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This work produces a g-analogue of the Cauchy—Szego integral represen-
tation that retrieves a holomorphic function in the matrix ball from its values
on the Shilov boundary. Besides that, the Shilov boundary of the quantum
matrix ball is described and the U,su,, ,-covariance of the U,s(u,, X uy,)-
invariant integral on this boundary is established. The latter result allows
one to obtain a g-analogue for the principal degenerate series of unitary
representations related to the Shilov boundary of the matrix ball.:

1. Introduction

Bounded symmetric domains form a favorite subject of research in geome-
try, function theory of several complex variable, and non-commutative harmonic
analysis. The point is that they are simplest among non-compact homogeneous
spaces of real semi-simple Lie groups.

Quantum analogues (g-analogues) of bounded symmetric domains were in-
troduced in [9] via replacement of the ordinary Lie groups with their quantum
analogues [2]. A simple example of classical bounded symmetric domain is the
unit ball U = {z € Mat,|2zz* < I} in the space of complex n X n matrices.
The present work studies a g-analogue of this matrix ball. The notions of Shilov
boundary and Cauchy—Szegd kernel are associated to this subject. Just as in the
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case ¢ = 1, a holomorphic function in the quantum matrix ball is determined
unambiguously by its restriction onto the Shilov boundary and could be retrieved
via the Cauchy—Szegd integral representation.

The proof of the latter result involves some properties of an invariant integral
on the Shilov boundary. We also use these properties to produce the principal
degenerate series of unitary representations of the quantum group SU,,. The
appendix contains a discussion of generalizations of the main result onto the case
of rectangular matrices.

In what follows we assume C to be the ground field, all the algebras are unital,
and ¢ € (0,1).

The author is grateful to S. Sinel’shchikov for pointing out a gap in a previous
version of the proof of Proposition 6.1 and an assistance with translating this text
into English.

2. A construction of the Shilov boundary

Among the best known 'quantum’ algebras one should mention the g-analogue
C[Mat,), of the algebra of holomorphic polynomials on the space of matrices
Mat,. This algebra is given by its generators z$, a,a = 1,2,... ,n, and the
following relations:

zg‘zf—qzbﬁzgzo, a=b&a<p or a<b&a=p, (21)
zg‘zg—zgzg‘:(), a<fB&a>h, (2.2)
zg‘zf - zbﬁzg‘ =(qg—q Y22, a<B&a<b. (2.3)

The work [7] presents a definition of the x-algebra Pol(Maty,),, which is a
g-analogue of the polynomial algebra on the vector space Mat,. Its generators
are z, (2%)*, a,a = 1,2,... ,n, and the list of relations consists of (2.1), (2.2),
(2.3), together with the commutation relations

n
()ze=a* > RUCRGC8(z)) + (1 —a)iwd®,  (24)

a" 7b,’a’ 7ﬂ’:]‘

where 84, 6% being the Kronecker symbols and

g’ i£j&i=k&j=1,
* —(¢7%2-1), i=j&k=1&1>}],
0 otherwise.
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It is well known that the Shilov boundary of the matrix ball U is just the
set S(U) of all unitary matrices. Our intention is to produce a g-analogue of
the Shilov boundary for the quantum matrix ball. Introduce the notation for the

quantum minors of the matrix z = (29):

Aky{a1,a2,... 05} def I(s) L @¥s(1) _Qs(2) Qs (k)
(= ){al,a2,...,ak} - Z (=9) ( )zal Zaz "t Zap s
SESE

with a1 < a2 < ... < ag, a1 < az < ... < ag, and [(s) being the number of
inversion in s € S.
It is well known that the quantum determinant

/\n){l,Z,... n}

detgz = (2 {1,2,... n}

is in the center of C[Maty],. The localization of C[Mat,], with respect to the
multiplicative system (det,z)Y is called the algebra of regular functions on the
quantum GL, and is denoted by C[G Ly,],.

Lemma 2.1. i) There exists a unique involution * in C[GLy], such that

(z)* = (—q)‘H'a_Z” (detq z)_1 det, zy,

with z& being the matriz derived from z via deleting the line o and the column a.
’L’L) (detq Z) (detq z)* — (detq z)*(detq Z) — q—n(n—l)'

P roof. The uniqueness of the involution * is obvious. To prove the
existence, consider the *-algebra C[U,], = (C[GLy,]4,*) of regular functions on
the quantum U, (see [5]) and the automorphism 4 : C[GL,], = C[GL,], given
by i: 25— q¢* "2{, a,a=1,2,... ,n. Obviously, i~! % i is an involution. What
remains is to demonstrate that

il i 28 o (—q)* T (dety 2) " dety 25
This follows from the definition of % [5]:
(28)* = (—q)* “(det, z) ! detq z5.

