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A generalization of Noether theorems in variational calculus is consi-
dered. We deal here with functional of higher rank, with one and several
independent variables. -

1. Introduction

It is well known in analitycal mechanics fact that if the integral of the action
is invariant under a one-parameter family of transformation then there exists
an integral of motion (a conservation law) which corresponds to the family of
transformations. For example, if the integral of the action is invariant under the
time-translations, then the energy of the system is conservated. The invariance
under translations along z-axis induces the conservation law of the z-component
of the momentum, and invariance under rotations around z-axis — conservation of
the z-component of the angular momentum. In other words, continous symmetries
of a physical system give conservation laws [1, 2]. It is known as the Noether
theorem in analitycal mechanics (First Noether Theorem).

In the field theory the conservation laws also can be derived from the Noether
theorems [3-7]. The kind of symmetry considered in the field theory very often
is the gauge symmetry (it is an example of local symmetry).

For example, from the gauge symmetry in electrodynamics one can get the
conservation law of the charge. In general, the consequation of a local symmetry
fot the integral of the action are:

1) dependence between the Euler-Lagrange equations,

2) additional equations.
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These properties are known as the Second Noether Theorem.

Explicite formulas for Noether theorems are known for functionals of the first
rank. However Noether in the herself original paper [8] considered functionals of
higher rank.

The aim of this paper is to give compact formulas for the both Noether theo-
rems for functionals of an arbitrary rank. The paper is organised as follows: in the
second section we deal with the fundamental variation of a functional depending
on functions of the independent variable, and in the third with Noether theorems.

2. The fundamental variation

In this paper will be used the common notation: for a multiindex

= (ala"' aaM)
we put
M Dyl oyl Dyl
|a|zza7’" Da :a(xl aaM’ ya:Da’
—1 xZ L™ .- .’L‘M T

and for another multiindex 8 we put the binomial Newton symbol

p Br) \Bu
as the product of binomial Newton symbols over all components.
We will consider functionals of the form

I[Q7y]:/F($’y7"'7ya7"")de’ (1)
Q
where €2 is an open set in RM, bounded by 012,

z=(z1,...,xm) €Q, dMz=dz,... dzy,

and
y:(yl,...,yN):Q—>RN

is a function of the class Coy,, Q C Q. The function F' depends on partial deriva-
tives y(® of the rank not higher then n.

We also consider a family of transformations of the variables z1,...,Z,
Y1,--- ,YN, such that the domain Q of the integral (Eq. 1) is carried on a do-
main contained in 2, and the function F is defined for new variables and their
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derivations. Moreover we assume that for the new variables the integral over the
domain exists.
Let a smooth vector field A on 012, be given. Consider a map

Fp:09— RM fa(p) =p+ Alp). (2)

Let f@ be an open tubular neighbourhood of 9%, and let A be an extention
of A on Tn with a compact support. So there exists t; > 0 such that the image
of the map

foi:Ta— RM™, f,i(p) =p+tA(p)

is equal to Tq. Since for small ¢ the map ft 4 is close to identity in the topology
C1(Tq, RM) (the support of A is compact set, and A is a smooth field) then there
exists tg > 0, such that the corestriction

ft i |TQ: TQ — TQ
is a diffeomorphism for [¢| < ¢p.
Consequently the map
fia: 00 — RM

is a diffeomorphism on its image for [¢| < tp.

Let Q44 be the domain bounded by the hypersurface 9Q:4 = f14(09Q), and
let A : @ — RM be a smooth function. We consider a family of functionals of
the form

I[Qa,y + th] = /F(m,y+th,... Lyt +the, . ) dM . (3)
Qia

Definition. The first fundamental variation of the functional (Eq. 1) for

a given vector field A = (A1,... ,Ap) on Q, and h = (hy,... ,hy) — field of the
class Cyp, on 2, is the next erpression

* d
5[Q,y]I[A> h] = %I[QtA,y + th] |¢=0 - (4)
Lemma. The following equalities

5*I=Z/FArd"r+Z/%h§a) Mg (5)
T a0 o o 9Yi
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and

* } : - } : « § : D|a| oOF (B—a—er)
T aa L a<f—e, A Y;

E
+§;/§34W<%ﬁ£%>hﬂ%, (6)
tQ ?

| B
are fulfilled, where

do, = (=1)""Ydzy A ... Adzp A ... Adzas.

