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The contact dynamic initial boundary value problem for thermoelastic
media is under consideration. Its solution is represented by the dynamic
analogues of thermoelastic single and double-layer potentials. This repre-
sentation leads to the system of nonstationary boundary equations. The
unique solvability of this system is proved in the one-parameter scale of
Sobolev type function spaces .

1. Introduction

Reducing original problems to boundary equations is one of the basic methods
for the numerical solution of the boundary value static problems for elastic bodies.
The foundations of the potential theory in classical dynamic elasticity problems
are established in [1-4]. Boundary equations in two main dynamic problems
for thermoelastic media are studied in [5]. The goal of the paper is to study
boundary equations in the contact dymamic problem for thermoelastic media by
the methods developed in [2-4]. We begin with the statement of the problem.

Let T of class C? be a closed surface that divides R on the domains Q!
(interior) and Q? (exterior). We denote by u(z,t) = (u1(x,t),us(z,t), usz(z,t))
a displacement at a point z = (z1,z2,3) at moment t. 0(z,t) is the difference
between present and initial Ty > 0 medium temperature. Let each of the domains
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be occupied by homogeneous elastic medium with different elastic and heat pa-
rameters. Upper indices will mark all quantities that concern to thermoelastic
media in Q' or Q2 respectively.

The elastic coefficients afjkl, 1,75,k 0 =1,2,3, s = 1,2, for each value of the
indices satisfy the symmetry condition afjkl = a;ikl = afjlk and the elliptic condi-
tion afjklmjnkl > a§niinij» Vnij = nji € R with a positive aj. Here and later on the
summation over repeated Latin indices is used. We denote by ﬁfj, 1,7 =1,2,3,
s = 1,2 the coefficients of the symmetric heat stress tensors. If volume forces
and outer heat sources are absent, then the displacement and the temperature
fields U® = (u®,6°) defined in the domains G° = Q° x Ry, Ry =(0,00) are the
solutions of the problem S [1, 6]:

([ pOful — 0 (alydut) +0; (BL01) =0, i=1,23,
Lot — 0k (\,0:6") + BL, Tod; 0l =0,
propu? - 0 (a2, 0m3) +0; (B36°) =0, i=1,23,
00° — 0k (A3,0,6%) + B2, Td; 02 =0,

u® (z,0) = o’ (2,0) = 0° (2,0) =0, s=1,2, x €

Ul (z,t) = U?(z,t) + F (z,1), B
| 0 (@0) = (1P0?) (@) + G layry  BDETT =T xRy

(z,t) € GY

(z,t) € G% (1)

where ¢ > 0 are the constant specific heat of the media, p® are the constant
densities of the media, {)\fj ?,j:l are the positive definite symmetric tensors, 0y =
d/ot, 8; = 8/0zj, j =1,2,3, T*® are the boundary differential operations on X

(afjklakul - ﬁfjﬂ) nj(z), 1=1,2,3,

(T°U), = )

(X5056) i (@), i = 4.
F (z,t),G(z,t) are given four-component vector fields on *. The assumtion of
homogeneity of the equations and the initial conditions does not restrict the gen-
erality of the problem essentially since one can transfer existing nonhomogeneities
to the boundary conditions. We remark that the problem S is posed formally, its
correct formulation will be given after introducing the necessary function spaces.

2. Function spaces

To simplify notations we use the same symbols for space of vector and scalar
functions and for their norms. Moreover, we use the same symbol U for functions
and vector functions U (z,t) in spaces of originals and U(z,p) = LU (z, t) for their
Laplace transformations with respect to £, where £ is the Laplace transformation
operator. Let H,,(R?®), m € R, be the standard Sobolev spaces [7, 8]. For each
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p € C, m € R we introduce the spaces Hy, ,(R?) coinciding with H,,(R?) as sets
with their norms

Jul?,, = / (L+ I + [p2)™ a(e) [2de,

R3

where %(€) is the distributional Fourier transformation of u(z). By Hp,(2*) and
Hp,p(2%), s = 1,2, we denote the spaces of restrictions to Q° of elements of
H,,(R3?) and H,, ,(R3?), respectively, with their norms:

