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The paper contains the proof and generalization of the Madelung hypoth-
esis which is widely used in the quantum theory of atom for explanation of
the structure of periodic system of elements. The justification and many-
well generalization of the Tietz atomic potential are also presented in the

paper.

1. Introduction

The self-consistent potential in the atom with Z electrons at Z — oo is known
to be the Thomas-Fermi potential. We have proved that at Z — 1 the atomic
potential is the Tietz potential V(r) = —(Z/r)(1 + (Z/r))~2, with R as a pa-
rameter, or its deformation. KEigenstates of this potential at an energy £ = 0
are degenerate and form the Mendeleev electron shell. In terms of these electron
shells we explain the structure of the periodic system of elements. In particular,
we have proved for the periodic system of elements the empirical rule (n + I, n),
according to which electrons in atom fill at first the states with the least quan-
tum number n 4 and for the given value of the number n + [ fill the states with
the least possible quantum number n. Here n and [ are the principal and orbital
quantum numbers. For the Schrédinger operator with the Tietz potential the ra-
dial part of the one-electron wave function is shown to satisfy the Heun equation.
Among deformations of the Tietz potential there are many-well potentials which
can explain the deviations from the (n + [, n) rule and the existence of the d-, f-
and g-electron transition series in the periodic system of elements.

Further we use the atomic unitse =h=m = 1.
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2. The Hartree—Fock electron ground state of atom
and the resonance equation

Let us consider the Hamiltonian of neutral atom with Z electrons,
A 1 1
H:—kZ_I(Ak—i- k)+§z s

where 7, is the distance from the k-th electron to the nucleus and 7 is the
distance between i-th and k-th electrons. In the Hartree-Fock approximation the
ground state energy of atom is

|maz nma:c (l)

=Y Y B

=0 n,=0

where summing goes over the domain E(n,,l) < 0. The summands are

nra /#Jnr ( + %) %,,l(r)dv

i lrr 1 ! I m! I"I‘I 2
4z Z//pln Pl,n |(r_r),| |Pl,n,( )l d’Ud’U’,
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pl:'n'r (r’ r,) = ’:‘Lr,l(r)wnr,l(r,)7

where 1, ;(r) is the one-electron wave function with the radial quantum number
n, and the orbital quantum number [.

Further we study a dependence of the ground state energy of atom E(Z) on
the charge Z assuming it a continuous variable.

When Z — oo and the difference of summands for adjacent values of quantum
numbers is small enough we can present the ground state energy of atom E(Z)
by means of the Euler-McLauren formula as a sum

E(Z) =273 + 6783 + 5 2°13 + ...,

with some constants ¢, &k =1,2..., where the first term is the Thomas—Fermi
energy, the second term is the Scott correction and so on (see e.g. [1, 2]).

When Z — 1 and the difference of summands for adjacent values of quantum
numbers becomes large we must use the Poisson summation formula and hence
we can present the ground state energy of atom as

mevta neT (1) +b
E(Z)=E+E, E= / dl / dn. E(ny, 1),
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meaga net()+h

E= ), / dl / dn, E(n,,1) cos (2m(kn, + sl)),
(kas)i(oao) —a’ -

where the term E is the Thomas—Fermi energy and the term E is the shell part
of the energy of atom which is the sum of integrals with the fast oscillating
integrands. The phase of these oscillations

#(1) = k(n™= (1) + b) + sl

has the stationary point and the value of every integral is largest possible if this
stationary point is infinitely degenerate, i.e., if the resonance equation gn/"**(I) 4+
pl = const., ¢g,p €N, 0 <] <™ holds. Thus, we come to

Theorem 2.1. If the charge Z — 1 then the ground state electron configura-
tion satisfies the resonance equation

gn"** (1) + pl = const., q,peN, 0<I<I™¥?®,

In terms of quantum mechanics this equation states that the atomic energy
E = 0 is degenerate. In terms of classical mechanics this equation means that
the electron orbit with the energy E = 0 is closed, since frequencies w, and wgy of
radial and orbital oscillations are in resonance,

<8nr> _ <BIT> _ _(8E/8I¢)]T _ Wy _ b
ol E=0 8[¢ E—=0 (BE/BIT)[¢ Wy |E=0 q '
Here I, = 2mn,, I = 27l are the adiabatic invariants. The Coulomb potential,

which is the atomic potential at Z = 1, satisfies the resonance equation for any
value of the £ < 0.