The statement ii) of the lemma follows from a similar statement for the invo-
lution *. -

The x-algebra Pol(S(U)), = (C[GLy]4, *) is a g-analogue of the polynomial
algebra on the Shilov boundary of the matrix ball U, as one can see from

Theorem 2.2. There exists a wunique homomorphism of x-algebras
1 : Pol(Maty,)q — Pol(S(U)), such that ¢ : 2§ — 2¢, a,a=1,2,... ,n.
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We premise the proof of the theorem with two remarks. Firstly, the homo-
morphism 1) is a g-analogue of the operator which restricts the polynomial onto
the Shilov boundary. Secondly, we use in this work a purely algebraic approach
to producing the Shilov boundary; we do not try to compare it to the analytic
approach of the well known work by W. Arveson [1].

Proof. The uniqueness of the *-homomorphism % is obvious. Turn to the
proof of its existence. To produce 1, we need auxiliary *-algebras Pol(Pl, 25) g«
and JF, together with the embeddings of algebras Pol(Mat,, ), < Pol(Pl, 2,)¢ .z,
Pol(S(U)), < F;. The crucial point in the proof is a construction of a homomor-
phism of *-algebras Pol(Pl,, 25,) ¢, — F; which leads to the commutative diagram

Pol(Pl,2n)qe —— o

I |

Pol(Mat, ), —— Pol(S(U)),.

To begin with, introduce the *-algebra Pol(Pl, 2,,)4,, "of polynomials on the quan-
tum Pliicker manifold’.

Let C[Matgp]q be the x-algebra of functions on the quantum space of matrices
Mato,, determined by its generators {tij}i’jzl,g,___,gn and commutation relations
similar to those listed in (2.1)-(2.3). Introduce the quantum minors

An I(s)s. . . et
ity = Z (—9) ( )tzljsa)tlws(z) bings(n)
SESH

determined by pairs of n-element subsets of the form
I={(i1,i2,--. ,in)| 1 <i1 <... <ip < 2n},

Consider the subalgebra in C[Matgy,], generated by the elements t?I",Q’___’n} 7
t?7?+1,n+2,___,2n}J, with card(J) = n. It is easy to present a full list of relations
between these generators. We follow [8] in equipping this algebra with the invo-
lution

(t?ln,Q,...,n}J) = (—1)card({1’2""’n}m)(—Q)Z(J’Jc)t?r?ﬂ,nw,...,2n}Jca (2.5)

where J¢ = {1,2,... ,2n}\J and I(J, J¢) = card{(j', ;") € JxJ¢|5" > j"}. The *-
algebra arising this way is denoted by Pol(Pl, 2, )4. Let t = t?ln%___ AL, 2n)
and z = tt*. Obviously, z quasi-commutes with all the generators of Pol(Pl, 2,),-

Let Pol(Ply, 25, )4,z be the localization of the x-algebra Pol(Pl,, 2, ), with respect

to the multiplicative system zN. The results of Section 2 of [8] can be used to
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prove the following statement intended to shed some light to the way the *-algebra
Pol(Pl,, 25,)q works in our constructions.

Lemma 2.3. Let Joq = {a}U{n+1,n+2,...,2n}\ {2n+1—a}. The map
L:28w t_lt?ﬁz...,n}Jg admits an extension up to an embedding of the x-algebras
T : Pol(Mat,,)q = Pol(Pl, 2) ¢«

The next step in proving Theorem 2.2 is in producing an auxiliary *-algebra
J, together with a homomorphism of *-algebras ¢ : Pol(Pl,2,)q — F. Let
C[Pl,,2n]q C Pol(Pl, 2,)q be the subalgebra generated by the quantum minors
t?ﬁQ’___,n}J, card(J) = n, and C[Pl, 2,]; C Pol(Pl, 2,), the subalgebra generated
by the quantum minors t?7?+1,n+2,...,2n}J’ card(J) = n.

J appears to be an extension of C[Pl,, 2,],; it is given by adding the elements
n, 7~ ' to the list of generators and the relations

m t=ntn=1, nt?ln,Q,...,n}J = qintfﬁz,... n}gh card(J) =n

to the list of relations. (As it is well known, this list is exhausted by the commu-
tation relations and g-analogues of Pliicker relations).

Lemma 2.4. The map

L t?lan,---,n}J = t?ﬁ?,...,n}]a (26)
L t?rrzl—f-l,n—l—Z,...,Zn}J = Wtf{fg,___,n}J (2.7)

admits an extension up to a homomorphism of algebras ¢ : Pol(Ply, 2,,)q — F.

