Almost periodic functions in finite-dimensional space with the spectrum in a cone

S. Favorov and O. Udodova

Department of Mechanics and Mathematics, V.N. Karazin National University 4 Svobody Sq., Kharkov, 61077, Ukraine

> E-mail:favorov@ilt.kharkov.ua Olga.I.Udodova@univer.kharkov.ua

Received January 4, 2002 Communicated by I.V. Ostrovskii

We prove that an almost periodic function in finite-dimensional space extends to a holomorphic bounded function in a tube domain with a cone in the base if and only if the spectrum belongs to the conjugate cone. We also prove that an almost periodic function in finite-dimensional space has the bounded spectrum if and only if it extends to an entire function of exponential type.

A continuous function f(z) on a strip

$$S_{a,b} = \{z = x + iy : x \in \mathbf{R}, \quad a \le y \le b\}, \ -\infty \le a \le b \le +\infty,$$

is called almost periodic by Bohr on this strip, if for any $\varepsilon > 0$ there exists $l = l(\varepsilon)$ such that every interval of the real axis of length l contains a number τ (ε -almost period for f(z)) with the property

$$\sup_{z \in S_{a,b}} |f(z+\tau) - f(z)| < \varepsilon. \tag{1}$$

In particular, when a = b = 0 we obtain the class of almost periodic functions on the real axis.

To each almost periodic function f(z) assign the Fourier series

$$\sum_{n=0}^{\infty} a_n(y)e^{i\lambda_n x}, \quad \lambda_n \in \mathbf{R},$$

Mathematics Subject Classification 2000: 42A75, 30B50. The work was supported by the INTAS grant No. 99-00089.

where $a_n(y)$ are continuous functions of the variable $y \in [a, b]$.

In the case a=b=0 all exponents λ_n are nonnegative if and only if the function f(x) extends to the upper half-plane as a holomorphic bounded almost periodic function; the set of all exponents λ_n is bounded if and only if f(x) extends to the plane \mathbf{C} as an entire function of the exponential type $\sigma = \sup_n |\lambda_n|$, which is almost periodic in every horizontal strip of finite width (see [1, 4]).

A number of works connected with almost periodic functions of many variables on a *tube set* appeared recently (see [2, 6–9]). Recall that the set $T_K \subset \mathbf{C}^m$ is a *tube set* if

$$T_K = \{ z = x + iy : x \in \mathbf{R}^m, y \in K \},$$

where $K \subset \mathbf{R}^m$ is the base of the tube set.

Definition. (See [6, 9]). A continuous function f(z), $z \in T_K$ is called almost periodic by Bohr on T_K , if for any $\varepsilon > 0$ there exists $l = l(\varepsilon)$, such that every m-dimensional cube on \mathbf{R}^m with the side l contains at least one point τ ((T_K, ε) -almost period for f(z)) with the property

$$\sup_{z \in T_K} |f(z+\tau) - f(z)| < \varepsilon. \tag{2}$$

Let f, g be locally integrable functions on every real plane

$$\{z = x + iy_0 : x \in \mathbf{R}^m\}, y_0 \in K.$$

Definition. Stepanoff distance of the order $p \ge 1$ between functions f and g is the value

$$S_{p,T_K}(f,g) = \sup_{z \in T_K} \left(\int\limits_{[0,1]^m} \left| f(z+u) - g(z+u)
ight|^p du
ight)^{rac{1}{p}}.$$

Using this definition, we can extend the concept of almost periodic functions by Stepanoff on a strip (see [4, p. 197]) to almost periodic functions on a tube set:

Definition. A function f(z), $z \in T_K$, is called almost periodic by Stepanoff on T_K , if for any $\varepsilon > 0$ there exists $l = l(\varepsilon)$ such that every m-dimensional cube with the side l contains at least one τ ((T_K, ε, p) -almost period by Stepanoff of the function f(z)) with the property

$$S_{p,T_K}(f(z), f(z+\tau)) < \varepsilon.$$
 (3)