3. The Tietz potential

Now we discuss properties of atom with the resonance atomic potential. Using
the Bohr—-Sommerfeld semiclassical formula [3]
T+
1 _ _ 2\\1/2 7. _
(2(E—-V(r)=1l(l+1)/2r%))""dr = n.(E,l) + 1,

s
T—

at £ = 0 and a new variable z = In(r/R), where R is parameter, we can present
the resonance equation in the form

%/(2(& — W (z)))/dz = é(const —pl)+,

xTr—
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E =—1(1+1)/2, W(x)=r2V(r)|r=Re=-

We can interpret the last equation as the Bohr—Sommerfeld semiclassical formula
for the spectrum E; = —I(l + 1)/2 in the one-dimensional potential W (z). We
call solutions W (z)(or V(r)) the resonance potentials. It turns out that they
are soliton potentials or their isospectral (or isoresonance) deformations. We can
easily prove the following statements.

Proposition 3.1. The potential
p

" 12 cosh? (z/a) lz=In(r/R)

B P

(/R R T g

is the one-well resonance potential.

UapR(r) = m°Wa,5(%)lo—mr/r) =

Proposition 3.2. If the potential

Ua,8,rR(T) = — b
" r2((r/R)Ve + (R/r)!/e)2
coincides at small v with the Coulomb potential, Uy g r(r) = —Z/r,7 — 0, then
a=2, and B = ZR, and thus we get the Tietz potential

_z
r(1+(r/R))*

At R — oo the Tietz potential coincides with the Coulomb potential.

V(’/‘) = UQ’ZR’R(T) =

Proposition 3.3. If in the Tietz potential the total number of states is equal
to the charge Z of the nucleus, then

R=(9/2)32713 =1,651271/3.

Proposition 3.4. The orbit in the Tietz potential at E = 0 is closed and
described with an equation

(r/R) + (R/r) = 2(1 + 2asin® ¢), where a = (Z/2M*R) — 1.

T. Tietz [4] has introduced his potential in atomic physics in 1960 and used
it with success for calculations of different atomic characteristics and explana-
tion of the periodic system of elements, although he considered it always only
just as a good rational approximation to the Thomas—Fermi potential. Later on
Yu.N. Demkov and V.N. Ostrovsky [5, 6] pointed out that the Tietz potential
is a particular case of potentials which were considered in some problems of op-
tics by J. Maxwell [7| and V. Lenz [8] and which are solutions of the resonance
equation but did not elucidate the origin of this equation.
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4. The Schrédinger operator with the Tietz potential —
semiclassical approximation

In the semiclassical approximation it is useful to replace the energy E, the
radial quantum number n, and the orbital quantum number [ by the scaled
quantities

ER ny + 7y _<u#+n>”2

‘Tz "7 zrwr 2ZR

Proposition 4.1. The Bohr-Sommerfeld quantization rule for the Tietz po-
tential can be presented in the form

z(l+2)’

b
1 dz
V= ;a/v\lpzl(.fﬂ)ﬁ

Py(z) = ex?(1 + 2)? + 2 — N2(1 + z)?,

where a, b, are real zeros of the polynomial Py(x). It means that the scaled radial
quantum number v is a period of the elliptic integral of the third type. It means
also that the spectrum of atom is defined in the semiclassical approximation by
the universal equation € = f (v, A) which does not depend explicitly on the charge
Z and the parameter R.

Using this theorem we can obtain approximate formulae for the spectrum in
different special cases, for example we have

Proposition 4.2. If A # 0 and € — —0, then the spectrum of the Schrodinger
operator with the Tietz potential in the semiclassical approximation is of the fol-
lowing form:

1673

€~ —(1—V—2A)m.