Proof. The definitions imply the existence of a homomorphism
C[Pl,2n]q — F which satisfies (2.6) and a homomorphism C[Pl, 2], — F which
satisfies (2.7). The rest of the relations between the generators of Pol(Ply, o,), are
commutation relations. What remains is to establish that the same commutation
relations are also valid for images of the elements t?ﬁz,...,n} 7 t?&_l,n 42, 2n)
with respect to ¢. For that, we use the R-matrix form of commutation relations
between the matrix elements of the corresponding fundamental representation of

the Hopf algebra Upyslay,.
const'(g, n)t?777,1+1,n+2,... ,2n}1t?1n,2,... n}J

o I'J ,An An
- Z RIJ t{1,2,...,n}J’t{n+1,n+2,...,2n}I”
{I',J!|card(I’)=card(J’')=n}
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const"(q, n)t?in,Z, ,n}It?lT?Z,... n}J

— I'J  An AR
o Z Ry j t{1,2,...,n}.]’t{1,2,... e
{I',J"| card(I")=card(J’)=n}

Here (RF'/") is the R-matrix from the right hand side of the well known relation
RTT = TTR |2], and the constants const’(g,n), const”(g,n) describe the action
of the R-matrix in the left hand side of that relation. We are to prove now that
const”(g,n) = ¢ "const’(g,n). This follows from

= AR, 4P = U,
with I ={1,2,... ,n}, J={n+1,n+2,...,2n}. ]
Equip F with an involution.

Lemma 2.5. i) There exists a unique involution * in F such that

,,7* — q—n(n—l)n—I,

(40, gy ) = (DO 2eemIOD (g Ipin,

ii) The above homomorphism ¢ : Pol(Pl, 2,), — F is a homomorphism of
x-algebras.

Remark. The motives to deduce the latter equality are as follows:

(t?lnﬂ,...,n}J)* = (<P (tfﬂ2,...,n}J))* =@ ((tﬁnz ,n}J) *)

R A L,

_ (_1)card({1,2,... ,n}ﬂJ)(_q)l(J,JC),'7 . t?1n2 njJe-

Proof  The uniqueness of the involution * 1is straightforward,
and its existence follows from (2.5). More precisely, (2.5) and the isomorphism
C[P1,,,2,]=C[P1;, 25], t?{’g’_",n}J — t?r?—kl,n—l—Z,...,Zn}J’ card(J) = n, imply the exis-
tence of an antilinear antiautomorphism * : F — F with the required properties.
The property ** = id is to be verified separately:

A (T, (T T, A _on?omyA A
(t{1n,2,...,n}J) = ‘1( i )nt{ﬂz...,n}ﬂ?* =q" nt{1n,2,...,n}ﬂ777* = t{{lﬂ,...,n}.]'

Now the definition of the involution and (2.5) imply that ¢ is a *-homomorphism.
[

Matematicheskaya fizika, analiz, geometriya , 2001, v. 8, No. 4 371



L. Vaksman

Note that ¢ admits a unique extension up to a homomorphism ¢, :
Pol(Pl;, 21) g, = Fz of the localizations of Pol(Pl, 2,), and F with respect to the
multiplicative system z, z = #*.

Here is the last element of our construction.

Lemma 2.6. The map z5 — t_lt?l”2 e B = 1,2,...,n, admits a
unique extension up to an embedding of x-algebras Pol(S(U))y — Fy.

Proof Notefirst that I[(Jaq, JS,) = a + @+ (n —1)? — 2. Hence

—14An *
t t{1527---7n}‘]aa

+at(n—-1)2-2, A 2 A -1
jeretinmy ”t{ln,z...,n}Jga ((_Q)n "t{ﬁz,...,n}{l,z...,n})

—1
_ +a—2n—14A A
= (=) e e, (t{ﬁz,...,n}{Lz,...,n})

=—(—q

)a+a—2n

-1
A A
=(—¢q (t{{fz... n3H1,2,... ,n}) t{1n,2,... nYIS,

—1
) -1 -1
= (—g)*ton (t t?ﬂz,...,n}{m,...,n}) (t t?ln,2,...,n}Jga) -

On the other hand, in the algebra C[Pl, 2y]s+ defined as a localization of
C[Pl,,2n]q with respect to the multiplicative system tN one has the following
relations, established in [8]:

1A _
t t{lrtZ,...,n}{l,Q,...,n} = det, z,
t_lt?{tQ,...,n}Jga = dety z].

What remains is to use the natural embedding C[Pl, on]q: = Fo- [ |

To complete the proof of Theorem 2.2, one has to observe that the *-homo-
morphism Pol(Ply, 2,)4,2 — F¢ takes the images of z$ € Pol(Mat,, ), with respect
to the embedding Pol(Mat,, ), < Pol(Pl, 2,,)4 to the images of the corresponding
elements z& € Pol(S(U)), with respect to the embedding Pol(S(U)); — F5. Now
Theorem 2.2 is proved. |

Proposition 2.7. i) Imy = Pol(S(U)),.
ii) ker1p C Pol(Maty,), constitutes a Uysloy,-submodule.

Proof The first statement follows from (det,z)~" = ¢! (det, z)*,
since zy € Imep for all @, = 1,2,... ,n and (detyz)* € Imyp. The second
statement involves the structures of Uyslon,-module algebras in Pol(Maty, ) gz, Iz,
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which are imposed in an obvious way (the elements 5,7~ ! € F, are Ugslon-
invariants). The statement to be proved follows now from the fact that the ho-
momorphisms Pol(Maty ), — Pol(Pl, 21,) .z, Pol(Ply 20)q,c — F¢ are morphisms
of Uysla,-modules. [

Recall the notation E;, F;, KZ-“—L1 for the standard generators of the Hopf algebra
Uyslo, and the notation Ugsuy, ,, for the Hopf -algebra (Uysloy, *), with
EZ :_KnFna F; = _EHK;11 (Kil)* :KT:Ltl’

n

* * —1 +1\* +1 .
E; = K, F;, Ff = E;K; ", (K =K', for j#n.

