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Let continuous function f (z),z € R", tend to 0 as ||z|| — oo faster than
any negative degree of ||z||. Let Radon transform f(w,t),w € R, |jw| =
1,t € R, of f also tend to 0 as t — oo and, besides, do it very fast on a
massive enough set of w. In the paper, we describe the additional properties
that f has under these assumptions for different rates of fast decreasing. In
particular, the extremal case where f(w,t) has the compact support with
respect to t for the open subset of unit sphere corresponds to Wiegerinck’s
Theorem mentioned in the title.

1. Introduction

Let R™ be a Euclid space of vectors = (z1,... ,2,) with a scalar product
n
(z,y) =Y _ z;y;,
j=1

and let S” ! be a unit sphere {w = (w1,...,wp) ER" : ||w|)? = (w,w) = 1} in it.
Denote by A the set of all hyperplanes in R*. It is possible to parametrize
this set associating a point (w,t) € S" 1,¢t € R to a hyperplane A (w,t) =
{z € R" : (z,w) =t} € A. Obviously, points (w,t) and (—w, —t) correspond to
the same hyperplane.
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On Wiegerinck’s support theorem

Let function f : R* — C be integrable on each hyperplane. Then one can
associate with it the function f (w,t) defined on S™ ! x R as follows:

flwt) = / f (@) dm (), (1)
A(w,t)

where dm (z) = dm g, ) (7) is Lebesgue measure on A (w,t). The function fis
called Radon transform of f. If f has a compact support, say, a closed subset of
aball {z € R" : ||z|| < r}, then the support of f is a closed subset of the direct
product of S® ! and a closed interval [—r,r] that is also compact.

The inverse statement is, generally speaking, false.

Example 1. Letn = 2,z = z1+izy, and let f (z) = 272 for |2 = ||[(z1,22)|| >
1 and f (z) = 22 for |z| < 1. Then f wvanishes on the complement of the closed
unit disk.

L. Zaleman [13] built the following example of an entire function f whose
support is C and Radon transform f vanishes everywhere.

Example 2. Let f (2),z = z1+izy € C = R?, be any nonzero entire function
that tends to 0 faster than |z|_2 as z approaches infinity outside the curvilinear
halfstrip

H:{zzml—l—imge(c:|m1—x§|<1,x2>—1}.

The existence of such entire functions follows, for instance, from one general
Arakelian’s theorem [1] on the tangential approzimation by entire functions. By
Cauchy’s integral theorem applied to appropriate halfdisks, Radon transform of
f vanishes identically.

Of course, this function f does not belong to L' (R2).

Because of these examples, it seems important to have some criteria or, at
least, some sufficient conditions on f that guarantee the compactness of its sup-
port whenever the support of its Radon transform is compact. (In the theory of
Radon transform such statements are called support theorems; the first support
theorem was proved by S. Helgason [3] in his proof of the formula for the inverse
Radon transform.)

The least restrictive condition implying such compactness was obtained by
J. Wiegerinck [12] in 1985. To formulate his theorem, we need the following
definition:
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Definition 3. A continuous function f : R* — C is called reasonably fast
decreasing if for each natural k the value of sup {|f ()| |z : = € R"} is finite.

Theorem 4 (Wiegerinck). Let f € C(R") be reasonably fast decreasing
and let for each w € S™~! there exist such positive numbers € = € (w) and C =
C (w) that for each real t the inequality

|7 @) < Coxp{—el} @
is valid. If there exits such an open set e € S"~1 that for some finite positive R
VwEe:(VtERwith |t\2R:f(w,t):0>, (3)

then the support of f is a compact set.

Concerning this Wiegerinck’s theorem, the following questions arise:

(i) Whether the statement of the theorem remains true for sets e of positive
Lebesgue measure on S™~1?

(ii) If the answer to (i) is positive, is it possible to get an analogue of Wie-
gerinck’s theorem for sets e less massive than of positive Lebesgue measure on
sn—1?

(iii) May condition (2) be relaxed?

(iv) What’s going on if one changes (3) to a condition of very fast decreasing
along directions w € e?