The Fourier series for an almost periodic (by Bohr or by Stepanoff) function f(z) on a set T_K is the series

$$\sum_{\lambda \in \mathbf{R}^m} a(\lambda, y) e^{i\langle x, \lambda \rangle},\tag{4}$$

where $\langle x, \lambda \rangle$ is the scalar product on \mathbf{R}^m , and

$$a(\lambda, y) = \lim_{N \to \infty} \left(\frac{1}{2N}\right)^m \int_{[-N, N]^m} f(x + x' + iy) e^{-i\langle x + x', \lambda \rangle} dx; \tag{5}$$

this limit exists uniformly in the parameter $x' \in \mathbf{R}^m$ and does not depend on this parameter (see [6, 8]).

A set of all vectors $\lambda \in \mathbf{R}^m$ such that $a(\lambda, y) \not\equiv 0$ is called the spectrum of f(z) and is denoted by $sp\ f$; this set is at most countable, therefore the series (4) can be written in the form

$$\sum_{n=0}^{\infty} a_n(y) e^{i\langle x, \lambda_n \rangle}.$$

Note that partial sums of the series (4), generally speaking, do not converge to the function f(z). However the Bochner-Feyer sums *

$$\sigma_q(z) = \sum_{n=0}^{q-1} k_n^q a_n(y) e^{i\langle x, \lambda_n \rangle}, \ 0 \le k_n^q < 1, \ k_n^q \to 1 \ as \ q \to \infty$$

converge to the function f(z) uniformly for almost periodic functions by Bohr and with respect to the metric S_{p,T_K} for almost periodic functions by Stepanoff; in particular, if two functions have the same Fourier series, then these functions coincide identically. For holomorphic almost periodic functions the series (4) can be written in the form

$$\sum_{n=0}^{\infty} a_n e^{-\langle y, \lambda_n \rangle} e^{i\langle x, \lambda_n \rangle} = \sum_{n=0}^{\infty} a_n e^{i\langle z, \lambda_n \rangle}, \ a_n \in , \tag{6}$$

(see [8]). Any series of the form (6) is called *Dirichlet series*.

By Γ we always denote a convex closed cone in \mathbf{R}^m ; by $\widehat{\Gamma}$ we denote the conjugate cone to Γ :

$$\widehat{\Gamma} = \{ t \in \mathbf{R}^m : \langle t, y \rangle \ge 0 \ \forall y \in \Gamma \},$$

note that $\widehat{\widehat{\Gamma}} = \Gamma$. Also, Γ is the interior of a cone Γ .

^{*} For n = 1 see [4], for n > 1 see [8].

Theorem 1. Let f(x) be an almost periodic function by Bohr on \mathbb{R}^m with Fourier series

$$\sum_{n=0}^{\infty} a_n e^{i\langle x, \lambda_n \rangle},\tag{7}$$

where all the exponents λ_n belong to a cone $\Gamma \subset \mathbf{R}^m$. Then f(x) continuously extends to the tube set $T_{\widehat{\Gamma}}$ as an almost periodic by Bohr function F(z) with Fourier series (6). The function F(z) is holomorphic on the interior $T_{\widehat{\Gamma}}$, and for any $\Gamma' \subset \subset \widehat{\Gamma}$ uniformly w.r.t. $z \in T_{\Gamma'}$

$$\lim_{\|y\| \to \infty} F(z) = a_0, \tag{8}$$

where a_0 is the Fourier coefficient corresponding to the exponent $\lambda_0 = 0$ (if $0 \notin sp$ f, put $a_0 = 0$.) If sp $f \subset \Gamma$, then (8) is true uniformly w.r.t. $z \in T_{\widehat{\Gamma}}$.

Here the inclusion $\Gamma' \subset\subset \widehat{\Gamma}$ means that the intersection of Γ' with the unit sphere is contained in the interior of the intersection of $\widehat{\Gamma}$ with this sphere.

To prove this theorem, we use the following lemmas.

Lemma 1. Suppose that a plurisubharmonic function $\varphi(z)$ on \mathbb{C}^m is bounded from above on a set T_K , where $K \subset \mathbb{R}^m$ is a convex set. Then the function

$$\psi(y) = \sup_{x \in \mathbf{R}^m} \varphi(x + iy)$$

is convex on K.