Proof Let us consider the difference
19y + th] — T[] (7)

At first, let us divide the hypersurface 02 on pieces Ao, and calculate the oriented
volumen of the tubular formed by do and vectors tA:

t
I/(AQ):/ /<A,d0> dr|,
0

Aoy

where
A1y = fra(Ao).
From the theorem about average value we have
v(AQ) =t / < A,do > .
N
Let us divide the difference (7) into two parts
I[Qa,y + th] — I[Q,y] = 61 + d2,

where

5 = / Fz)v(z) d"z

QtA%Q
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for
F(s) = F(a,y(@) + th(a), .. ,y(@) + tho(z))
_ 1 for z € Q\Qa
”(””)_{ ~1 for € Ma\Q
and

o :/[F(ac,y—l—th,... Jy* +th®) — F(z,y,... ,y*)]dYz.
Q

Using anew the theorem about average value, we have

0 = Z / F(z)v(z)dMz = ZV(AQ)F(:B'AQ) = tZﬁ’(a)'AQ) / < A,do > .
Ao Ao Ac
AQ Ac!

So

t—0

1
limgélz/F<A,da>. (8)
o0

The formula

lim 26, = / a—Fh,(.“) dMy (9)
t—0 ¢ P (@)

(3

is clear. From the Equations (8), (9) we obtain the Equation (5). The Equation
(6) we can get using the n-dimensional theorem about integration by parts

/gaf de:/gfdoT—/fag dMz .
oz,
Q Q

oz,
0

Let Ny, be an open neighbourhood of the graph of the function y : @ — RV.
Let us consider a smooth one parameter family of transformation of the inde-
pendent and dependent variables

U: Ny x I — R™™, WU(z,y,u) = (¢",y"), (10)
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where I = (—a,a) for an a > 0, such that
U(z,y,0) = (2,9) -
In the coordinates the transformation (10) can be expressed by formulas
z;(2,y,u) = ¢r(2,y,u), i (@,9,u) = Yi(z,y,u),
or shorter
' (z,y,u) = ér(z,y,u), ¥ (z,y,u) = P(z,y,u).
Now let us consider the transformation
by : ) — RM
connected with the transformation ® and the function y, defined by the formula
$u(z) = ¢(,y(7), u),
and let
Qu = ¢u(9).
Under the transformation ¥ the function y goes into the function
Yu: O — RV,

satisfying the relation

u($(o,y(2),0)) = Pl y(). ). (1)
So
(@) luzo= (g—‘f: D, g—f) Juso (12)

3. Noether Theorems

Let us start from the following definition.

Definition. The functional 1[Q2,y| is invariant under the family of transfor-
mation (10) if for any admissible y — RN exists an € > 0 such that

I[Qua yu] = I[Q,y]

for |u] <e.
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First Noether Theorem. Let the functional I be invariant under a one-
parameter smooth family of transformations:

" (z,y,u) = ¢(z,y,u), Y (z,y,u) =Y(z,y,u).
Let for u = 0 the transformations be the identity. Then such an equality is fulfilled

0 (9</>r
Z oz, Z

Dlel gF \ DIf-e—el oy dy; 8¢
o |a| 1 Yi s —
% Z (=1) (D:z;a ay(5)> DzB-a—er (8u Oz 8u> 0 (13)

asﬁ_er

for any solution of the system of Euler—Lagrange equations.