The present paper gives the answers, at least partial, to these questions .

First, recall some definitions and facts.

Definition 5. Let {my};-,,mo = 1, be a sequence of positive numbers. With
this sequence, it is associated the class

C ({mx})
={rec®m®:(30=Cr<coVteRVEEL, : ‘f(k)(t)‘ < CFlmy) }.

Class C (my) is called A-quasianalytic if any two its elements that coincide to-
gether with all their derivatives at some point coincide identically.

For C ({my}) is a linear space, definition (5) simply means that if a function
of this class has a zero of infinite order, then it must equal zero identically.

The criteria of A-quasianalyticity were proved independently by Carleman,
Denjoy, and A. Ostrovski (for references, see [4]). We formulate only one of these
criteria which we need below.
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Theorem 6. Class C ({my}) is A-quasianalytic if, and only if, the condition:

flnT(r)dT:OO’ @
1

r2
where

’I“k
T(r)zsup{—:k:(),l,...}

mg

is so-called Ostrovski’s function, is satisfied.

By the definition, any Ostrovski’s function increases as r increases and is a
convex function of logr.
The following theorem contains answers to questions (i) and (iii).

Theorem 7. Let f € C (R™) be reasonably fast decreasing, and let for each
w € S"~! there exist such a quasianalytic class C ({my (w)}) that for its Ostrovs-
ki’s function T,, (r) the inequality

F (@t < 1T (e (5)
is valid for every t € R. If for some set e C S™ of positive Lebesgue measure
Vw e e IR, < 00 (VtEsz’th \t|2Rw:f(w,t):O),
then the support of f is a compact set.

Later we will see that there exists a quantitative version of this qualitative
result.

It is also possible to relax the restriction on the size of e in Theorem 7. The
price that one should pay for it is vanishing the average of f on some affine
subsets of smaller dimension. To formulate the correspondent result, we need
some notations and definitions.

Let us treat R" as the orthogonal sum of Euclid spaces R"!,... ,R™ ny +
-+« +n, =n, of vectors

) = (ng),... ,w%)) ,J=1,...,p.
Denote by x € R" a polyvector (x(l), . ,x(p)). S stands for the polysphere, i.e.,
the distinguished boundary of the direct product of unit balls. So

S=8""1x...x8w = {w: (w(l),... ,w(p)) : Hw(j)H =1,7=1,... ,p}.
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Let A mean the set of all (n — p)-dimensional affine subspaces of R™ whose pro-
jection on each of R™ is a hyperplane in it. Associate to each point

(w,t) ,we S, t=(t1,... ,tp,) € RP,

the following element of A
A(w,t) = {x eER": <:B(j),w(j)> =t5,j=1,... ,p}.

It is a coverage of A of multiplicity 27.

Let function f : R® — C be integrable on each affine subspace of R" of
dimension (n —p). Let us define the function f (w,t) on S x RP by the same
equation (1):

f(w,1) = / £ () dm (x),
A(w,t)

where A (w,t) € A and dm (x) = dm () (x) is (n — p)-dimensional Lebesgue
measure on it. For p = 1, this function is the standard Radon transform. For
p > 1, it is natural to call this function the block Radon transform.

The following result, which is a generalization of Theorem 7, provides the
positive answer to question (ii):

Theorem 8. Let f : R* — C be a continuos reasonably fast decreasing func-
tion, and let for any w of the polysphere S there exist such a quasianalytic class
C ({my, (w)}) with Osrovski’s function T, (r) that the inequality

7 @] < {2 (i)

is valid for block Radon transform f(w,t) of f at each t € RP. If there exists
such a set € CS of positive Lebesgue measure that

Vo € e 3R, <oo: (VEER with ||t] > Ry: f(w,1) =0),
then the support of f is compact.

For ny = ng = --- = n, = 2, the restriction on the massiveness of e can be
relaxed further. As we will see, this restriction can be formulated in terms of
positive capacity instead of the terms of positive Lebesgue measure.