Proof of Lemma 1. Fix $y_1, y_2 \in K$. The plurisubharmonic on \mathbb{C}^m function

$$arphi_1(z) = arphi(z) - rac{\psi(y_2) - \psi(y_1)}{\|y_2 - y_1\|^2} \left\langle \operatorname{Im} \operatorname{z}, y_2 - y_1
ight
angle$$

is bounded from above on the set $T_{[y_1,y_2]}$. Therefore the subharmonic function $\varphi_2(w)=\varphi_1((y_2-y_1)w+iy_1)$ is bounded on the strip $\{w=u+iv:u\in\mathbf{R},\ 0\leq v\leq 1\}$. Hence, the value of φ_1 at any point of this strip does not exceed

$$\max\{\sup_{u\in\mathbf{R}}\varphi_2(u),\sup_{u\in\mathbf{R}}\varphi_2(u+i)\}\leq \max\{\sup_{x\in\mathbf{R}^m}\varphi_1(x+iy_1),\sup_{x\in\mathbf{R}^m}\varphi_1(x+iy_2)\}.$$

Therefore, for any $z = x + iy \in T_{[y_1, y_2]}$,

$$\varphi_1(z) \leq$$

$$\max\{\psi(y_1) - \frac{\psi(y_2) - \psi(y_1)}{\|y_2 - y_1\|^2} \langle y_1, y_2 - y_1 \rangle, \psi(y_2) - \frac{\psi(y_2) - \psi(y_1)}{\|y_2 - y_1\|^2} \langle y_2, y_2 - y_1 \rangle\}$$

$$= \frac{\|y_2\|^2 - \langle y_1, y_2 \rangle}{\|y_2 - y_1\|^2} \ \psi(y_1) + \frac{\|y_1\|^2 - \langle y_1, y_2 \rangle}{\|y_2 - y_1\|^2} \ \psi(y_2).$$

Hence for any $y \in [y_1, y_2]$ we have

$$\psi(y) \leq \frac{\|y_2\|^2 - \langle y_1, y_2 \rangle - \langle y, y_2 - y_1 \rangle}{\|y_2 - y_1\|^2} \psi(y_1) + \frac{\|y_1\|^2 - \langle y_1, y_2 \rangle + \langle y, y_2 - y_1 \rangle}{\|y_2 - y_1\|^2} \psi(y_2).$$

If $y = \lambda y_1 + (1 - \lambda)y_2$, $\lambda \in (0, 1)$, then we obtain the inequality

$$\psi(\lambda y_1 + (1 - \lambda)y_2) \le \lambda \psi(y_1) + (1 - \lambda)\psi(y_2).$$

Therefore, the function $\psi(y)$ is convex on K.

Lemma 2. Let $\psi(y)$ be a convex bounded function on a cone Γ . Then $\psi(y) \leq \psi(0)$ for all $y \in \Gamma$.

Proof of Lemma 2. Since $\psi(y)$ is convex, we have

$$\psi(y) \le \left(1 - \frac{1}{t}\right)\psi(0) + \frac{1}{t}\psi(ty), \ t > 1.$$

Taking $t \to \infty$, we obtain $\psi(y) \le \psi(0)$.

Proof of Theorem 1. Let $\sigma_q(x)$, q=0,1,2,... be the Bochner-Feyer sums for the series (7). Obviously, these functions are also defined for $z \in \mathbf{C}^m$. Assume that

$$\varphi_{q,l}(z) = \log(|\sigma_q(z) - \sigma_l(z)|).$$

For any fixed q and l, q > l, the function $\varphi_{q,l}(z)$ is plurisubharmonic on \mathbf{C}^m . Moreover, for $z \in T_{\widehat{\Gamma}}$ we have $\langle y, \lambda_n \rangle \geq 0$ and

$$|\sigma_q(z) - \sigma_l(z)| \le |\sigma_q(z)| + |\sigma_l(z)|$$

$$\sum_{n=0}^{q-1}|a_n|e^{-\langle y,\lambda_n\rangle}+\sum_{n=0}^{l-1}|a_n|e^{-\langle y,\lambda_n\rangle}\leq 2\sum_{n=0}^{q-1}|a_n|.$$

