaBIe€Hb OCHOBHOI BUPOJIZKEHOI cepil
rpynu SU(2,2), mo iit Bignosigaoors. OQOroBOPIOETHCS MOXKJIMBICTL y3a-
raJbHEHHsS HA KBAHTOBUI BUIQJIOK IESIKUX N00pe BimoMux y Teopil mpen-
CTaBJIeHb T€OMETPUYHUX KOHCTPYKIIi#i: meperBopenHst llenpoysa, migxomy
Beiinincona—Bepuinreiina 1o nobymosu momynei Xapim—Yaugpu (st Bu-
037Ky OCHOBHOI HEBMPOJZKEHOI cepii).
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