To better understand the answer to question (iv), we have to reformulate
Theorem 7 and Theorem 8. By Wiener-Paley—Schwartz Theorem, these theorems
can be reformulated as follows: If conditions of Theorem 7 (Theorem 8) are
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satisfied, then f is Fourier transform of some entire function of finite exponential
type* in C* whose restriction on R” belongs to L? (R").
Here is the answer itself.

Theorem 9. Let f : R* — C be a continuous reasonably fast decreasing
function, and let for each w € S there erist such a quasianalytic class C ({my, (w)})
with Ostrovski’s function T, (r) that the inequality

|7 @0 <4z (e}

is valid for the block Radon transform f(w, t) of f at eacht € RP. If there exists
such a number p > 1 and such a set € C S of positive Lebesgue measure on S
that

Vw € e3C, < 00 : (Vt cRP . ‘f(w,t)‘ < C,exp{—C, ||t||p}) )

then f s the Fourier transform of an entire function of finite type in C* with
respect to order p” whose restriction on R™ belongs to L* (R).

2. Proof of Theorem 7

Let w € S™ and let A € R It is well known (see, for instance, Helson’s
monography cited above) that Fourier transform f and Radon transform f of f
relate to each other as follows:

FN /f z) exp {iA (w,z)} dz /f w,t)exp {iAt} d, (6)

which is crucial for the present reasoning. For instance, it means that for w € e the
function f (Aw) can be extended onto the complex A-plane as an entire function
of exponential type.

From equation (6) and estimate (2) it follows that f (Aw) can be extended
from the real axis to the strip {A € C:|Im )| < €} as an analytic function. In

* An entire function ¢ : C* — C is called a function of exponential type o if

sup {lo (2)|exp{—A(Jz1] + - +|2a])} : 2= (21, ,22) € C"}

is finite for each A > o and infinite for each A < o. Similarly, an entire function ¢ : C* — C is
called a function of finite type o with respect to order p if

sup {|¢ (2)|exp {=A(Jz1] + - +]z])'} : 2 € C"}

is finite for each A > o and infinite for each A < o.
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other words, in Wiegerinck’s theorem the Fourier transform of f is slice ana-
lytic. Upon the conditions of Theorem 7, f (Aw) belongs, as a function of A, to
the A-quasianalytic class C ({my42 (w)}), and that property may be called slice
quasianalyticity. Indeed, for all A € R and k € Z the inequality

A~ o0
%()\w) = / (it)* f (w,t) exp {iXt} dt| < C + C
— 00
it tk+2
< [ aq
1

is valid. Here and in what follows C stands for different constants.

Since f is a reasonably fast decreasing function, its Radon transform f (w,t)
also decreases fast. It means that Fourier transform f(z) € C® (R*). We
can associate with f (z) its formal expansion into Taylor series of homogeneous
polynomials:

A 0 8 2 \*
~ _ i - | —
fla)~> (mla +aag +mn8$n) 0)/kl= > Ap(z). ()
kEZ 4 kEZ
If x = Aw and w € e, this expansion becomes informal
M) = Y A (w) M
]CEZ+

and the series converges for all complex .

It is easy to see that a function w +— R, us semicontinous from above. In
particular, it is measurable on e. So, there exist such a set € C e of positive
Lebesgue measure and such a positive finite number R that

sup{R, :w € é} = R.
Forwee

k

Ay ()] = / Fw,1) ( ;\k exp {iAt} o 0) dt| /k!

= /f(w,t) (aa_; exp {iMt} |A:0> dt| /k! < CRFFL/k! = CRF/E!.

Let 7 be the standard parametrization of S»~! by spherical coordinates 6 =
(01,...,60ph—1) extended onto the cube {6; € [-m,7):j=1,... ,n—1}. (There
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exist several such parametrizations but it does not matter for us which one is
chosen.) T realizes the coverage of S™ ! of essentially finite multiplicity. Besides,
it maps the homogeneous polynomial Ay (w) onto the trigonometric polynomial

G (0) = Hy, (exp{i01} ,exp{—ib1},... ;exp{—ibp_1}) = Ak (w)

of degree k with respect to vector variable § € R*~!. According to our estimate,
this trigonometric polynomial is bounded by CR¥/k! on the relatively dense (with
respect to Lebesgue measure) set *

B=U_g, ey (2nl + 771 (8)) C R*L.