Equip Pol(S(U)), with a structure of Ugsuy, ,-module algebra via the canonical
isomorphism Pol(S(U)), ~ Pol(Mat,),/kert. Thus, S(U), is a homogeneous
space of the quantum group SU, .

To conclude, introduce one more Uysuy, ,-module algebra.

It was noted earlier that z¢, a, o =1,2,...,n, generate the x-algebra
Pol(S(U))q. Consider its extension in the class of *-algebras given by adding
generator t, together with the additional relations

=1, 22 =q 2%, t*2%=q¢ 2%, a,a=1,2,...,n.

~

This algebra will be denoted by Pol(S(U)),. Our intention is to extend the

~

structure of Ugsu, ,-module algebra from Pol(S(U)), onto Pol(S(U)),. This is
accessible via embedding the x-algebra Pol(S(U)), into the x-algebra F: i :
t — t;i D2y tilt{{\ﬁz...,n}Jaav a,a = 1,2,... ,n. In fact, the *-subalgebra
i(Pol(S(U))q) contains all the elements ¢, t_lt?{fz,___’n}J, card(J) = n, and hence
is a Ugsuy, n-module subalgebra. What remains is to transfer this structure onto

~

Pol(S(U))gq. It follows, as, in [7], that

Ejt=Fit=(K;"—1)t=0, j#n,
Fit= (K —1)t=0, Eut=q Y?"

-~

The U,suy, p-module algebra Pol(S(U)), will be an essential tool in producing
the principal degenerate series of representations of the quantum group SU,, .

3. A Ugslap-invariant integral

There exists a unique invariant integral on the quantum group U,, normalized
in such a way that / ldv = 1. Use the natural isomorphism of x-algebras

(Un)q
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Pol(S(U))y — ClUy g, 25 — ¢* "2y, a,a0 = 1,2,... ,n, to transfer this integral

onto Pol(S(U)),. It is easy to demonstrate that the linear functional we get this
way

Pol(S(D))y = C,  frs / fdv,
S(),

is not Uyslop-invariant provided Pol(S(U)), is equipped with the ordinary struc-
ture of Uysla,-module. This section is intended to prove the Ugsla,-invariance of
this integral with respect to a 'twisted’ structure of Uysla,-module in Pol(S(U)),.
It is custom to say ’these are not functions that should be integrated, but high-
est order differential forms’. The change of the structure of Upsly,-module in
Pol(S(U)), is nothing more than a passage from functions to highest order forms.

Recall the notation E;, F;, K iﬂ for the standard generators of the Hopf algebra
Uyslon, and Ugs(gl, x gl,) stands for its subalgebra, generated by KZ', E;, Fj,
K;*Ll, j # n. It is easy to prove the Ugs(gl, x gl,,)-invariance of the above integral

fs /fdu.

S(U)q
We use the notation Ugs(uy, X up) = (Ugs(gl, X gl,), *)

Proposition 3.1. There exists such a structure of Usly,-module in
Pol(S(U)), that

i) its restriction to the subalgebra Uys(gl, x gl,,) coincides with the restriction
of the standard structure of Ugs(gl, x gl,,)-module in Pol(S(U)),,

ii) the integral Pol(S(U)), — C, f — /fdl/, is a morphism of Ugsloy,-

S(U)q
modules.

Proof We first produce some structure of Ugsly,-module in Pol(S(U)),,
and then prove that it satisfies i) and ii).

Consider the Uysu, ,-module *-algebra Pol(S (U))q introduced in the previous
section. The construction implies that the *-algebra P01(§ (U))q is generated by
t, t*, and the elements of its Uysuy, n-module subalgebra Pol(S(U)),. Consult [7]
for explicit formulae which describe the action of the standard generators E;, Fj,
K;Cl, j=1,2,...,2n—1; the action on the conjugate elements is easily derivable
from those formulae since

~

€)= SE) " EeUptnn,  fePol(SU),:

The elements ¢, t*, z quasi-commute with all the generators i, 27, a,a =

1,2,...,n, of the x-algebra Pol(S(U)),. This allows one to consider the local-

~

ization Pol(S(U))q,s of this x-algebra with respect to the multiplicative system
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zN and then to extend the structure of Ugsuy, p-module algebra onto it. Equip

~

Pol(S(U))g,z with a bigrading:
degt = (1,0), degt® =(0,1), deg(zy) = deg(zy)* = (0,0), a,a=1,2,... ,n.
Obviously, the homogeneous components

Pol(S(U))$D) = {f € Pol(S(U))qs| deg f = (i,5)} = t* - Pol(S(U)), - ¢/

~

form submodules of the Uyslan-module Pol(S(U))q.. Equip Pol(S(U)), with a
structure of Ugsu, ,-module via the vector space isomorphism