Proof From the hypothesis and from the Equation (12) we have
66,4114, h] = 0 for

o o Oy; 0¢
A= 3a lu=0,y=y(zy and h(z) = <8ul - : 8:5: 37; lu=0y=y(2) -

So from the Euler-Lagrange equation

* a D‘a| oF —Q—ér
51—;/ FA+Y Y (- |<D$am)h§ﬂ ' do, =0.

i a<f—e,

(14)

From the Gauss theorem we get the Equation (13). ]

Second Noether Theorem. Let the functional I be invariant under a local
smooth family of transformations:

z*(z,y, f(x),...,[Yx),...) = d(z,y, f(z),... , [¥x),...),
y (@, y, f(2), - fH@), ) = (@, f(2), - fH (@), ),
where u : I — U € R runs functions of the class Coy, . Let for uw = 0 the

transfrmation be the identity. Then there is a dependness between Euler—Lagrange
equations

5] al
S B | [ S0 B

0,0

Eﬁ} =0, (15)
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and moreover such equalities are fulfilled

0 Oy O,
ZT: [awr (Faf(k)> +Faf(x—er) (16)

Dlel gF B—a\ DF-a=l

_1)lel il R _

T8 e (B 25 )2 (7)) s o
a<_BO aig yl Y

for any solution of the system of Euler—Lagrange equations, where

i_ a"pz 8yi a¢r
=2 5s, 57

Proof. Forany establish smooth function f : & — RM we can define the
one-parameter family of transformations:

72, 9,0) = $(a gy uf (@), uf* (@),
yi(z,y,u) = P(z,y,uf(z),... ,uf®(z),...).

From the hipothesis we have, that 6/, . [A,h] =0 for

[‘)w*f
A= Za

Let f* |o= 0 for any multiindex a. Then for any function y(z) we have

s[5 (28]

and by =) E,f*. (17)

S EjfOdMr=0.

Because

we get the Equation (15).
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Now let us assume, that Euler-Lagrange equations are satisfied, but function
f and its derivations are not equal to zero on the bound 9. So §*I is given by
(14) for (17).

The Equation (16) one can obtain using the formula

9 Dlel gF
_ e p(B—a—er)
ox, Z (=1) (Dxa P (ﬁ))

alf—er
Dl 8F (B—a)
(2= % o (B 25)
a<B a<p Dz ayz@ Z
ar=0 ap=PBr
and the fact that partial derivatives f(® are mutually independent. ]

Remark. In the case of the functional depending on the functions of one
independent variable the analogs of the Formulas (13), (15), (16) are:

dl OF dk—l—l awi ,a¢ B
+ZZ (d:cl ( )) drk—1-1 (% _yi%> = const, (18)

i i<k

n 1 (.n k _
DP P et {Z(—l)k (% %) E;} ~o, (19)

i 1=0 7

d OF k—1—1\ dk-t=1=7 __
<dw‘ ) (1) =
i J

g=0,1,..., (20)

B S YE)

i I<k

respectively.
The formula (18) effects the fact that a smooth family of transformations gives

a first integral of the system of Euler-Lagrange equations.
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Teopembr Hérepa ajis PyHKIIMOHAJIOB BHICOKOTO PaHra
Au Musescku

B pabote paccmarpuBaioTcst 00001menust reopem Hérepa B BapualiOHHOM
ucuuciaennn. Mbl paccMarpuBaeM (yHKLIMOHAJIBI BBICOKOIO PAHIa C OMHOM
NJIX HECKOJIbKMMU HE€3aBUCUMbIMU HepeMeHHbIMI/I.

Teopemu Hbhorepa asis (pyHKIiOHAIB BUCOKOTO pPaHTy
Au Mineschki

Y poboti po3risiHyTO y3arasbHeHHsi TeopeM Hrorepa y BapiamiitHOMY
obuucsenni. Mu po3riisigaemMo (DyHKIIOHAIM BUCOKOIO PAHTY 3 OJHIEID T4,
KiﬂbKOMa HE3aJIE2KHUMU 3MiHHI/IMI/I.
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