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Let B be a Banach space. A sequence of B-valued functions (f,) is
weakly almost everywhere convergent to 0 provided z*o f, is almost
everywhere convergent to 0 for every continuous linear * on B. A Banach
space is finite dimensional if and only if every weakly almost everywhere
convergent sequence of B-valued functions is almost everywhere bounded.
If B is separable, B* is separable if and only if every weakly almost every-
where convergent to 0 and almost everywhere bounded sequence of B-valued
functions is weakly convergent to 0 almost everywhere. -

1. Introduction

There are two natural ways to introduce ’'properties fulfilled almost every-
where’ in weak topology of Banach space. One way is to apply a linear functional
to a vector-valued function and then consider the scalar property fulfilled almost
everywhere. The other way is to delete at first an exclusive set and then consider
the weak property in points of the remained set. Thus we can give two definitions.

Definition 1.1. Let B be a Banach space. A function f :[0,1] — B is said
to be weakly almost everywhere equal 0 provided that, for any x* in the continuous
dual B* of B, the function x* o f equals 0 almost everywhere.

Definition 1.2. A function f : [0,1] — B is said to be weakly almost every-
where equal 0 in alternative sense if there exists a set A of full measure, such that
for any * € B* function x* o f(t) equals 0 at any point t € A.
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It is obvious that if a function f satisfies the Definition 1.2, then f equals 0
weakly almost everywhere by Definition 1.1. Further we give an example, that
the converse statement is not true in general.

Definition 1.2 is equivalent to that f equals 0 almost everywhere. Thus below
when we speak about weakly almost everywhere 0 functions, we shall keep in
mind the Definition 1.1.

In the first part of this paper we study the connection between the Defi-
nitions 1.1 and 1.2. We consider a wide class of Banach spaces in which these
Definitions are equivalent and we present examples of Banach spaces in which
it is not true. In particular, it is shown that if for any continuum subspace of
a Banach space B there exists a total sequence of functionals, then Definition 1.1
and Definition 1.2 are equivalent for every B-valued function. Now suppose there
is a continuum subspace of B without any total sequence, that has a continuum
dual. Then under the assumption of the continuum hypothesis the Definition 1.1
does not yield Definition 1.2. And finally, we study conditions under which the
Definitions 1.1 and 1.2 are equivalent for Borel measurable functions.

In the second part of the paper we consider the notion of weak almost every-
where convergence for the sequences of functions. The aim of this section is to
give a characterization of finite dimensional spaces and separable Banach spaces
with separable duals via weak almost everywhere convergence.

We close this section by collecting some notations. Throughout the paper, B,
D, X, Y, and Z denote Banach spaces or their subspaces. We cosider finite as
well as infnite-dimensional spaces, but the trivial case of 0-dimensional space is
excluded from our consideration. N and R are the sets of all naturals and all reals
respectively. For a given set I', [ (T")(respectively l2(T")) is the space of all scalar
valued functions f on T with > |f(#)] < oo (respectively > |f(t)]? < o0).

tel tel

1
> 1f(t)] is the norm in ;(T") and (Z |f(t)|2) ? is the norm in lo(T). f T = N
ter tel
we use the notations [; and lo. The space of all scalar sequences we denote by

R“. All the Banach space-valued functions below are defined on the unit interval
[0,1] equiped with the Lebesque measure y.

2. Weak equality almost everywhere

Let B be a Banach space. A B-valued function f is said to be weakly almost
everywhere equal 0 provided that, for any z* in the continuous dual B* of B,
the function z* o f equals 0 almost everywhere.

To put it in another way for any z* € B* there is a negligible set A+ C [0, 1]
such that z* o f(t) = 0 for every point ¢ € [0,1] \ Ag~.

The sets Az generally are different for different functionals z*. If it is possible
to select a common for all functionals negligible set, outside which the function
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f will be vanished on each linear functional, then by Hahn-Banach theorem
the function f equals 0 outside this set. So f = 0 almost everywhere.