Accurate study of the turning points allows one to calculate the constant -y in
the Bohr—Sommerfeld quantization rule.

Proposition 4.3. For the Tietz potential at the energy E = 0 we have
v =(3/2) +2{1 — 1+ 1]/} = (1/2) + by,

By means of this result we can resent the resonance equation as follows.
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Proposition 4.4. Let for the Tietz potential the parameter ( be of the form
(=2ZR= (M +3/2)?, MEN,

then in the semiclassical approximation the states with the quantum numbers n,l,
satisfying the equation

n—}—l:M—l-l—él,(),

are degenerate at the energy E = 0.

5. The Schrédinger operator with Tietz potential — exact
results

Let us assume a solution of the Schrédinger equation with the Tietz potential
in the form

Ynim (Ta 0, ¢) = Rnl("')yrlm(ea ¢)a Rnl(r) = unl(r)/’r'

Proposition 5.1. For the Schridinger operator with Tietz potential the radial
part u(z) of the eigenfunction satisfies the linear ordinary differential equation
with rational coefficients, which has two regular and one irregular singular points
(the confluent Heun equation),

d*u 2ZR (l+1) T
Y | (2BR? - - -
dz2+< R +z(1+z)2 2 )u 0, =z

The Heun equation and its properties are described in the book [9].
Now let us change the variable z and the function u(z) in such a way:

22241, u(z) = (z— 1) (2 4 1)*2e7PENy(z).

Then by means of the parameters p,m, s,

_ L omm2y ™ iy li(2iozr v
P=3 s )T 274 :

we can express the function v(z) in terms of the Laguerre polynomials L}""*(z),

Un,m,s(z) = ng(nama S)LG+s(2p(z - 1))
k=0
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Here the coefficients gx(n, m, s) satisfy the three-term recurrence relation

Afgei1+ Blgr + Chge 1 =0, g-1=0,
where AL =(k4+m+s+1)(k+s+1), CF=k(k+m),

1 1
B =2p" = 52k +p) +m+s+1)°+ 2 ((m —s)* = 1).

By means of the rational functions
wi(2) = (z = DF(z+1) ",

we can express the function v(z) in terms of the expansion

o

'Un,m,s(z) = Z fk(n7 m, S)wk:(z)'

k=0

Here the coefficients fx(n,m,s) satisfy the three-term recurrence relation

Al fesr + Bl fx + C fr—1=0, f-1=0,
where Al = (k+m+s+1)(k+1), Cf = (k+s)(k+m),

1 1
By =2 = 52k +p) +m+s+1)" + 7((m—5)* = 1).
The eigenvalues in both cases are defined by the equation

By 4 0 0
Ci By A1 O

det| o o, By, 4,

We can see that the spectrum of the Schrodinger operator with the Tietz potential
loses its universality in comparison to the semiclassical approximation.

Proposition 5.2. Let for the Tietz potential the parameter ¢ be of the form
(=2ZR=M+1)(M+2), MEN,
then the states with the quantum numbers n,l, satisfying the equation
n+l=M+1-109

are degenerate at the energy E = 0.
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6. The ordering of subshells (n,/) in the periodic system
of elements and the Madelung rule (n+ [, n).
The Mendeleev electron shell and values of periods

The following statements are simple consequences of the resonance equation.

Proposition 6.1. For the atom with the resonance potential the following rule
(n +1) is valid: with the growth of charge Z the electrons fill consecutively the
states with the least possible value of the quantum number n +[.

The rule n + [ is valid absolutely for the whole system of elements.

Proposition 6.2. For the atom with the Tietz potential the following rule
(n+1,n) is valid: with the growth of charge Z the electrons fill consecutively the
states with the least possible value of the quantum number n + 1, and at given
number n + [ fill the states with the least possible quantum number n.