U s = inf v, , U s = inf v ,
el = B e S [
where ||v||,, is the norm of H,,(R?). The spaces Hy, (I') and Hy,, (T') are in-
troduced by the standard scheme using the resolution of identity and the corre-
sponding local coordinates [7, 8]. Finally, we introduce the spaces Hp, p(92°) =
Hpp(2°) X Hyp (%) and Hpp p(T') = Hppp(T) X Hp(T) of four-component vec-
tor functions U = (u,6) whose first three components u belong to Hy, ,(£2°) or

Hp,p (') and the last component 6 belongs to Hy,(Q2°) or Hy, (I'), respectively.
Norms in these spaces are defined by

2 2 2 2 2 2
Ul pss2s = l[ellrn s + 10llms s WU npsr = N1l i + 1611z, -

We denote by 7* the trace operators that map H, ,(2°) onto H,,_1/2,(I") con-
tinuously for m > 1/2.

For each x > 0 we denote by H,1kx(2°), & € R, the spaces of four-
component vector functions U (z,p), z € Q°, p € C, = {p€ C:Rep=0 > K}
that set a holomorphic map from C, into the space of four-component vector
functions H;(Q®) with the finite norms defined by

2 2k 2 .
012 e =500 [ (L4 U1 dr, = +in
R

The spaces H s k:x (L") of four-component vector functions defined on the bound-
ary surface I' with their norms

2 2k 2 .
G = 5 / A+ [p)* G2 pdr,  p=o+ir,
O>K
R

are introduced similarly. Finally, we introduce the spaces Hy;1,.(G?)
and  Hpmk,x(27), formed by inverse Laplace transformations of elements of
M k.(92°) and Hi gk (D) with their norms

10N pmics = LU N gomss s N0l st = LU g ot >
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respectively. We save the notation «v* for the trace operators mapping continu-
ously the spaces M1 5,x(G*) onto Hy.q /04 . (2F).

Now we give the correct formulation of the problem S. The solution of this
problem is the pair {UY,U?}, U® = (u*,0°) € Hy;1,04(G?), s = 1,2, that y'U! =
v2U? + F and that satisfies the equality

/(—platu%at’vi + azljklaluiaj’vi + ﬂzljazol’l)z - 03:918{/7
at

+)\11cj8j918k77 - ﬁl%jTOatullgaj'f])d!Edt + /(—p28tu?8tvi
G2
+a’%jlclaluzaj")i + /8%82027)1' - 020281:7] + /\%jaj928k77

— B2 Todyul dyn)dudt = / (Givi + Gan) dsdt
>+

for each finite vector function V = (v(z,t),n(z,t)) € C® (R x Ry).

3. Thermoelastic potentials

Denote by 7%, s = 1,2, the 4 x 4 matrix differential operators of thermoelas-
ticity that correspond to the medium parameters in the domains Q°. Let ®° (x, t)
be the fundamental solutions for the operators 7° which are equal to zero as
t < 0. ®° (z,t) are the 4 x 4 matrices satisfying

T (z,t) = 6 (x,t) I, (z,t) € RY,
5 (z,t) =0, z € R3,t <0,

where ¢ (z,t) is the Dirac function and I is the unit matrix. We introduce the
thermoelastic single-layer potential with defined on ¥ = I" x R four-component
density a(z,t) by

(V) (5,0) = [ @ @yt =)y, ) dsyr
)

The properties of the single-layer potential are studied in [6]. It was shown that at
least for smooth and finite on ¥ densities this potential satisfy the homogeneous
thermoelastic equation outside I'. Moreover, if the density is equal to zero when
t < 0 then the potential satisfies zero initial data.

We represent the solution of the problem S by the single-layer potentials
U* (z,t) = (V*a®) (z,t), (x,t) € G*. This representation leads to the boundary
equation system

(Viad) (z,t) = (VZa?) (z,t) + F (z,1),

(T'V'al) (z,t) = (T?V20?) (z,t) + G (z,1), (z,8) € 2. (2)
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The goal of the paper is to prove the unique solvability of the system (2).
After the transition to the Laplace transformation with respect to the time
variable the single-layer potential takes the form

(Vya) (z,p) = /‘V (z —y,p) a(y,p) dsy,

where ®° (z,p) is the fundamental solution for the operator 7,7 that arises from
the operator 7% by the Laplace transformation.
4. Properties of the basic boundary operators