Generally it doesn’t follow from function’s equality to 0 weakly, a.e., that f
equals 0 almost everywhere.

Example 2.1. A weakly almost everywhere zero function, which doesn’t equal
0 at any point.

Consider the space l2([0, 1]). For every ¢ € [0, 1] denote by e; the characteristic
function of point ¢, e;(t) = 1, and e;(z) =0 for all the other points z. Since for
any z € l2([0,1]) z = %: ] z(t) et, {et}se[0,1) is the uncountable basis in I5([0, 1]).

t€[0,1
Define the function f : [0,1] — I2([0,1]) by the rule f(¢) = e:. Take an arbitrary
z* € 15([0,1]). Then (z*, f(t)) = (z,e;) = z(t). Since the support of z() is at
most countable and the measure of any countable set equals 0, it follows that
(z*, f) == 0. Therefore f = 0 weakly almost everywhere. But ||f(¢)|| = |le:]| = 1,
so f(t) # 0 for any ¢ € [0, 1].

Definition 2.1. Let B be a Banach space. A sequence of functionals {z},}>° ;
is said to be total if for any non-zero x € B there exist n € N such that z,(z) # 0.

It is easy to check, that the dual of every separable space contains a total
sequence. There are some more nonseparable spaces, whose duals contain a total
sequence. In particular the space [, isn’t separable but the coordinate functionals
in [, form a total sequence. For a reflexive space B the existence of a countable
total subset of B* is equivalent to separability of B.

Proposition 2.2. Let B be a Banach space and f : [0,1] — B. Suppose B*
contains a total sequence and f = 0 weakly almost everywhere. Then f is almost
everywhere 0.

Proof Let {z}}°, be a total sequence in B*. Then for any n € N there

exists a subset A4, C [0,1] such that u(A4,) =0 and z, o f = 0 outside 4,,. Now
o0

consider the set A = |J A,. Note that A is also of zero measure. To conclude

n=1

the proof it remains to show that f = 0 outside A. Take an arbitrary point ¢ ¢ A.
Suppose f(t) # 0. Then there exists n € N such that (z}, f(¢t)) # 0, contrary
to the construction of the set A. [ ]

If the dual of a Banach space contains a total sequence, then the cardinality
of B can’t be too large.
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Remark 2.1. Suppose B is a Banach space and its dual contains a total se-
quence. Then the cardinality of B equals continuum.

Proof Let {z}}52, be the total sequence of functionals in B*. By =z
denote an arbitrary element of B . Clearly if (z},z) = 0 for any n € N then
2 = 0. Define a linear map F : B — RY by the rule

F(z) = {zi(2), 25(2), ..., 2, (2), ... }.
Let us show that F is injective. Suppose F(z) = 0. Then z}(z) = 0 for any
neN, sox=0.
This implies that the cardinality of B doesn’t exceed the cardinality of R¥.
Since the cardinality of R¥ equals continuum, the cardinality of B is also contin-
uum. ]

Remark 2.2. Consider an arbitrary Banach space B and a function f :
[0,1] — B. Let f([0,1]) be the set of all values of the function f. By X denote
the closure of the linear span of f([0,1]). Cardinality of X is at most continuum.
So we can restrict our considerations only for spaces of continuum cardinality.

The rest of this section is devoted to converse in some sense statements to
Proposition 2.2. These converse statements need additional assumptions on car-
dinality of B*. Moreover this statements depend on continuum hypothesis or
Martin’s axiom.

Before we consider the converse case of this statement, it will be useful to
introduce some notation. Denote by Ky the second numeral class. This means
that Ky is the set of all ordinal numbers, being types of countable well-ordered
sets. Let us remind that continuum hypothesis states, that the cardinality of
Ky is continuum. Let w be the least number in Ky (w is the type of N), and
let Q be the first number following Ky. The ordinal number is of the first kind
(respectively of the second kind) if it has (respectively if it doesn’t have) the direct
predecessor.