Consider the function

$$\psi_{q,l}(y) = \sup_{x \in \mathbf{R}^m} \log(|\sigma_q(z) - \sigma_l(z)|).$$

Using lemma 1, we obtain that $\psi_{q,l}(y)$ is convex in $\widehat{\Gamma}$. Therefore, by lemma 2, we have

$$\sup_{z \in T_{\widehat{\Gamma}}} (|\sigma_q(z) - \sigma_l(z)|) \le \sup_{x \in \mathbf{R}^m} (|\sigma_q(x) - \sigma_l(x)|). \tag{9}$$

Further, the function f(x) is almost periodic, therefore the Bochner-Feyer sums converge uniformly on \mathbf{R}^m , and for $q, l \geq N(\varepsilon)$

$$\sup_{x \in \mathbf{R}^m} (|\sigma_q(x) - \sigma_l(x)|) \le \varepsilon.$$

Hence, $\sup_{x \in \mathbf{R}^m} (|\sigma_q(z) - \sigma_l(z)|) \le \varepsilon$ for all $z \in T_{\widehat{\Gamma}}, q, l \ge N(\varepsilon)$.

Thus the Bochner-Feyer sums uniformly converge on $T_{\widehat{\Gamma}}$, their limit is an almost periodic function by Bohr and holomorphic on the interior of $T_{\widehat{\Gamma}}$ with the Dirichlet series (6).

Further, passing to the limit in (9) as $q \to \infty$, we get

$$\sup_{z \in T_{\widehat{\Gamma}}} (|F(z) - \sigma_l(z)|) \le \sup_{x \in \mathbf{R}^m} (|f(x) - \sigma_l(x)|).$$

Choose l such that the right hand side of this inequality is less than ε . We have for $\Gamma' \subset\subset \widehat{\Gamma}$

$$\sup_{z\in T_{\Gamma'}}|F(z)-a_0|\leq \sup_{z\in T_{\Gamma'}}|F(z)-\sigma_l(z)|+\sup_{z\in T_{\Gamma'}}|\sigma_l(z)-a_0|\leq \varepsilon+\sup_{z\in T_{\Gamma'}}|\sigma_l(z)-a_0|.$$

Note that for any fixed $\lambda_n \in \Gamma \setminus \{0\}$ the value $\langle y, \lambda_n \rangle$ tends to $+\infty$ as $||y|| \to \infty$, $y \in \Gamma'$, therefore, we have

$$|\sigma_l(z)-a_0|=|\sum_{j=1}^{l-1}k_j^la_je^{i\langle x,\lambda_j
angle}e^{-\langle y,\lambda_j
angle}|\leq \sum_{j=1}^{l-1}|a_j|e^{-\langle y,\lambda_j
angle}
ightarrow 0$$

as $||y|| \to \infty$ on Γ' . Hence, uniformly w.r.t. $z \in T_{\Gamma'}$

$$\overline{\lim_{\|y\| \to \infty}} |F(z) - a_0| \le \varepsilon. \tag{10}$$

This is true for arbitrary $\varepsilon > 0$, then (8) follows.

If $sp f \subset \Gamma$, then for any $\lambda_n \in sp f$, $\langle y, \lambda_n \rangle \to +\infty$ as $||y|| \to \infty$ uniformly w.r.t. $y \in \Gamma$, therefore (10) is true uniformly w.r.t. $z \in T_{\widehat{\Gamma}}$, and (8) is also true. The theorem has been proved.