Accomplishing the Laplace transformation in (1) we obtain the problem S,
that consists in seeking U* (z,p) = (u® (z,p),0° (z,p))) € Hi,p () that satisfy

( plp?ul — 8; (a}jklalu}c) + 0} ( ilj91) =0, 1=1,2,3, Q.
clpfl — oy, (,\}w.ajel) + ﬁ,%jTopaju}c =0, vE
| QT ) (afjklalui) + 9 ( 3].02) =0, i=123 .
c2p6? — O (/\ijaﬁ?) + ﬁ,%jTopaju% =0, ’
U' (z,p) = U?(z,p) + F (z,p) —
| (T'UY) (z,p) = (T°U?) (z,p) + G (z,p),

The solvability of this boundary value problem is proved easily by the standard
methods. Denote by (-,-)o,0s, || * [Jo,0s the inner product and the norm of the
space L?(Q°), by the (-,-)or, || - [lo,0 the inner product and the norm of the
space L?(T"). We represent the boundary differential expression T°U as the pair
((T* ) (T*U);) where (T*U), are the first three components of the T°U and
the (T*U); is its fourth component. From (3) it follows that

PP 105 e + B (u®,0%) — (6%, 505uf) g oo = (=1 (T°V°),, %)y

c2pll6°|lo e +A° (6%,6°) + Top (6% B507uf) . = (=1)"7 (6%, (T°V),)o r

s=1,2, (4)
where
E*(u,v) = (aj;Opur, Ojvi)o,0s,  A*(6,m) = (Ag;068, 0jn)o s

Multiplying the first equation in (4) by T§|p|~2p?, the second one by |p|~?p and
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adding the results one obtains
PTo [p|” ||“1||091+T0E1 (u'y ! +01 ”91H091+0_1A1 (0",6")
Ty ol 22 g+ T2 (42.02) + 2 2] g + 0712 (62,02)
— o 'Re {Top{((TlUl)) Dor = (T202)e,u2)y 1}
+ (6", (1'01), )y — (¢ (T2U2)t)071,} .

We denote by the same letter ¢ any positive constants arising in estimates that
do not depend on parameter p € C,. Note that the constants ¢ may depend
on . Using the Corn inequality [7] and ellipticity of the tensors {“fjkl}?, k=1

(5)

and {\}; 13 j—1 for each p € C,; we obtain the estimate

IR s + 107 e < e {pl [((T0)ersl) g = (T202)er )
+ ‘(91’ (TlUl)t)o,r - (92, (T2U2)t)o,r‘} :
Let U = (u,8) € Hip (Q°) be the solution of the problem
p*p*u; — 0; (afjklaluk) + 0; ( ;je) =0, +=1,2,3, c 0.
200 — 0 (3,050 + B T§pdjux = 0, TEEE O (e)
U(z,p) = F (z,p), zel,

where F' = (f,&) € Hij2,(0), ¥ = (4,() € Hijzp(D), V = (v,n) € H1p(2°)
is an extention of ¥ into Q°: 4%V = W. Poincaré-Steklov operators acting on
F € Hyjp,(T) are introduced by

(Nsp 0)or = ((V3P), w)o’ +((N;F)t,g)0’r, s=1,2,
D ((WGF), ), L = p9 () + B (w0) = (0.8500)
1 (WGF),€), = 20 @l + A* 00) + Tip (850p,m)

The continuity of the operatiors Nps and the estimate

2
||NSF||—1/2,p;F <clp| ||F||1/2,p;r (7)
are proved in [5].
Lemma 1. For each p € Cy, k > 0, the operator Npl —./\/Z,,2 1S an isomorphism
from Hy3,5(T) to H_1/2,(T). The estimate

11l o pir < clpl [[(Np = NZ) Fl_y (8)

5p7
holds.
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P r o o f. The continuity of the operator N'pl — /\/'p2 is the consequence
of the continuity of the operators N; . The continuity of the inverce operator

Ny — ./\f]?)f1 follows from the trace theorem and (5):

IFI o < ellpl | (N = A2) F),

el [ (N5 A F), |0
<c|p| ||F||1/2,p;r ” (Npl _NPQ) F”—l/?,p;F’

that is |[F[|; 0, < cl|p| | (N _NI’Q)F”71/2,p;F' To complete the proof it is
sufficient to verify that the range of the operator Npl - Np2 is dense in the space
H_1/2,(T). Ifit isnot true we find a nonzero element ¥ = {1, (} € H;/9,(I') such
that ((Ny —N2) F, \D)o,r‘ = 0 for each F € Hy/9,(T). We take F = (Topy), ()
and construct the solutions of (6) U® € H1p (£2°). From (5) it follows that U® = 0,
hence F' =0 and ¥ = 0. This contradiction completes the proof.