Lemma 2.3. Suppose A is an arbitrary continuum set and {Aq }acas is a con-

tinuum family of its subsets, such that for any countable sequence of indices
o

{ar}2, C A the cardinality of () Aq, is equal to continuum. Then under

k=1
the assumption of continuum hypothesis there exists a set B C A such that B

has cardinality of continuum and the set B\ A, is no more than countable for all
ae€A.
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Proof. Wemay assume that our family of sets is numbered by ordinal num-
bers a < 2. We shall construct a sequence of at most countable sets F'(a) C A,

a < Q. The required set B will be |J F(a).
a<l
Let a be an arbitrary point of Ag, set F(0) = {a}. Suppose a < w and
[0

we constructed F(o — 1). Since the cardinality of (| Ag is continuum, there
=0

exist a € ﬁ (Aﬁ \ Fla — 1)) Set F(a) = F(a —1)J{a}. In the same way we
B=0

construct F(a), o < w. Now we set F(w) = |J F(fB). For a = w + 1 we set
B<w
F(a) = F(w)U{a}, where a € | Ag\ F(w), and so on. In other words, if « is
B<a

the number of the first kind, we put F(a) = F(a—1) J{a} wherea € [ Ag\Fa.
It is possible because the cardinality of () Ag is continuum and F (agsl: at most
countable. If a is the number of the secﬁoslixd kind we put F(a) = |J F(5). Now
we show that B = |J F(«) is the required set. At first, since g<i(; a union of
a continuum familyao?ﬂdifferent sets, the cardinality of B is continuum. Now for

a fixed B < € let a be an arbitrary point of B\ Ag. Since a ¢ Ag, a would be
added to B at the step number of which is less than 3. Therefore B\ Ag is at
most countable. m

Theorem 2.4. Suppose the dual of a Banach space B has the continuum
cardinality. Then under the assumption of continuum hypothesis the following
conditions are equivalent:

(i) every weakly almost everywhere 0 B-valued function is strongly almost
everywhere 0;

(7i) there erists a total sequence in B*.

Proof. Note that Proposition 2.2 provides (i) + (i). In order to proof
(1) +— (i1), we assume that there are no total sequences in B* and construct
a weakly almost everywhere 0 function f : [0,1] — B which is not equal to 0.

Consider a family of sets {By}aep+ in B\ {0}, where B, = kera\ {0}.
{Ba}aep* is a continuum family of continuum sets. Let {ay}32, C B* be an
arbitrary countable subset. Since {aj}72; is not total, there exists a non-zero

o0
element € B such that ay(z) = 0 for all k. Therefore x € (| Bg,. But then
k=1

o0
any element of the form a - z belongs (| B, where a € R\ {0}. This implies
k=1
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o0
that the cardinality of [ B, is continuum. Now by the Lemma 2.3, select
k=1
By C B\ {0}, such that cardinality of By is continuum and for any o € B*\ {0}
the set By \ ker v is at most countable. We may establish the one-to-one corre-
spondence between the set By and the segment [0,1] . Denote by f the one-to-one
map of [0,1] onto By. For any a € B*

{t: (o, f(t)) #0} = {t: f(t) € By \ kera}.

Since By \ ker « is at most countable, the set  {t : («, f(t)) # 0} is also
at most countable and its measure equals 0. It follows that f is weakly almost
everywhere 0. On the other hand the function f doesn’t equal 0 at any point. m

Corollary 2.1. Let B be a reflerive Banach space. Then under the assump-
tion of continuum hypothesis B is separable iff every weakly almost everywhere 0
B-valued function is strongly almost everywhere 0.

The proof follows immediately from the previous theorem and the fact that
every nonseparable space has a nonseparable subspace of continuum cardinality.

Consider the space l1 ([0, 1]). It is a space of continuum cardinality and the car-
dinality of its dual is more than continuum. Polynomials with rational coefficients
form a total sequence in (/;([0,1]))*. Thus every almost everywhere 0 function
f: [0,1] — 11([0,1]) equals 0 almost everywhere. This implies that the con-
tinuum cardinality of the dual is not a necessary condition in Theorem 2.4. The
following lemma shows that we don’t need to consider the duals of more than
continuum cardinality if we restrict our considerations only to the case of weakly
Borel measurable functions.

