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The paper is concerned with the large time behavior of solutions of the
heat equation on a thin two-layer domain. Such systems may arise from
modeling thermal emission (as a result of chemical reaction) and heat trans-
fer between two thin films. It is shown that every solution converges as
t — 400 to a single equilibrium point.

Hale and Raugel [1]| proved that every bounded solution of the problem
Ou = Au+ f(u), t>0, (z,y) € Q,

@
on

converges to a single equilibrium point, provided that the bounded domain  C R?
is close (in some sense) to a line segment.

In this paper we consider a gradient-like parabolic equation on two-layer thin
domains. Since this equation admits a Lyapunov functional then the w-limit set
of any bounded solution belongs to the set of equilibria. Our main result shows
that every solution actually converges to a single equilibrium point.

Note that Pola¢ik and Rybakowski [2] have shown that there are scalar pa-
rabolic equations on a disk in R? having bounded solutions that approach, as
t — 400, a subset of equilibria homeomorphic to the circle. This implies that we
have to impose additional conditions of some kind (for instance, thinness of the
domain) in order to guarantee the convergence of solutions.

Our definition of thin domains is somewhat different from that given in [1]
and allows us to avoid some tedious technicalities.

=0, t>0, (z,y) € 09,
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Stabilization of solutions of nonlinear parabolic equations...

Let I, a1, a2, €y be positive numbers and g1, g2 : [0,] x [0,e0] = R be
functions of class C? such that

gi(X,e) >0, (1)
9i(X,0) = a;, 0,gi(X,0) =0 (2)
fori =1, 2, X €[0,1], € € [0,&0]. We set Q, = Q. Uy, where
Q. ={(X,Y)eER?:0<Y < g1(X,e), 0<X<I},
Qe ={(X,Y) ER?: —go(X,e) <Y <0, 0< X <},
and consider the following equations on €2,

Opu; = Du; — au; + f(ui), >0, (3)
Uil = uio(X,Y), (X,Y)€Q,, i=1,2

with the boundary conditions

(%ln — (~1) () (w1 “”) TR N
ou
R R

(Weset I' = 021 . N0 ¢, u(X,Y) = u(X,Y) for (X,Y) € Q; . and denote by n
the unit outward normal to 89;..) We assume that a > 0, f € C}(R) and that
there are (3, v, C' > 0 such that

/() = f'(0)] < CL+ ul” + o]lu—ol”,  uveR. (6)
The function f(u) is also assumed to satisfy the dissipation condition
lim sup & <0.

luj—s00 U
Finally, let us suppose that k(X) € C[0,{] and

= inf k(x) > 0. 7
S LY )
Under these assumptions, we can apply to (3)—(5) a standard technique of abstract
parabolic equations theory [3] in order to obtain the global strong solution u(t) =
u(t, ug) for
ug € HY(Q:) = H' () ® H (Qa).

This solution is unique so the map ug — u(t,ug), t > 0, defines a semigroup Se(t)
on H(.). S:(t) is turned out to be compact for ¢ > 0 and thus the w-limit set
of every orbit {S¢(¢)u : t > 0} is not empty. Our main result is as follows.
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Theorem 1. For any sufficiently small a1, as > 0 there exists a positive
number €qg such that the w-limit set of every orbit of S:(t) for 0 < € < gy is a
single fixed point.

Proof. If we make the change of variables (see [1])

v ®)
Y:gi(x’g)a (XaY) eQi,sa 1=1,2,

we obtain the transformed domain Q = Q; U Qy, where Q; = (0, ) x (0, 1),
Q9 = (0, I) x (—1, 0). The problem (3)—(5) will be converted into the system

{ Opuy = N eu; — oy + f(u;), t>0, )
Ui|t:0 = uiO(xay)a (w,y) € Qia 1=1, 2,

(=~ Ok —w)| =0 i=12 (10
ul  _y, (11)
one AO\T

where A;; = %dz'UBZ-,E, % = B, - n;, B;. is a formal differential operator of
the first order

9iOzui — (0x9iy) Oyui
B;cui(z,y) =
~(029iy)Ozui + 5 (1 + (029iy)*) Oy us

((z,y) € Q;, € €0,e0)),

n; is the unit outward normal to 0€;.
The transformation of coordinates (8) induces a linear continuous isomorphism

E.:H'Y(Q) -V =H'(Y) ® H(Q).