We introduce operators V,; by

iy

—1/2,p;T

Vya = (V;a) (z,p), zel,
on the smooth densities. In [5] the properties of these operators are studied and

the following lemma was proved.

Lemma 2. For each p € Cy, £ > 0, the operators V, can be extended by
continuity to the isomorphisms between the spaces 7—[,1/271,(F) and H1/27p(r). For
each o € H_y9,(T') the estimate

||a||—1/2,p;I‘ <c |p‘2 HV;a”]_/Z,p;F (9)

holds.

5. The solvability of the system of boundary equation

Theorem 1. The boundary equation system (2) is uniquely solvable for any
vector functions F € Hpy1/ok12x(E1), G € Hpy_1/0k6(B7), kK € R, & > 0. Its
solving operator for any k € R, k > 0, is the continuous mapping:

{F,G} € 7'lr;1/2,1c+2,;~s(2+) X HT;—I/Z,k,n(E+)
— {041,052} € Hr;—l/Q,k—3,n(2+) X Hr;—l/Q,k—3,n(2+)'

Proof. After transition to the Laplace transformation the system (2) takes
the form

V; 1= Vga2 + F,
NiVied = APV22 1 G
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The consequence of this system is the equation (N — N7)Via? = G — N F,
whose solvability for any p € C, follows from Lemmas 1 and 2. Using the scheme
developed in [2-4] one can make sure that if {F(z,p),G(z,p)} are holomorphic
maps from Cy, to Hy 5(T)xH_y o(T), then o = (V2) ' (M} — N2) ' (G — NLF)
is a holomorphic map from Cy to H_;/5(T). Finally, from the estimates (7-9) it
follows that for o?(z,t) = L 'a?(z,p) the inequality

”0‘2 ($’t)||2—1/2,k—3,n;2+ = SUP/ 1+ |p|)2(k73) ”0‘2 (:”’p)||2—1/2,p;1“ dr
U>nR

< csup / (41D F2NF 29I o pir + (14 DG (2,91 1 ) dr

0>K
R

2 2
= ||F($7t)||1/2,k+2,n;2+ + G (xat)||—1/2,k,n;2+

holds. Analogous estimates for a! = (V;)_1 ((./\fp1 —Np2)_1 (G—-N}F) + F)
complete the proof.

Boundary equations (2) being solved, we construct functions U®(z,t) =
(Via®)(z,t) with obtained densities.

Theorem 2. Let F € HT;l/Q,k,n(E+); G e ,H,,-;_l/g,k,,,v(z—f_), keR, k>0.
{a}(z,t),a?(z,t)} is the solution of the boundary equation system (2). Then the
vector functions {U"(z,t),U?(z,t)} = {(V'a')(z,t), (V2a?)(z,t)} are elements
of Hra k—1,6(GY) X Hypo g—1,6(G?) and they are the solution of S when k > 1.

Proof. From the inequality

U (z,p)||1,p:00 < elp| {I|F (z,0) |l1j2pr0 + G (@,0) || -1j2pr}, 5=1,2

that is the consequence of the definition of the Poincaré-Steklov operators and
(5), and from the trace theorem it follows that

k—
103 (2,1 1 e = b [ (L + 2" [T ()1} e 7
O>KR,
2k 2 2
<sup [ (14 p)* {17 (@ 2)I g pyr + 1€ (@ )21y | 7
T>KR
2 2
= ||F (xat)Hl/Z,k,n;E'f‘ + HG (x’t)Hfl/Z,k,n;E"‘ :

These inequalities and the easily verified statement that U(z,p) is a holomorphic
map from Cj to H; (%) complete the proof.
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