Lemma 2.5. Suppose f : [0,1] — B is weakly Borel measurable. If B is
the closure of the linear span of the set f([0,1]), then the cardinality of B* is at
most continuum.

Proof  Since the cardinality of the collection of all the Borel subsets
of [0,1] is continuum, the space of Borel measurable scalar functions has also
the continuum cardinality. Let F' be the map of B* to the space of Borell mea-
surable scalar functions such that  F(z*) = (z*, f(t)) for all * € B*. We shall
show that F' is an injection. Suppose F(z}) = F(x3), where z7,z5 € B*. Then
(x%, f(t)) = (x5, f(t)) for all ¢ € [0,1]. Therefore the values of z} coincide with
the values of z3 on the linear span of f([0,1]). Since the linear span of f([0,1]) is
a dense subset of B, the functional z7 is equal to z5. It follows that the cardinal-
ity of B* is no more than the cardinality of the space of Borel measurable scalar
functions. ]
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The assumption of continuum hypothesis in Theorem 2.4 is rather restrictive.
Under the assumption of less restrictive axioms (like, for example, Martin’s axiom)
some other results can be obtained.

Martin’s axiom in particular yields that the union of less then continuum
collection of sets of reals of Lebesque measure zero is of measure zero itself (see [4]).
If the continuum hypothesis is rejected, but the Martin’s axiom is assumed, then
[5(T") for T' = X; will have no countable total systems, but w-almost everywhere
0 function is 0 a.e. In this case the condition (ii) of the Theorem 2.4. must be
substituted by (ii’): B* has a total set of less than continuum cardinality. This
statement can be proved in much the same way as Theorem 2.4.

3. Weak convergence almost everywhere

The results presented in this section have analogues for statistical convergence
of sequences (see [1]). Some ideas of [1] are also used below.

Definition 3.1. Let B be a Banach space, let f,, n € N, and f be B-valued
functions. The sequence f, is weakly almost everywhere convergent to f provided
that for any x* in the continuous dual B* of B, the sequence of scalar-valued
functions x*(fn, — f) is convergent to 0 almost everywhere.

Proposition 3.2. Let B be a Banach space with a separable dual B*. Then
every weakly almost everywhere convergent to zero pointwise bounded sequence
of B-valued functions f, defined on [0,1], is weakly convergent to 0 almost every-
where.

Proof. Let D beacountable dense subset of B* and for each d* € D select
a subset A4« C [0, 1] such that p(Ag) = 0 and outside A4« d* o f, = 0. Denote

A: U Ad*

d*eD

The set A is also of zero measure and for each d* € D d* o fp(t) — 0 for
all ¢ ¢ A. The remainder of the proof demonstrates that outside A sequence
fn is weakly convergent to 0 . The condition of boundednes f,, means that
sup,, || fn(t)|| < C(t), where C(t) is a positive finite function.

Fixt ¢ A, * € B* and an € > 0. Select d* € D such that ||[d* — z*|| < %(t)
There is an N; € N such that if n > N, then |d* o f,(t)| < §. The triangle
inequality now yields that |z*o f,,(¢)| < € whenever n > N,. That is z*o f,,(t) = 0

and so f, weakly converge to 0 on the set [0, 1]\ A. |

The main results of this section are:
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Theorem 3.3. Let B be a Banach space. Then B is finite dimensional if and
only if every weakly almost everywhere convergent sequence of B-valued functions
s bounded almost everywhere.

Theorem 3.4. Let B be a separable Banach space. Then B has a separa-
ble dual if and only if every weakly almost everywhere convergent and pointwise
bounded sequence of functions is weakly convergent almost everywhere.

Proofs of the main results.  First note that in a finite-dimensional space
all the norms are equivalent and the weak and norm topologies agree. So in
a finite dimensional spaces every weakly almost everywhere convergent sequence
of functions is norm convergent almost everywhere and so is almost everywhere
bounded. Next we show that any infinite dimensional Banach space contains
a sequence of functions, which is not bounded at almost all points, but weakly
almost everywhere converges to 0.