Theorem 2. Let f(x) be an almost periodic function by Stepanoff on \mathbb{R}^m with the Fourier series (7). Let all the exponents λ_n belong to a cone $\Gamma \subset \mathbb{R}^m$. Then there exists an almost periodic by Stepanoff function F(z) in the tube set $T_{\widehat{\Gamma}}$ with the Fourier series (6) such that F(x) = f(x). The function F(z) is

holomorphic almost periodic by Bohr on any domain $T_{\widehat{\Gamma}+b}$, $b \in \widehat{\widehat{\Gamma}}$. Besides, for any cone $\Gamma' \subset \subset \widehat{\Gamma}$ we have uniformly w.r.t. $z \in T_{\Gamma'}$

$$\lim_{\|y\| \to \infty} F(z) = a_0, \tag{11}$$

where a_0 is the Fourier coefficient for the exponent $\lambda = 0$. If $sp\ f \subset \overset{\circ}{\Gamma}$, then (11) is true uniformly w.r.t. $z \in T_{\widehat{\Gamma}+b}$ for any $b \in \overset{\circ}{\widehat{\Gamma}}$.

P r o o f. To prove the first part of the theorem, we need to replace $\varphi_{q,l}(z)$ by

$$\widehat{arphi}_{q,l}(z) = \log \left(\int\limits_{[0,1]^m} \left| \sigma_q(z+u) - \sigma_l(z+u) \right|^p du
ight)^{rac{1}{p}}.$$

Arguing as in the proof of theorem 1, we obtain that the Bochner-Feyer sums $\sigma_q(z)$ converge in the Stepanoff metric uniformly w.r.t. $z \in T_{\widehat{\Gamma}}$ to an almost periodic function by Stepanoff F(z) with Fourier series (6).

Let $b \in \widehat{\Gamma}$. The module of the function $\sigma_q(z) - \sigma_l(z)$ is estimated from above by the mean value on the corresponding ball contained in $T_{\widehat{\Gamma}}$. Using the Hölder inequality, we have

$$\sup_{x \in \mathbf{R}^m} |\sigma_q(x+bi) - \sigma_l(x+bi)| \le C \sup_{z \in T_{\widehat{\Gamma}}} \left(\int\limits_{[0,1]^m} |\sigma_q(z+u) - \sigma_l(z+u)|^p du \right)^{\frac{1}{p}},$$

where the constant C depends only on b and $\widehat{\Gamma}$.

Applying Lemmas 1 and 2 to the functions

$$\tilde{\psi}_{q,l,b}(y) = \sup_{x \in \mathbf{R}^m} \log |\sigma_q(z+bi) - \sigma_l(z+bi)|,$$

we get that the Bochner–Fourier sums converge uniformly on $T_{\widehat{\Gamma}+b}$ to F(z), thus F(z) is holomorphic almost periodic by Bohr in $T_{\widehat{\Gamma}+b}$ for any $b\in\widehat{\widehat{\Gamma}}$.

Then the other statements of the theorem follow from Theorem 1.

Now we prove the inverse statements to Theorems 1 and 2.

Theorem 3. Suppose that an almost periodic by Bohr function f(x) continuously extends to the interior of T_{Γ} as a holomorphic function F(z). If F(z) is bounded on any set $T_{\Gamma'}$, Γ' being a the cone in \mathbf{R}^m , $\Gamma' \subset \Gamma$, then F(z) is an almost periodic function by Bohr on T_{Γ} and the spectrum of F(z) is contained in $\widehat{\Gamma}$.

Proof. Take $\lambda \notin \widehat{\Gamma}$. Then there exists $y_0 \in \overset{\circ}{\Gamma}$ such that $\langle y_0, \lambda \rangle < 0$.

Choose a neighbourhood $U \subset \Gamma$ of y_0 such that $\langle y, \lambda \rangle \leq \frac{1}{2} \langle y_0, \lambda \rangle$ for all $y \in U$. Let A be any nondegenerate operator in \mathbf{R}^m such that A maps all the vectors $e_1 = (1, 0, \dots, 0), \dots, e_m = (0, 0, \dots, 1)$ into U.

The function $F(A\zeta)$ is holomorphic and bounded on the set

$$\{\zeta = \xi + i\eta \in \mathbf{C}^m : \xi \in \mathbf{R}^m, \ \eta^j > 0, j = 1, \dots, m\}$$

because $A\{\eta: \eta^j \geq 0\} \subset \Gamma$.