To proceed further, we need the following statement that was proved by
A. Schaeffer [11] for m = 1 and by B. Levin [6] for the general case:

Theorem 10 (Levin-Schaeffer). Let E be a relatively dense subset of R™
with the dense characteristics L and §, and let g(z) be an entire function of
exponential type o in C™. Then

sup{|g (z)| : € R} < exp {CoL™""/6} sup{lg(y)| : y € E},

where C = C (m) depends only on dimension m.

Applying Theorem 10 to trigonometric polynomials Gy, (6), we get that

max {|A; (W) :w €S" '} = max {|G,(0): 0 R}
< Cexp{CkL™/6} RF/K! = Cexp{vk} /!
where positive finite v does not depend on k.

This estimate allows us to draw two inferences. First, for each z = (21, z9,... ,
zn) € C*, z; = zj + 1y, j = 1,... ,n, the inequality

In|Ag (2)] < / P(t,2) In|Ay ()| dt,
Rn

where

P(t’z):.ﬁﬂ[ |3

(t; — ;)" + y?]

* A measurable set E C R™ is called relatively dense (with respect to Lebesgue measure) if
there exist such positive constants L and ¢ that for any x € R™ Lebesgue measure of the portion
of E in the closed ball By (z) = {y € R™ : ||y — z|| < L} is at least §. L and § are called the
density characterisitics of E.
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is the product of n Poisson’s kernels for the halfplane, is valid. By the homogeneity
of Aj, we have

In|Ag (2)] < max{In|4 (w)|:weS"}+ k/]P(t, z) In||t|| dt
R»
< CH~k—1n(k!)+ Ck.

It means that the series

> Ak(2)

kEZ 4

converges to an entire function g (z). The following theorem of A. Goldberg [2]
(see also [5]) implies that g () is of finite exponential type:

Theorem 11 (Goldberg). Let

F(z)= )Y Pi(2),z€C",

kEZ 4

be the expansion of entire function F (z) into Taylor series of homogeneous poly-
nomials Py (z), and let Cy = max{|Py (z)| : ||z|| < 1},k € Z+. Then F (2) is of
order p > 0 if, and only if,

In Ck 1

li =
e kmk p

F (z) is of type o with respect to order p if, and only if,

lim sup (% InCy +In k) = In (oep).

k—00

According to Goldberg’s theorem, the estimate of | A (2)| we have just stated
implies that g (z) is of finite exponential type in C".

Second, for each w € S™ functions ¢ (Aw) and f (\w) coincide as functions of
A identically. It is a consequence of the following lemma of L. Ronkin [9]:

Lemma 12 (Ronkin). If function f that belongs to a A-quasianalytic class
C ({my}) coincides (together with all its derivatives) at some point a with func-
tion g that is analytic in some disk centered at a, then they coincide on the
correspondent diameter of the disk.

So, f(z) = g(z) for all = € R*. By Wiener—Paley-Schwartz theorem, f
vanishes outside some ball.
Theorem 7 is proved.
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Remark 13. It is easy to see that Theorem 7 can be reformulated in quanti-
tative terms. Indeed, if Lebesgue measure of e C S™ equals § and R, = R for all
w € e, then for each ¢ € R*!

m(Eﬂ{OER”_l:|0j—<pj|§7r,j:1,...,n—l})ZCé,

where m (A) is Lebesgue measure of A C R*! and C > 0 depends on n only.
Choosing L = 27 in Levin—Schaeffer’s theorem, we easily verify that the support
of f is contained in the ball

{z eR": [|lz|| < CR},

where C = C (n,8) >0 does not depend on f and R = max{dist(z,0) :
T € Ssupp f}

Wiegerinck derives his theorem from the so-called Korevaar—-Wiegerinck lem-
ma [12]| on mixed derivatives. This lemma allows to estimate the order n partial
derivatives of a function in terms of the estimate of its n'* differential for all
vectors of an open subset of S™. Using Levin—Schaeffer’s theorem, one can sharpen
the statement of this lemma using the estimate of the n* differential only on a
subset of positive Lebesgue measure.