By Dvoretzky’s “almost eucledian sections” theorem in any infinite-dimensi-
onal Banach space B for every integer n there exists a collection of elements
{zjn}I~, in B such that

1
2

9n 9n 9n
Molail* | <D aizinl| <2 D lasl (3.1)
j=1 j=1 j=1

for all collections of numbers {a; }?:1. Observe that by (3.1) for every h* € B*

1
2

9n 1
(DI, ms)l2)* < 20ip (3:2)
j=1

Let 7;(t) be the Rademacher functions on [0,1], that is 7;(t) = sign sin 2/t, where
t € [0,1]. Define B-valued functions f, by

gn
1
Falt) = o > i)z
j=1
By orthonormality of the Rademacher system and (3.2) for every linear functional
h* € B*

1 1 gn

<h*afn(t)> dt = on rj(t)<h*7mj,n>
>
0o J=t1

0

9" 1
dt < o (S 2y
7j=1

1 %
< 2n—,1||h -
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This means that ), ‘(h*, fn(t))| is an integrable function and hence (h*, f, (%))
neN

converge to 0 almost everywhere.

On the other hand, by (3.1) || fn(?)]| ag 3 —00. This completes the proof of
Theorem 3.3.

Now we turn our attention to Theorem 3.4. First note that Proposition 3.2
provides one direction of the proof of Theorem 3.4. To establish the converse let
us introduce some notation.

Let L = {(n,k) : n € NU{0},k = 1,2,...,2"} and recall that {z,; :
(n,k) € L} C B is a tree in B provided z,; = (1/2)(®p41,2k—1 + Tnt1,2%) for
each (n,k) € L. In the future zo; will always be assumed to be 0. A tree (z, k)
is bounded provided sup(, yyer, [|Tn.kl| < 00

A tree in B can also be considered as a sequence of B-valued functions defined
on the interval [0,1). Let F,, ; = [(k—1)/2",k/2") C [0,1), let ¥, be the algebra
generated by sets Fj, , : 1 < k <27,

27’L
Xn(t) = an,kXFn,ka
k=1

and Y, = X,,41 — X,,. Clearly, X((¢t) = 0. Observe that if z* € B* then

z*Y,, € Ly([0,1),%,11) and [, 2*Y, = 0 for all G € %,,. Tt follows that z*Y}, is
orthogonal to all 3J,,- measurable functions in Lo and hence, by the Pythagorean
theorem,

n—1
lz* XallZ, = D llz*Yjl17,-
=0
Also recall that if (X,,) is a sequence of B-valued functions defined on [0, 1], each
X, being ¥,-measurable, such that [,(Xn41 — X,) = 0 for all G € %, then

k-1 .
the values z, ; = X, (2—"2) form a tree in B.

Let X = (X,) be a tree in B with ¥, = X,4+1 — X, as its sequence of
differences and X* = (X}}) a sequence of B*-valued ¥,- measurable functions.
The pair (X, X*) is said to be a coherent system in B if:

1. There is an ¢ > 0 such that for every point ¢ € [0, 1] and for every n < m
(X (2), Xn(t)) 2 ne.

2. The sets {|| X (¢)|| : » € N;t € [0,1]} and {||[Yn,(®)| : » € N,t € [0,1]}
are each bounded.

Theorem 3.5. ([1]) Let B be a separable Banach space with a nonseparable
dual B*, then B contains a coherent system.

Matematicheskaya fizika, analiz, geometriya , 2001, v. 8, No. 3 269



V. Kadets and T. Kucherenko

Further we show that the sequence f,(t) = % - Xp(t) will be bounded, weakly
almost everywhere convergent to 0 but it is not weakly convergent to 0 at any
point.

Suppose || X;(t)|]| < Ci1  and ||Y,(¢)|| < Cy for all points ¢ € [0, 1], where
C1 and Cy are some positive reals. Then

(Bl <~ E 1Y)l < Co.