~

Pol(S(U))q — Pol(S(U)){ ™, e () ft"

It follows from the Uys(gl, x gl,)-invariance of ¢, t* that the new Ugsly,-mo-
dule structure in Pol(S(U)), coincides with the previous one on the subalgebra
Ugs(gl, x gl,,) C Ugslay. So, our integral is again Ugs(gl,, x gl,,)-invariant. What
remains is to prove that
/ () P () 1)t = 0,
S(U)q
J@rEey e o, 1 € Pol(S(U)),.
5(U)q

Observe that the integral in question is a real linear functional / ffdv =

5(U)q

/ fdv, and Pol(§(U))q,w is a Ugsu, p-module *-algebra. Thus, it suffices to

5(U)q
prove the following

Lemma 3.2. For all f € Pol(S(U)), ~ POI(E(U))((I?;;;O) one has
/(t*)nFn((t*)_nft_”)tndV = 0. (31)
5(U)q

Proof Identify the subalgebra Pol(S(U)), with its image under the em-
bedding into F to note that Fpt = Fnp = 0, t* = (—q)" nt dety z. Hence (3.1) is
equivalent to

/ (det, 2)" F, ((det, 2)™" f)d = 0. (3.2)
S0,
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On the other hand, K, det,z = q° det, z, as one can see from an explicit form for
K28, a,a=1,2,... ,n. Hence, by a virtue of the Uys(u,, X u,)-invariance of the
integral in question (3.2) is also equivalent to

/ (det, 2)" B ((dety )" f)dv = 0, (3.3)

5(U)q

with F, = K, F,,.
We start with proving (3.2), (3.3) in the special case f = z)!. In view of the
relation Fp 2, = ¢*/? one has

(dety z)" Fy, ((dety z) "27) = (dety z)" Fp((dety 2) K, t27) + ¢*/%.

a K:I:la

Apply the explicit form for Fpz¢ a,a = 1,2,... ,n, found in [7] to

establish that K127 = ¢—22",

(det, 2)" F, ((detqz) ") = ¢/ q

= (detq z) " dety(z").

Hence

(dety z)" F,((dety z) "2p) = 1/2327(detq z)~ 1detq(zZ)q*QzZ—l—ql/z.

On the other hand, (det, z)~! det,(z") = (27)*. Thus to prove (3.2) in the special
case [ = z)', we need only to verify that

* 1-— q2
5(U)q
For that, it suffices to elaborate the following relations:

/ () andy = / (=) 2,

5(Un)q (Un)q

Vondy = g ™Y _1-¢
qn—l + qn—3 + ...+ q—(n—3) + q—(n—l) 1— q2n
Un)q

The first relation follows from the explicit form for the natural isomorphism of
x-algebras Pol(S(U)), ~ C[Uy]q, and the second one is a consequence of the
orthogonality relations for the quantum group SU, (see [2, p. 457]).

In the special case f = 2], (3.2), and hence (3.3) are proved.

Turn to the general case f € Pol(S(U)),.

376 Matematicheskaya fizika, analiz, geometriya , 2001, v. 8, No. 4



Guantum matrix ball: the Cauchy—-Szegé kernel and the Shilov boundary

Normally we work with admissible (see [7, 8]) modules over quantum en-
veloping algebras. We also use the standard basis Hy,... , Ho,—1 of the Cartan
subalgebra of sla,.

n—1 n—1
Let Hy= ) jH;j+nH,+ ) jH, j be the element of the Cartan subalgebra

j=1 j=1
of the Lie algebra s(gl, x gl,) C slo,, which is in its center and is normalized
so that [Hy, Ey] = 2E,, [Ho, F;,] = —2F,. Associate to every admissible simple
finite dimensional Ugs(gl,, x gl,,)-module V a pair (X, k), with X being the highest
weight of the corresponding Uysl, @ Uysl,-module, and the number k is determined
by Hov = 2kv, v € V. It is easy to obtain the following decomposition of the
U,s(gl,, x gl,,)-module Pol(S(U)), into a sum of simple finite dimensional pairwise

non-isomorphic Ugs(gl, X gl,)-modules:

Pol(S(U)), = @ Viak)-
(k)

Assume that for some f € Pol(S(U)), (3.3) fails. Our immediate intention is to
prove that f belongs to some component Viar g1y, and to find the corresponding
pair (X, k).

The presence of the structure of Uys(gl, x gl,)-module in Pol(S(U)), leads
to a structure of Ugs(gl, x gl,)-module in EndcPol(S(U)), and a morphism of
Ugs(gl, x gl,)-module algebras Uysly, — EndcPol(S(U)),. Consider the linear
operator in Pol(S(U)),:

L: 4~ (det, z)" F, ((dety z)"1)).