3. Proof of Theorem 8

Reasonably fast decreasing of f implies that Fourier transform f of fis an
element of C™ (R™) and therefore has the following formal expansion

k;
- S (e ) 0 $ s

ke(Z4)? p ke(Z4)?

Here k = (k1,... ,kp) € (Z4)" k! = ki!... kp!, and Ak (x) is an algebraic poly-
nomial that is homogeneous of degree k; with respect to 29 j=1,... p.For
w € S and A € RP denote by A - w polyvector

(z\lw(l),)\Qw(Q),... ,/\pw(p)) e R".

If x =M\ w,w € e, the expansion above becomes informal.

Z Ak (W) XS, 0K = AF1 e,
ke(Z4)?
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Once again, the Fourier transform of f admits the following representation in
terms of its block Radon transform:

f(>\. y= [ f M 2@ P
w R[ (.CC A .’L‘)

X €xp {z [)\1 <w(1),x(1)> +o A <w(p), w(p)>] } dz (8)

- / f (@, 1) exp {i (7, 2)} dt,
RP

It means that

sup{ a)\;{f()\-w) oy ER} < R[ f(w,t)‘ It;]” dt
el (L ) g
C {m, , .
SRp el (1 + ||t||p+1) {mu (W) +mypis (W)}

By Carleman-Denjoy-Ostrovski’s Tteorem, classes C ({m, (w) + my4p+1 (w)})
and C ({m, (w)}) are A-quasianalytic or not at the same time.

Now we need to extend the concept of quasianalytic classes onto functions of
several variables. Let

{mk}k:(kl,...,kp)E(Z+)p » (0,...,0) = 1’

be a sequence of positive numbers. This sequence generates the class

C ({mu})
= {f € C* (R) : (30=0f <ooVtERP Vk € (Z4) : ‘D“f(t)‘

< Ck1+---kp+1mk)} ’

where

6’“1+"'ka

DX (1) = £)

ool

As before, this class is called A-quasianalytic if any two its functions coinciding
together with all its partial derivatives at some point of RP coincide identically.

The following criterion of A-quasianalyticity of the class C ({my}) of functions
of p > 2 variables was obtained by V. Matsaev and L. Ronkin [8]:
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Theorem 14 (Matsaev—Ronkin). Class C ({m(kl,___ ,kp)}) of functions of p
variables is A-quasianalytic if, and only if, p classes

C ({m(kl,o,...,o)}) ,C ({m(o,kQ,o,...,o)}) yeury C ({m(o,o,...,o,k,,)})

of functions of one variable are A-quasianalytic.

By this theorem, defining

meo,..0) (W) =m0 (W) = =mgq . o5 (@) =m; (W) +mjipi1 (w),
i=0,1,...,

and my (w) = sup { ‘DE‘)\) F (X w)‘ TN E ]Rp} otherwise, we get a A-quasianalytic
class that contains f (A-w) as a function of A € R?. Let us assume, for the sake

of simplicity, that for all w € e we have R, = R < 0. So, for w € e we have

1 gkrtthp

e f (A W)
k!aA’fl...aA’;P( o

:% / (it)™ -+ (itp) "™ f (w,t) exp {i (X, 2)} dt

RP
CRkit+kotp O RE1++kp

= k! k!

Let us define the trigonometric polynomials Gk () = Ax (w) as follows
Gx = (0) = Hy (exp {zﬂg)} , €Xp {—i@@} yee. ,€XD {—z’@éll)fl} ey

) L1 ghtethe
exp {—29711;_1}) = Emf (M- w)‘,\zo .

Here w = 7 (0), where

and 7 =(71,...,7p), where each 7; is the standard parametrization of Sl ex-
panded onto the cube {H(j): (99),... ,07(;)_1) :0,(3) €[0.2n),k=1,... ,nj_l}.