If for each coordinates ζ^1,\ldots,ζ^m we change the integration over the segments $-N\leq \xi^j\leq N,\ \eta^j=0$ to the integration over the half-circles $\zeta^j=Ne^{i\theta^j},\ 0\leq \theta^j\leq \pi,\ j=1,\ldots,m$ we obtain the equality

$$\left(\frac{1}{2N}\right)^m \int\limits_{[-N,N]^m} F(A\xi)e^{-i\langle A\xi,\lambda\rangle}d\xi$$

$$= \left(\frac{i}{2}\right)^m \int_{[0,\pi]^m} F(ANe^{i\theta}) \prod_{j=1}^m e^{i\theta^j - iNe^{i\theta^j} \langle Ae_j, \lambda \rangle} d\theta, \tag{12}$$

where $\theta = (\theta^1, \dots, \theta^m), e^{i\theta} = (e^{i\theta^1}, \dots, e^{i\theta^m}).$

Since $\langle Ae_j, \lambda \rangle < 0$ for $j = 1, \ldots, m$, we see that the integrand in the right-hand side of (12) is uniformly bounded for all N > 1. By Lebesgue theorem (12) tends to zero as $N \to \infty$.

Thus

$$\lim_{N \to \infty} \frac{1}{(2N)^m} \int_{A([-N,N]^m)} f(x)e^{-i\langle x,\lambda \rangle} dx = 0.$$
 (13)

Cover the set $A([-N^2, N^2]^m)$ by cubes $L_j = x_j' + [-N, N]^m$ such that the interiors of these cubes are not intersected. We may assume that the number of the cubes intersecting the boundary of the set $A([-N^2, N^2]^m)$ is $O(N^{m-1})$ as $N \to \infty$. Taking into account boundedness of the function $f(x)e^{-i\langle x,\lambda\rangle}$ on \mathbf{R}^m and equality (13), we have

$$\frac{1}{(2N)^{2m}} \int_{\cup L_j} f(x) e^{-i\langle x, \lambda \rangle} \, dx$$

$$= \frac{1}{(2N)^{2m}} \left(\int_{A([-N^2, N^2]^m)} f(x) e^{-i\langle x, \lambda \rangle} dx + O(N^{2m-1}) \right) = o(1)$$
 (14)

Since (5) we see that uniformly w.r.t. $x' \in \mathbf{R}^m$ as $N \to \infty$

$$\frac{1}{(2N)^m} \int_{x'+[-N,N]^m} f(x)e^{-i\langle x,\lambda\rangle} dx = a(\lambda,f) + o(1).$$
 (15)

On the other hand, the number of the cubes L_j equals $O(N^m)$ as $N \to \infty$, then the equality $a(\lambda, f) = 0$ follows from (14) and (15). This yields the inclusion $sp f \subset \widehat{\Gamma}$. Using theorem 1 we complete the proof of our theorem.

Theorem 4. If F(z) is bounded on each set $T_{\Gamma'}$, $\Gamma' \subset \Gamma$, and the nontangential limit value of F(z) as $y \to 0$ is an almost periodic function by Stepanoff on \mathbf{R}^m , then F(z) extends to T_{Γ} as an almost periodic function by Stepanoff and the spectrum of F(z) is contained in $\widehat{\Gamma}$.

Proof. The proof of this theorem is the same as of theorem 3, but we have to use theorem 2 instead of theorem 1.

To formulate further results we need the concept of P-indicator. (See, for example, [5, p. 275].)

Definition. P-indicator of an entire function F(z) on \mathbb{C}^m is the function

$$h_F(y) = \sup_{x \in \mathbf{R}^m} \overline{\lim_{r \to \infty}} \frac{1}{r} \log |F(x + iry)|.$$

Theorem 5. (For m = 1 see [3, 4].) Let f(x), $x \in \mathbf{R}^m$ be an almost periodic function by Stepanoff with the Fourier series (7), and let $\|\lambda_n\| \leq C < \infty$ for all n. Then f(x) extends to \mathbf{C}^m as an entire function F(z) of exponential type, which is almost periodic by Bohr on any tube domain in \mathbf{C}^m with bounded base; F(z) has the Dirichlet series (6), and P-indicator $h_F(y)$ satisfies the equation $h_F(y) = H_{spf}(-y)$, where $H_{spf}(\mu) := \sup_{x \in spf} \langle x, \mu \rangle$ is the support function of the set spf.