Prove that the Ugs(gl, x gl,)-submodule of the U,s(gl, x gl,)-module
EndcPol(S(U)), generated by L is isomorphic to Viyw gy, with A" =(0,...,
0,1) x (1,0,...,0), ¥ = —1. In fact, F, generates a finite dimensional simple
Uys(gl, x gl,,)-submodule of the Uys(gl,, X gl,,)-module Uysly, in view of the Serre
relations for Fi, Fy, ..., Fy,_1 and the relation

adq(Ej)ﬁn =0, Jj #n.

What remains is to apply the commutation relations between Kfl, j=11,2,...,
2n — 1, and ﬁn

Now we are in a position to finish the proof that f € V(y ;) and to find X,
K'. Use the natural embedding EndcPol(S(U)), ® Pol(S(U)), — Pol(S(U)), and
the fact that L € Viy» ), Lf € Cl, to get a non-zero morphism of Ugs(gl,,

gl,)-modules Viyr pny ® (EB V(A,k)) — C. This means that £ = —k" and

(A,k)
A’ is the highest weight of the dual representation of Uysl, ® U,sl,. Finally,
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A= (1,0,...,0) x (0,...,0,1), ¥ = 1. Furthermore, f is the lowest weight
vector in Vi ) since L is the highest weight vector in Viy» pny. It follows that
f = const - 2, which contradicts to the relation (3.3) proved earlier for 2. |

4. On certain irreducible *-representation of Ugsu, ,

Consider the embedding 7 : C[Maty], < C[Pl,, 2,,]4,+ described in Lemma 2.3
and another embedding

J : CMat ], = C[Pl, 2n]q.t J:f=ZHt™

It is easy to verify that JC[Maty], is a submodule of the Upgsla,-module
C[P1,,2n]q,t- Hence, there exists a unique representation 7 of Ugslay, in the vector
space C[Mat,]q such that

&) f =T (Tf), feCMatyly, &€ Uysla.
We refer to the previous sections for constructions of a x-homomorphism
1 : Pol(Mat,, ), = Pol(S(U)),, ¥ [ flsw),

and an invariant integral

Pol(S(U), = C,  f s / fdv.

These are to be used to equip the vector space C[Mat,], with a Hermitian scalar
product

(f1, f2) & /(fZ'S(U)q)*f1|S(U)qu.
5(U)q

The following lemma is a consequence of the definitions of Uysla,-module struc-
tures and invariance of the integral.

Lemma 4.1. For all £ € Ugsuy y, f1, fo € C[Mat,), one has
(w(&) 11, f2) = (f1,7(E7) f2)-

To rephrase, m is a *-representation of Ugsu,, in the pre-Hilbert space
C[Mat,]q. The proof of irreducibility for this representation uses the following

Lemma 4.2. If for some f € C]Maty,); and some mi, ma,... ,mop—1 € Z one
has
Fif=0, K7'f=¢"™f,  j=12,...,2n—1, (4.1)
then f € C1.
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Proof DuetoFif =0,i#n, Ki'f=¢*if, j=12..,2n-1,it
follows that, up to a constant complex multiple

n A2{n—1, kn-1 A3{n—2,n—1, kn—2
F=(mr (detq z {n{fm}”}) (detq z {nﬂg,njm}”}) -+ (dety z)"1
for some ki1,ks,... ,k, € Z,. Prove that F,f = 0 implies ky = ko = ... =k, =
0. Let J be the two-sided ideal of C[Mat,],, determined by the non-diagonal’
generators z&, a # a. Obviously, K,*J C J, F,J C J. This allows one to
arrange computations modulo the ideal J:

a

n—1
> ki
Fof = const [[(z2)= " (21)

n

3 ki—1
=1 (mod J)

a=1

noo_2 f; ki g2k _ 1
const = ql/2 Zq izt 4

-2 _ :
Now the isomorphism C[Mat,],/J =~ Clz],23,... ,2"] implies the relation k; =
ko = ... =k, =0, which is just our statement. [

Proposition 4.3. The representation 7 is irreducible.

Proof. Suppose 7 isreducible. Then by Lemma 4.1 it is a sum of two non-
trivial admissible subrepresentations in the subspaces L1, Ly: C]Maty], = L1®Ls.
Each of those further decomposes as a sum of weight subspaces and, in particular,
possesses a lowest weight vector. This vector f # 0 satisfies the relations

w(F)f=0, wK)f=¢"f i=12...,2n—1

On the other hand, in C[Pl, 24+ one has:

:Flt | =
(K= 40 " T mE)=0, =12, 20— L
! t, Jj#n

We conclude that f is a solution of the equation system (4.1), so, by a virtue
of Lemma 4.2, f € C1. Hence, Ly D Cl, Ly D Cl, Ly N Ly # 0. This is a
contradiction coming from our assumption on reducibility of 7. The proposition
is proved. [
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5. The Cauchy—Szegs integral representation

Recall that C[Mat,], C Pol(Mat,), stands for the subalgebra generated by
(z8)*, a,a=1,2,... ,n. We follow [8] in introducing the algebra

C[Mat, x Mat,], = C[Mat,]o" ® CMaty,,

with op indicating the change of a multiplication law to the opposite one. This
algebra is bigraded:

deg(zf ® 1) = (1,0), deg(1® (25)*) = (0,1).