(Again, it does not matter which particular standard parametrization we use.)
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Applying Levin—Schaeffer’s theorem as in the proof of theorem 7, we get that for
the polynomial

~

1 gkrtethp

A (w) = H—F——F (A-w))
Kl gakr gk [A=0
the following inequality
| Ak (w)| < Cexp{y (k1 +---kp) R} /k! (9)

is valid for all w €S and some finite constants C' and v that do not depend on k
and w. By means of the multiple Poisson integral and homogeneity of Ay, this
estimate can be extended (perhaps, with different C and 7) onto complex vectors
z € C",||z|]| < 1. It means that the series

> Ax(z)

ke(Z4)?

converges in C" to an entire function, say, g (z). Since estimate (9) is valid,
possibly with different C' and -y, for polynomials

By(z)= Y, Ax(z),

ky+-kp=k

g (z) is an entire function of finite exponential type by Goldberg’s theorem men-
tioned in the previous section. By Matsaev—Ronkin’s theorem and Ronkin’s
Lemma cited above, two functions of A, f (A -w) and g (\-w), coincide on each
straight line containing the origin for each fixed w € S. Indeed, assuming the
opposite, we get by Ronkin’s lemma that for at least for one such line, say, [,
the restrictions of the correspondent class of functions of p variables is not A-
quasianalytic. Selecting new orthogonal axes so that one of them is I, we see
that by Mstsaev—Ronkin’s theorem our class of functions of p variables neither
is A-quasianalytic. Since it is impossible, the restrictions we started with must
coincide for each A € RP. For w € S is arbitrary, these functions coincide on R”,
and to finish the proof, it is enough to apply Wiener—Paley—Schwartz Theorem.

In the case where nq = --- = n, = 2, we can prove a stronger result. It is based
on the possibility to apply instead of Levin—Schaeffer’s theorem the following
particular case of the general result of B. Levin, V. Logvinenko, and M. Sodin [7]:

Theorem 15 (Levin—Logvinenko—Sodin). Let E C C be such a closed set
that for every x € R and some § > 0 the logarithmic capacity

1 1
cap(Eﬂ{§=£+i77€(C:\{—m|<§,|n|<§}) > 4.
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Then for any subharmonic function u(z),z € C, that is nonpositive on E and of
finite degree not exceeding one, i.e.,

u(z) <1,

lim sup

the inequality

C
sup{u(z):z € R} < W (1/0)

holds. Here C < oo is an absolute constant.

To apply this theorem to the estimate of | Ay (w)|, the preimage E = 71 (e) C
R"~P that is 2m-periodic with respect to each of coordinates should satisfy the
following condition: Ronkin’s I'-capacity of

EN {92 (9(1),... ,9(p)) :0,(3) €l0,2n],k=1,...,n;—1, j=1,... ,p}
has to be positive. The concepts of I'-projection and I'-capacity were introduced

by L. Ronkin [10].
Let E C C™ be a compact. Denote by A (E; 2}, ... 2,,_,) the intersection of E

with the complex affine subspace {z = (Z1yeee s 2Zm) 121 =2 21 = Z;n—l}-
This intersection also is a compact. Define I-projection I'*~! (E) of E onto the
space C™ ! of variables z1,...,2n_1 as the set of all such (z1,...,2y,_1) that

the logarithmic capacity

cap (A (E;z1,. .. 2m—1)) > 0.
I'-projection of E onto C™~2 we define as

I (B) =T (T (B))

and so on. At last, '}, (E) = T3 (I'2, (E)) . Besides, let us agree that I'! (E) = E.
I'L (E), which is now defined for each whole number m, is Ronkin’s I'-projection
of E. It occurs that the logarithmic capacity of I'}, (E) cannot be chosen as a
measure of the massiveness of £ C C™. The reason is that it strongly depends
on the numeration of coordinates. V. Ivanov and L. Ronkin independently con-
structed examples [10] of compacts with such capacity equal to 0 for one order of
numeration and positive for another So, it is a good idea to define this measure as
the maximum of logarithmic capacities of T'}, (E) over all possible permutations

of variables. This new measure is called Ronkin’s I'-capacity and is denoted by
[-cap (E) .
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Any compact set E C R™ of positive Lebesgue measure has, of course, positive
[-cap (E) but there exist a lot of compacts E of I'-cap (E) > 0 and of Lebesgue
measure equal to 0.