It is clear that if T.(¢) is the semigroup defined by the problem (9)—(11) in the

space V, then
E.S:(t) =T.(t)E., t>0.

The latter identity implies that the convergence of every orbit {T¢(¢)u : t > 0}
to a single equilibrium point is equivalent to the same property of Sc(t).

Let H. (e € [0,&0]) be the space H = L?(Q) endowed with the inner product

2
(w, o), = /(uivigi)($ay) dz dy .

i=1 o3
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From (1) one derives that for [Jul|}, = (u,u)m,, [Jull = llullL,@q)
Cillull < ljulla. < Callull (12)

with some constants C, Cs which do not depend on €. Thanks to the continuity
of g;, 1 =1, 2, one also obtains

lim |(u,v)mg. — (u,v)Hg,| =0 (13)

e—0

uniformly for bounded u,v € H.
There is a bilinear form associated with the operator (—A + «) on €2, with
the boundary conditions (4), (5)

2
auy) = [((Va,90) + aww)dX ay + 37 (-1 [ (b 3009 (X) dX,
Q. i,j=1 r
where ;¢ : H' () — H1/2(8Qz-,5) is the trace mapping. By the change of

variables we transform a(u,v) into the form

2
0 = (Lew, Lo}, + w0, + 3 (—1)™ / (kyyu; y505) (x) .

i,j=1 0

where 5 ,
Leu(z,y) = (0rui — wgzyayui’ —Oyu;)

gi 9i

for (z,y) € Q;. The space V serves as the natural domain of definition for a.(u,v).

The Friedrichs inequality implies that the symmetric form a.(u,v) is closed
and sectorial in H, [4]. Hence, the triple {V, H,, a.} defines a unique unbounded
self-adjoint operator A. on H, with the domain D(A;), such that

CI,E(’U,, U) = (Asua U)He

for any u € D(A;), v € V. The operator A, is positive due to the conditions (1)
and (7). Note also that D(A;/Q) =V and

lim sup  [(AY2 — AY?)ul = 0. (14)

e20ue, Jlullv <1
The latter relation is a direct consequence of (13) and the inequality (see (2))

I(Le — Lo)ull < Melully, — ueV.
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Using the standard arguments of the theory of elliptic boundary value problems,
one can show that A_! is compact,

D(A.) = {u: u; € H* (), u satisfies (10), (11)},
and for any u € D(A;)
(AEU)(xay) = _Ai,sui(xay) + CM’U,Z’(.’L',y), (-’E,'y) € QZ

Let us now consider the Nemitskii operator

(F(w)(z,y) = f(ulz,y), (2,y) € L.

The hypothesis (6) implies that F' is well defined on V with values in H and for
every R >0
IF(u!) — F(u?)|| < Crllu’ —u?|lv,
(15)
IF(@)|| < Cry u',u? €V, |[uly <R,

with some constant Ci > 0. This operator is of class C! and its Frechét derivative
satisfies for any R > 0 and some Dpg > 0 the following estimates

IF" (u')v]l < Dillvllv, (16)

I(F" (u') = F'(u*))o]| < Dgllut =[5 llvllv, (17)

where u!, u?, v €V, [[ullly, [|u?|v, ||v]v < R.
Write (9)—(11) in the abstract operator form

d
d—;‘ Y Au=F), >0, u(0)=up. (18)

Lemma 1. The following statements hold true:

1. For any ug € V there is a unique strong solution (in the sense of Henry [3])
of (18) defined for all t > 0.

2. The semigroup Tc(t) : V. — V associated with (18) enjoys a V-compact
absorbing set which does not depend on e € [0, &g].

3. T.(t) is gradient-like, i.e., the w-limit set of every orbit {T.(t)uo : t > 0}
consists of the equilibrium points u = T, (t)u, VYt > 0.

4. The corresponding family of global attractors A, € € [0,¢e0], is upper semi-
continuous in € at € = 0.
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The proof of the Lemma 1 seems to be rather standard and will be dropped
here.