Its completion with respect to this bigrading is denoted by C[[Mat, x Maty]],-
The elements of C[[Mat,, x Mat,]], are g-analogues for kernels of integral oper-
ators, while the elements of the subalgebra C[Mat, x Maty,], are g-analogues of
polynomial kernels.

We refer to [8] for a definition of the pairwise commuting "kernels’

JI JI * .
Xk = Z z/\kJII ® (z/\kJH) S C[Matn X Matn]q
Jha'c{1,2,... ,n}
card(J!)=card(J'" )=k

and a one-parameter family of the elements of C[[Mat,, x Mat,]], which includes
the kernel

n—1 n -1
=TI (1 +z<—q2f>kxk) |
3=0 k=1

We write Cy(z,¢*) instead of Cy, Cy(z,¢*) - f(€) instead of Cy - (1 ® f), and

f(€)dv(¢) instead of / fls@y,dv, as it is custom in the classical analysis.

5(U)q 5(U)q
It is easy to demonstrate [8, Proposition 2.11] that in the formal passage to a
limit ¢ — 1 one has Cy(z, (") — det(1 —z¢*)™™.

We call C; € C[[Mat,, x Mat,]], the Cauchy-Szegé kernel for the quantum
matrix ball.

The following result provides a motivation for this definition.

Theorem 5.1. For any element f € C[Mat,|, one has

f6) = [ Gl I Qan(c)
S(U)q
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Proof. Equip Pol(Mat,), with a grading: deg(z$) = 1, deg(2$)* = —1,
a,a = 1,2,...,n. It is easy to show that / fls@wy,dv = 0 for all f with

S(U)q
deg(f) # 0. Hence the integral operator

T : CMat,], — C[Maty,],,  T: f(z) / Cy(2,¢*) f(¢)dv(C)

is well defined. It follows from the invariance of the integral on the Shilov bound-
ary and the results of [8, Section 8] that 7(§)T = T'n(§) for all £ € Uysla,.
Furthermore, 71 = 1. Hence T'f = f for all f € C]Mat,], in view of Proposition
4.3. The theorem is proved. [

Note that there exists another proof of Theorem 5.1 which uses only the
orthogonality relations for the quantum group U,, and one of the Milne’s relations
for Schur’s functions [6]. We intend to publish this proof in a future work.

6. Appendix. Another description of the x-algebra Pol(S(U)),
and its generalization onto the case of rectangular matrices

We produce a system of equations which distinguish the quantum Shilov
boundary from the quantum matrix space. This is certainly equivalent to de-
scribing the *-algebra Pol(S(U)), in terms of generators and relations.

Proposition 6.1. In Pol(S(U)), the following relations are valid:
Zq%_o‘_ﬂzf‘(zf)* —§% =, a,=1,2,... ,n. (6.1)
j=1

The left hand sides of these equations generate the kernel of the canonical homo-
morphism 1) : Pol(Maty,), — Pol(S(U)),.

Proof. The first statement is due to the fact that in C[U,],

n

Yo - =0, af=12..,n
j=1

Let Z be the two-sided ideal of Pol(Mat,), generated by the left hand sides of
(6.1) and A = Pol(Maty),/Z. One has to prove that the canonical onto map
j: A— Pol(S(U))g is in fact an isomorphism.
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First prove that in A
dety z - (dety 2)* = g M), (6.2)
Equip A with a Z-grading as follows:
deg(zy) =1, deg((z3)*) = —1, a,a=1,2,...,n.

It was demonstrated in Section 2 that the relation (6.2) is valid in Pol(S(U)),.
What remains is to use the fact that the algebra A is a Ugsl,-module algebra,
together with the following statement:

Lemma 6.2.
i) dety z - (dety 2)* € A is a Ugsly,-invariant of degree zero.
i) The subalgebra of Uysly-invariants of degree zero in A is one-dimensional.

Proof of Lemma 6.2. The first statement is obvious. Turn to the second
statement. For any Uysl,-invariant of degree zero f € A there exists such Ugsl,-
invariant of degree zero f € Pol(Mat,), that f = j - f.l On the other hand,
Pol(Mat,,), is a free C[Mat,, x Mat,]-module generated by 1 € Pol(Mat,,),:

f1® fa:91®92 > g1f1 ® fago.

Consider f € C[Mat,, x Mat,] such that f = fol. It suffices to prove that f
n

is in the subalgebra generated by > q2”_°‘_ﬁz}" ® (zf)*, a,f=1,2,... ,n. This
i=1

is a consequence of the fact that f is a Ugsl,-invariant of degree zero, and a g-

analogue of the first main theorem of the theory of invariants [3]. |

It follows from (6.2) that det, z € A is invertible. Hence one has a well defined
homomorphism of algebras j' : Pol(S(U)), = 4, j' : 2 — 2¢, a,a = 1,2,... ,n.
Obviously, j7' = id. What remains is to prove that j' is onto, that is the elements
(detyz)7', 22, a,a = 1,2,... ,n, generate the algebra A. It follows from (6.1)
and well known properties of quantum determinants that in A one has

(22)* = (—q)*T* 2 (det, z) " det, 22, a,a=1,2,...,n.