Let us call a set e € S "good” if it is closed and the intersection of its preimage
E upon 7 (defined above) and the cube

{9:(0<1>,... ,0<P>) 09 cj0,2n), k=1,... ,nj_1j=1,... ,p}

has positive ['-capacity, say, . Because of periodicity of 7 , we have that I'-
capacity of the intersection of E with the cube

{0:(0(1),... ,0(p)) :Gl(cj) € [a,(cj),a,(cj)+47r] k=1,...,n;1j5=1,... ,p}

is at least ¢ for any a = (a(l), e ,a(p)) € R*P. Besides, this preimage is 2x-
periodic with respect to each coordinate.
For the sake of simplicity, let us assume that p = 2. So, ny = ny = 2

and n = 4. In this case, E is a subset of R2. Because of periodicity of E
with respect to each variable, the logarithmic capacity of the intersection of its I'-
projection I'3 (E) on the space C of variable z; and any segment [b, 47 + b] C R(z,)
is bounded from below by some positive constant do for a certain periodic subset
of R4,y whose part in each segment [a,47 + a] C R(z,) has logarithmic capacity
bounded from below by another positive constant d;. It means that for each
23 € T3 (E) the entire function Gy, (21) = Gx (#1,293) of exponential type k; is
bounded on relatively dense by capacity subset of real line by

CRk1+k2
k1l

By Levin—Logvinenko—Sodin’s theorem it means that this function is bounded on
the whole real line by

C exp {y1k;} RF1TF2
k1 ’
where y; < oo does not depend on k. Let us fix now any real z9. The entire
function Hy, (22) = Gi (29, 22) of exponential type ko is bounded by (10) on the
relatively dense by logarithmic capacity subset of real line. Therefore, by the
same theorem, it is bounded on the whole real line by

Cexp {m1k1 + 12ko} RM1F
kl ’
It means that Gy (x1,z2) is bounded by this constant on R2. Starting from this

moment, we can proceed as we did it proving Theorem 8 to finish the proof of
the following statement:

(10)
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Theorem 16. The statement of Theorem 8 remains true if one changes the
restriction on Lebesque measure of € € S to the condition of e being “good”.

4. Proof of Theorem 9

As before, Fourier transform f (x) of f has the following formal presentation:

k;
Z H( +$$lj”)al.8(3)> f(0) = Z Ak (x)

ke(Z4)P mp ke(Z )P

For each w € e the function Ak (x) satisfies the estimate

1 6k1 +-tkp R

S (A w) oo

()= Kkl gxb oy

< | [0 ) F e i) de

RP

C,
F/\tl ¥ [tp]™ exp {=Cly (Jta] + -+ + [tp])"} dt
RP

P o
C, H % /ukj exp {—pr”_lup} du
=179

P
ki+--+k kj/p—k;
< Cck D H ij i
i=1
Here C' < oo does not depend on k (but does depend on w) and k; = 0 con-
tributes a factor equal to 1 to the product. Estimating Ay (w) by means of

Levin—Schaeffer’s theorem, we see that this estimate, is valid for all w € S but
possibly for different C'. Taking, if necessary, larger C, we get that the inequality

Z A (w)| < CkEk-p)/p
K1+ +kp=k
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holds for each w € S. Once again, using product of Poisson’s kernels for halfplane,
we see that this inequality remains true for z € C", ||z|| < 1, if we take larger but
still finite C. According to Goldberg’s Theorem mentioned above, the series

> Ax(z)

kE(Z+)p
converges for all z € C" to entire function g (z) of normal type with respect to
orderp%l. The same quasianalytic reasoning as before shows that g (x) = f (x)

for all x € R™ and, therefore is an element of L2 (R"). Theorem 9 is proved.
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