Proof. Take $\mu \in \mathbf{R}^m$ such that $\|\mu\| = 1$. Put

$$f_{\mu}(x) = f(x)e^{-i[H_{spf}(\mu)+\varepsilon]\langle x,\mu\rangle}.$$

The Fourier series $\sum_{n=0}^{\infty} a_n e^{i\langle x, \lambda_n - (H_{spf}(\mu) + \varepsilon)\mu \rangle}$ corresponds to the function $f_{\mu}(x)$, hence

$$sp f_{\mu} \subset \{x \in \mathbf{R}^m : \langle x, \mu \rangle \le -\varepsilon \}.$$

Since $sp f_{\mu}$ is bounded, we obtain for some $\delta > 0$

$$sp f_{\mu}(x) \subset \Gamma_{\delta,-\mu} = \{\lambda \in \mathbf{R}^m : \langle \lambda, -\mu \rangle \ge \delta \|\lambda\| \}.$$

Theorem 2 yields that $f_{\mu}(x)$ extends to the interior of the domain $T_{\widehat{\Gamma}_{\delta,-\mu}}$, where

$$\widehat{\Gamma}_{\delta,-\mu} = \{ y : \langle y, -\mu \rangle \ge \sqrt{1 - \delta^2} \|y\| \}$$

is the conjugate cone to $\Gamma_{\delta,-\mu}$, as an almost periodic function by Bohr $F_{\mu}(z)$.

This function is holomorphic on any domain $T_{\widehat{\Gamma}_{\delta,-\mu}+b},\,b\in\widehat{\widehat{\Gamma}}_{\delta,-\mu}$ with the Dirichlet series

$$\sum_{n=0}^{\infty} a_n e^{i\langle z, \lambda_n - [H_{spf}(\mu) + \varepsilon]\mu \rangle},$$

and $F_{\mu}(z) \to 0$ as $||y|| \to \infty$ uniformly w.r.t. $z \in T_{\Gamma'}$ for any cone $\Gamma' \subset \subset \widehat{\Gamma}_{\delta,-\mu}$. Using (5), we get

$$\left| a_n e^{-\langle y, \lambda_n - [H_{spf}(\mu) + \varepsilon] \mu \rangle} \right| \le \sup_{x \in \mathbf{R}^m} |F_{\mu}(x + iy)|, \ y \in \Gamma'.$$
 (16)

Put

$$F(z) := F_{\mu}(z)e^{i[H_{spf}(\mu)+\varepsilon]\langle z,\mu\rangle}.$$

F(z) is almost periodic on $T_{\Gamma'}$ with Dirichlet series (6). Therefore it follows from (16) that

$$|a_n| \le \sup_{x \in \mathbf{R}^m} |F(x+iy)| e^{\langle y, \lambda_n \rangle}. \tag{17}$$

On the other hand, the function $F_{\mu}(z)$ is bounded on $T_{\Gamma'}$, hence

$$|F(z)| \le C(\Gamma')e^{-[H_{spf}(\mu) + \varepsilon]\langle y, \mu \rangle}, \ z \in T_{\Gamma'}$$
(18)

Cover the space \mathbf{R}^m by the interiors of a finite number of cones $\Gamma'_1, \ldots, \Gamma'_N$. There exist holomorphic on the interior of Γ'_k almost periodic functions $F_k(z)$, $k=1,\ldots,N$, with identical Dirichlet series (6). Using the uniqueness theorem, we obtain that these functions coincide on the intersections of the cones and thus define a holomorphic function F(z) on $\mathbf{C}^m \setminus \mathbf{R}^m$. The Bochner–Feyer sums for F(z) converge to this function uniformly on any set

$$\{z=x+iy: x\in {\bf R}^m, \ \|y\|=r>0\}.$$

Hence, these sums converge on the tube domain $T_{\{||y|| < r\}}$. Thus F(z) extends to \mathbb{C}^m as the holomorphic function, which is almost periodic on any tube set with

a bounded base. Owing to the uniqueness of expansion into Fourier series, we have F(x) = f(x).