The rule (n +[,n) as an empirical one was formulated for the first time by
E. Madelung [10] in 1936 and later on was rediscovered repeatedly many times
(see V.M. Klechkovsky [11]). Since we have proved the (n+1,n) rule only for the
Tietz potential, the domain of its validity might be less than that for the (n +1)
rule which is valid for all resonance potentials.

The rule (n+1,n) gives a principle for consecutive appearance of the subshells
(n,l) with 2(2] + 1) degenerate states in atoms with the growth of the charge Z.
According to this rule the (n,l)-subshells in atom form the following linearly
ordered sequence:

{(n, 0} = {(1,0),(2,0),(2,1),(3,0), (3,1), (4,0),
(3,2), (4,1),(5,0), (4,2), (5,1), (6,0),
(4,3),(5,2),(6,1),(7,0), (5,3), (6,2)etc.}

The rule (n+1,n) describes correctly the real electron cofigurations of all elements
of periodic system with small number of exclusions [11]. There exist 17 elements
(Cr, Cu, Nb, Mo, Ru, Rh, Ag, La, Ce, Gd, Pt, Au, Ac, Pa, U, Np, Cm), whose
electron configurations differ by 1 electron, and there exist 3 elements (Pd, Ir,
Th), whose electron configurations differ by 2 electrons from the configurations
predicted with the rule (n +1,n).

The rule (n + [, n) enables us to calculate quantitative characteristics of the
periodic system of elements with algebraic means.

Let Z; designate the charge of atom at which the electron with the orbital
quantum number [ appears for the first time, Z, designate the charge of atom
at which the electron with the principal quantum number n appears for the first
time, Z,; designate the charge of atom at which the electron with the given sum
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of the principal and orbital quantum numbers n+ [ appears for the first time, and
Zn, designate the charge of atom at which tthe electron with the given values of
the principal quantum number n and the orbital quantum number [ appears for
the first time. Using the well known formulas

k=n k=n
_1 2_ 1
;k—Qn(n—l—l), >k = gn+1)(2n +1),

we can calculate these numbers easily:

Z; = (1/6)(201+ 1)+ (1/6)(5 — 21),

Zn = (1/6)(n+ 1%+ (1/2)(n + )[sin®(x/2)n — (1/3)] — 1,
Zptl = (1/6)(n+l)3+(1/2)(n+l)[sin2(7r/2)(n+l)—(1/3)]+1,
Zny = (1/6)(n+1+1)%+ (1/2)(n + 1 + 1)[sin?(1/2)(n + 1) — (1/3)]

—2(1+1)2 + 1.
Now let us introduce the definition of the Mendeleev electron shell.

Definition 1. The M-th Mendeleev electron shell is the set of states with
quantum umbers n,l, which satisfy the equality

n+l:M+1—(5l,0
and are degenerate at the energy E = 0.

In order to find subshells (n,l), which correspond to the M-th Mendeleev
period, we must solve at a fixed number M the equation n+1 = M + 1~ §; o with
respect to the quantum numbersn, n=1,2,...,and!, [=0,1,... ,n—1. It
enables us to prove the following statements.

Proposition 6.3. The number of elements in the Mendeleev M-th period is
equal to

[M/2]
Na= ) 2(2+1) = 2[(M +2)/2]%,
=0

where [x] means the integral part of the real number x. Numbers Ny, M =
1,2,..., form the sequence 2,8,8,18,18,32,32, etc., which coincides with empirical
lengths of the periods of the system of elements.

Proposition 6.4. The atomic charge apZ of the initial element of the Men-
deleev M -th period is equal to

wZ=Z(M) -1,
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and the atomic charge Zyr of the final element of the Mendeleev M-th period is
equal to

Zy = Z(M+1) -2,

sa0-34) (4] (2] ) o[-

0=M( mod 2),

and [z] is the integral part of the real number x.
The sequence {pZ} = {1,3,11,19,37,55,87, etc.} corresponds to alkaline metals
and the sequence {Zy} = {2,10,18, 36,54, 86, etc.} corresponds to noble gases.