Let V; C V denote the subspace of y-homogeneous functions V, = {u(z,y) =
v(z) € V}. One easily shows that V,, is positively invariant under the semigroup
To(t). Moreover, for any sufficiently small parameters a1, as > 0 this subspace
attracts exponentially every orbit of Ty(t), that is

disty{To(t)u,V;} < Ke " disty{u,V,}, u€eV,t>0,

with some constants o, K > 0 (see [5]). In this case, the attractor Ay of Ty(¢)
can be identified with the attractor A of the problem

Oy = Oggu — au + f(u), t>0,
d_u‘ — d_u‘ =0
dr | =0 dr |g=I )

Due to statement 4 of Lemma 1 this implies that
lim di _
lim disty{Ac, A} =0

for any sufficiently small a1, as > 0.
Hale and Raugel [1] have shown that if the abstract parabolic equation (18)
defines a gradient-like semigroup and satisfies the property

dimker(A; — F'(u)) <1 (19)

for any fixed point u then every bounded solution of (18) which approaches a set
of equilibria actually converges to a single fixed point. We are going to apply this
statement to our particular problem.

Consider the linear operator

C:(v)u = Acu — F'(v)u,

where v € V, D(C.(v)) = D(A¢). The perturbation operator u — F'(v)u is well
defined on V, symmetric, and satisfies the inequality

IF' ()ull < 6l Acull + Nsllull, we€ D(A:),

for any § > 0 with some Ns > 0. Since A; is a self-adjoint bounded from below
operator in H, and its inverse is compact, the same properties hold true for the
perturbed operator C.(v). Hence, the spectrum of Cg(v) forms a denumerable
sequence of real eigenvalues

AMe(v) < Aoe(v) < .oo < Age(v) = +o0.
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Lemma 2. For any sufficiently small a1, as every operator Cy(v) withv € A
satisfies the condition

dimker Cy(v) < 1. (20)
Proof. Since Ais a bounded set in V', we have thanks to (16)
IF' (0)ull < Mjullv, weV, veA,

with some M > 0. Let ug € {u € V: Cy(v)u = 0} for some v € A. If a1, ay are
small then the subspace V, attracts exponentially every solution of the equation

(see [5]). In particular, we have

. . B 0 _
t_l)lﬁ_noodzstv{exp( tCo(v))u”, Vz} = 0.

On the other hand, by the choice of ug
exp(—tCo(v))u’ = u°

for every ¢ > 0. Therefore, u® belongs to V, and satisfies the regular Sturm-
Liouville problem

& (z) — oulz No(x))u(x) = T
{%’()_du(”é_(())() 0, 0<z<lI,

ﬂ|z:0 - ﬂ|m:l =

Asis well known, this problem has at most a one-dimensional subspace of solutions
(see [6], for instance). This completes the proof of Lemma 2.

Let T be the space [0, 9] X V endowed with the product topology. We have
the following result.

Lemma 3. If the parameters a1, as are as in Lemma 2 and v° € A, then
there is a T-neighborhood U of (0,2°) € T such that

dimker C,(v) <1
for (e,v) € U.

Proof. Consider the family of bilinear forms on V generated by the oper-
ators C¢(v):

ce(v) (ul,u2) — (A;/Qul, Ai/Quz)HE — (F,(’U)UI,UQ)HE.
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If the sequence {v"}%2; C V converges to v’, then from (13), (14), and (17) we
deduce

lim (e (0"))(ul,u?) = (eo(v”)) (u', u?)
£e—0, n—+o00
for any u!, u?> € V. This relation together with (20) imply (see [4]) that the
eigenvalues and associated projectors of C,(v) are continuous in (g,v) at (g,v) =
(0,Y).
Thanks to Lemma 2 there is either a number & such that

Aeo(0?) =0, Xig(0°) # Apo(0?), i#£k

or \io(v’) # 0, 4 € N. In any case there is a neighborhood U € T of (0,v°) such
that
dimker C, (v) = dimker Cy(v°) < 1

for (e,v) € U and the proof is complete.

Now we are able to complete the proof of the main theorem. Let the param-
eters aq, as be so small that all the statements of Lemmata 1- 3 hold true. By
Lemma 3 for every v € A there is a neighborhood U, of (0,v) € To = {0} x A
such that

dimker C.(u) <1
for (e,u) € U(v). Since the subset Tg = {0} x A C T is compact we have Ty C
Ul U, for some elements v!, v? ..., v™ € A. The statement 4 of Lemma 1
implies that for some €1 > 0 and every € € [0, &1]

{e} x A, C U™, U,

therefore, every equilibrium point u of (18) satisfies the condition (19). This
proves the theorem.
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