So, 7 is invertible. The proof of Proposition 6.1 is complete. |
Thus we get another description of the *-algebra Pol(S(U)),. It is to be used

for producing a g-analogue for the Shilov boundary of a unit ball in the space of
rectangular matrices Maty, ,, m < n.

! Due to local finiteness of the Ugyslp-modules Z, Pol(Maty )g, A.
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The classical theory of Cartan domains [4] provides a well known procedure of
producing the Shilov boundary S(U') of the unit ball ' C Mat,, ,, together with
the associated Cauchy—Szego kernel for the unit ball U C Mat,,. We are going to
apply exactly this method in the quantum case.

Consider the *-subalgebra Pol(Mat,, ), C Pol(Mat,), generated by 25, a >
n —m, and the *-Hopf algebra Ussup, , C Uysu,, generated by E;, Fj, K;El,
Jj < m+mn. It is easy to demonstrate that Pol(Mat,, n)s is a Ugsiy, p-module
subalgebra of the Uysty, n-module algebra Pol(Mat,,),. Up to relabeling the gen-
erators, this Ugsuy, ,-module algebra coincides with the *-algebra of polynomials
in the quantum matrix space considered in [7, 8|.

Introduce the notation Pol(S(U')), for the *-algebra determined by its gener-

ators

a

Za

a=1,2,...,n a=n—m+1l,n—m+2,...,n,

the commutation relations loan from Pol(Mat,, ,), and the additional relations
n
Zq%_a_ﬂz;-"(zf)* = §*PB, a,f=n—-m+1ln—m+2,...,n
j=1

Our construction implies a commutative diagram

Pol(Mat,, ) —— Pol(Maty),

! !

Pol(S(U')); — Pol(S(U)),.

where the vertical arrows stand for the homomorphisms of restriction of "polyno-
mials’ onto the Shilov boundaries of the corresponding quantum balls. The homo-
morphism Pol(S(U')), — Pol(S(U)), allows one to transfer an invariant integral
from Pol(S(U)), onto Pol(S(U')),. The Cauchy—Szegt kernel is defined as in Sec-
tion 5 except that in the expression for xi, the summing up in J' C {1,2,... ,n}
is replaced with summing up in J' C {n —m+1,n—m+2,... ,n}. Another re-
sult of Section 5, a gq-analogue of the integral Cauchy—Szeg0 representation for the
matrix ball U, implies a similar integral representation for the quantum matrix
ball in the space of rectangular matrices.
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KBauToBblii MmaTpuunsbrii miap: aapo Komu—Ceré
u rpa"una Iunosa

JI. Bakcman

IMocrpoen g-anasnor maTerpanbHoro npezicraienusi Komm—Ceré, koro-
pPOe BOCCTAaHABIUBALT TOJOMOPGMHYI (MYHKIWI B MATPUYIHOM IIape Mo eé
suadenusim Ha rpanune [[Iumosa. Kpome Toro, omuceiBaercs rpanuna [1lu-
JIOBa KBAHTOBOT'O MATPUYHOTO INAPa W YCTAHABIMBAETCH UgiSly, n,-KOBapHU-
auarHOCTE UyS(Upy X Uy )-MHBAPHAHTHOrO MHTErpaJa Ha 910# rpanune. Ilo-
CIIeTHUI Pe3yabTaT MO3BOJSIET MOIYYUTh (-AHAJIOT OCHOBHOM BBIPOXKIEHHOMN
CepuU YHUTAPHBIX IIPEACTABICHUN, CBsI3aHHbIX ¢ rpanuei [1luiosa marpuy-
HOT'O MIapa.

KBanroBa marpuuna kyqaa: sapo Komii—Cerso
ta Me>ka Illunosa

JI. Bakcman

[Mo6ymoBano g-anasior inrerpanbaoro 3o6pazkentsi Komi—Cerno, sike Bij-
HOBJIIO€ TOJIOMOPdHY (bYHKIII0 B MATPUYHIN KyJi no 11 3HaYeHHSIM HA MeEXKi
MTumosa. Kpim toro, onucauno mexy IIluioBa kBaHTOBOI MATPUIHOI KyJIi T4,
BCTaHOBJICHO Uyl p-KOBapiaHTHICTD Uygs(Upm, X Up)-iHBapianTHOrO iHTErpa-
sa Ha uiit Mexi. OcTaHHIi pe3yabTaT Ja€ MOXKJINUBICTH OTPUMATH (-aHAJIOT
OCHOBHOI BUPO/I?KEHHOI cepii yHiTapHUX MpeacTaBjeHb, sIKi MOB’sI3aHi 3 Me-
xkero [MTunosa MarpuvHoi Kyi.
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