Below in the table we have presented the ordered sequence of subshells {(n,1)}
for the every M-th Mendeleev period which is built in accordance with our theory.
This table represents a quantum mechanical construction of the periodic system
of elements.

Y O W N =

7 (7’ 0)7 (57 3)’ (67 2)7 (77 ]‘)'

The deviation of the structure of the real periodic system from that predicted
by the (n + I,n) rule may be a result of the deviation of the atomic potential
from the Tietz one. Hence it is reasonable to consider a complete set of resonance
potentials.

7. Isoresonance deformations of the Tietz potential and
many-well atomic potentials. The transition and rare-earth
series of elements

According to previous considerations we can present the resonance equation
in the form of Abelian integral equation with respect to W (z),

%/(Q(El ~W(2)))/?dz = é(const —pl) +7,

T
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E = —-1(+1)/2, W(z)=r2V(r)|;=pges-
Solutions of this equation define resonance potentials by means of the formula

V(r) =1 *W(2)|szin(r/R)-

In particular, the Tietz potential V(r) = Ug zgr, r(r) corresponds at ZR = (1/2)
(M+1)(M+2) to the (M+1)-soliton potential W 7 r(z) = (ZR/2) cosh™2(z/2).

The general resonance potential is the isoresonance deformation of the Tietz
one-well potential and in generic case has many wells. We can give an exact
formulation of this statement.

Proposition 7.1. All resonance potentials V, g r(r) are deformations of the
Tietz potential and can be presented in the form

d2
.2 -2
Va,8,r(1,t) =17 " Wa (%, 1) |s=tn(r/r) = —T ) Indet A(z, t) smtn(r/B)
j L. 8 .3 N
A ’ - H / ] a o3 ‘ ’
(z,1) 5,k+j+kexp( SRz + g t) .

where N = a3/2, 7, are some constants and t is the deformation parameter.
As a consequence we have an important statement.

Proposition 7.2. In the M-th Mendeleev period of the periodic system of
elements the effective atomic potential
I(l+1)

2r2 7

Ueps(r) = U (r) +

where Ugef(T) is some isoresonance deformation of the Tietz potential, may have
no more than [M/2] + 1 wells, where [x] means the integer part of number x.
In other words, the effective atomic potential in the M-th period of the periodic
system may have as much wells as much subshells (n,l) are contained in the M-th
period.

In physics of atom the many-well potentials have been used to explain a col-
lapse of electron states and the existence of the d-, f-, and g-electron transition
series in the periodic system of elements [12, 13]. E. Fermi[14], M. Géppert—Mayer
[15] and R. Latter [16] studied two-well potentials, G.J. Wendin and A.F. Starace
[17] considered also three-well potentials. V.N. Ostrovsky built two-well poten-
tials of the Tietz potentials [18]. In the frame of our approach the atomic potential
in the M-th Mendeleev period may have no more than ([M/2] + 1) wells.

If we know eigenvalues and eigenstates for the Schrédinger operator with the
Tietz potential we can obtain effectively these quantities for the deformed Tietz
potential by means of the deformation transformation described by the Korteweg—
de Vries equation and their higher analogs [19].
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8. Conclusion

For the Mendeleev periodic system of elements the rule (n + [,n) is proved,
according to which electrons in atom fill at first the states with the least quantum
number 1+ and for the given value of the numbers n 41 they fill the states with
the least quantum number n. The definition of the Mendeleev electron shell is
given which is used for the construction of the periodic system of elements. The
atomic potential appears to be the Tietz potential V(r) = —(Z/r)(1 + (r/R))?,
with R as a parameter, or its deformations. In the semiclassical approximation for
the Tietz potential the universal one-electron energy spectrum is found. For the
Schrédinger operator with the Tietz potential the radial part of the one-electron
wave function is proved to satisfy to the Heun equation. Among deformations of
the Tietz potential there are many-well potentials which we can describe effec-
tively by appropriate eigenvalues and eigenfunctions. These many-well potentials
can explain the existence of the d-, f-, and g-electron transition series in the pe-
riodic system of elements.
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