Now fix some point ¢y € [0, 1]. Observe that if m < n then (X (t0), fm(to)) > e.
Let z* be a weak*-limit point of (X(#)), and note that, for each m € N,
*(fm(to)) > e. It follows that f,(t) is not weakly convergent to 0 at any point
t€[0,1].

It therefore remains only to proof convergence weakly almost everywhere.
Consider an arbitrary functional z* € X*. By A denote the set of all points
t € [0,1], such that z*o f,,(¢) doesn’t converge to 0. We must check that p(A4) = 0.
It was shown in [3, p. 30-31] that for and any A > 0 and any natural n

u{t

where a= (EHZIZ oY||2)$

oo Xn(t)‘ > h} < 2exp(—%) (3.3)

n—1
For convenience set C = Cy|lz*||. Then a? = ZOHm* oY% < C?-n
‘]:

Substituting ni for h in (3.3), we get

({1 ) <2on(-53).
Evidently for any natural m
Ac U{ 2" o fult)] > 1 )

n4

Therefore
n(A) < fj u({t:le* o fat) > = }) <2 fj exp(—%).

[e.°]
To conclude the proof, it remains to note that as series ). exp(—%) is
n=1
convergent, it’s remainder tends to 0.
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Cnabasi TOMOJIOTUS U CBOWCTBA, KOTOPBIE BBIMTOJHATCS
[HOYTH BCIOY

B. Kagern, T. Kyuepenko

IIycrs B — banaxoBo npocrpancrso. llocienoBareibHOCTb B-3HauHbIX
dbyukumit (f,) cnabo nouru Bcioay cxomures K 0, ecinu £* o f,, mOYTH BCIOLY
cxomurest K 0 I KaKI0r0 HelmpephIBHOrO juHeiiHoro ¢* Ha B. BamaxoBo
MPOCTPAHCTBO KOHEYHOMEPHO TOT/IA, U TOJBKO TOTIa, KOUJA Kaxkaas CJ1abo
[IOYTHU BCIOLY CXOAsmasics K 0 1Moc/iemnoBareabHOCTh B-3Ha4HbIX (QyHKIui
[IOYTHU BCIOLy OorpanumyeHa. Eciu B — cenapabesibHo, B* siBisiercs cemnapa-
OeIbHBIM TOTIA U TOJBKO TOT/IA, KOT/A KaXK1as CJ1ab0 MOYTH BCIOLY CXOIs-
masicd K 0 ¥ moYTH BCIOy OrPAHWYEHHAs TTOCJIEI0BATEILHOCT B-3Ha9HbBIX
dbyurumii cnabo cxomaurcs K 0 mOYTH BCIOAY.

CJji1abka TOI1I0sI0Tist i BJIaCTUBOCTI, sIKi BUKOHYIOTHCH
Maii>kKe BCIOIU

B. Kagerns, T. Kyueperko

Hexait B — 6Ganaxis mpocrip. Iocnigosuicts B-3naunux dyskmii (f,)
cnabo Maitxke CKpi3b 36iraeTnhest 1o 0, aKio z* o f,, Maiike CKpi3b 30iraeThes
1o 0 myst koskHOTO He3mepepBHOro JiHifiHOrO * Ha B. Banaxis mpocTip ckin-
YEeHHOBUMIPHMHM TOZI i TiIbKU TOMi, KO KOXKHA IMOCTiIOBHICT, B-3HavHUX
dyHKii, o c1abo Maiizke CKpi3b 30ira€TbCsi, Maiizke CKpi3b OOMexkeHa. K-
mo B — cenapabenbuuii, B* € cenapabebHUM TOI i TIIBKY TO/, KOJIH KOXK-
Ha nocyigoBHicTh B-3Haunnx dyHKuiit, mo crabo maiike ckpi3b 306iraeThest
10 0 i maitxke ckpi3p 0OMexeHa, ciabo 36iraerbest 740 0 Maiike CKPi3b.
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