Let us prove that $h_F(y) = H_{spf}(-y)$. From inequality (18) with $\mu = -y$ it follows that

$$h_F(y) \le \overline{\lim_{r \to \infty} \frac{1}{r}} [H_{spf}(-y) + \varepsilon] \langle ry, y \rangle = H_{spf}(-y) + \varepsilon.$$

The functions $h_F(y)$ and $H_{sp\,f}(y)$ are positively homogeneous, hence the inequality

$$h_F(y) \leq H_{sp\ f}(-y)$$

is true for all $y \in \mathbf{R}^m$.

Further, fix $x, y \in \mathbf{R}^m$. The holomorphic on \mathbf{C} function $\varphi(w) = F(x + wy)$ is bounded on the axis $\operatorname{Im} w = 0$. Then the estimate

$$|\varphi(w)| \le Ce^{a|\operatorname{Im} w|}$$

for some a > 0 and all $w \in \mathbf{C}$ follows from (18). Using the definition of P-indicator, we get

$$\frac{1}{\lim_{v \to +\infty} \frac{1}{v}} \log |\varphi(iv)| \le h_F(y).$$

Therefore the function $\varphi(w)e^{i(h_F(y)+\varepsilon)w}$ is bounded on the positive part of the imaginary axis. Applying the Fragmen–Lindelof principle to the quadrants $\operatorname{Re} w \geq 0$, $\operatorname{Im} w \geq 0$ and $\operatorname{Re} w \leq 0$, $\operatorname{Im} w \geq 0$, we get boundedness of this function on the upper half-plane. Applying the Fragmen–Lindelof principle to the half-plane $\operatorname{Im} w \geq 0$, we get the inequality

$$|\varphi(w)| \le \left(\sup_{\operatorname{Im} w = 0} |\varphi(w)|\right) e^{h_F(y)\operatorname{Im} w}$$
 (Im $w > 0$).

Hence, for all $z \in \mathbf{C}^m$, we have

$$|F(z)| \le \sup_{x \in \mathbf{R}^m} |F(x)| e^{h_F(y)}.$$

Now using formula (17) for coefficients of the Dirichlet series of the function F(z), we get the estimate

$$|a_n| \le \sup_{x \in \mathbf{R}^m} |f(x)| e^{h_F(y) + \langle y, \lambda_n \rangle}. \tag{19}$$

Suppose $\langle y_0, \lambda_n \rangle + h_F(y_0) < 0$ for some $y_0 \in \mathbf{R}^m$. Put $y = ty_0$ in (19) and let $t \to \infty$. We obtain $a_n = 0$. This is impossible because $\lambda_n \in spf$.

Thus for all $y \in \mathbf{R}^m$ and $\lambda_n \in spf$ we have $h_F(y) + \langle y, \lambda_n \rangle \geq 0$, hence

$$H_{spf}(-y) = \sup_{\lambda_n \in sp \ f} \langle -y, \lambda_n \rangle \le h_F(y).$$

This completes the proof of the theorem.

The following theorem is inverse to the previous one.

Theorem 6. (For m = 1 see [3, 4].) Let F(z) be an entire function on \mathbb{C}^m , $|F(z)| \leq Ce^{b||z||}$, let F(x), $x \in \mathbb{R}^m$ be an almost periodic function by Stepanoff with the Fourier series (7). Then F(z) is an almost periodic function by Bohr on any tube domain $T_D \subset \mathbb{C}^m$ with the bounded base, F(z) has the Dirichlet series (6), and $sp F \subset \{\lambda : ||\lambda|| \leq b\}$.

Proof. It follows from theorem 5, that it suffices to prove the inclusion

$$sp F \subset {\lambda : ||\lambda|| \le b}.$$

Let the function F(x) be bounded on \mathbf{R}^m . Arguing as in theorem 5, we see that for all $z \in \mathbf{C}^m$

$$|F(z)| \le \sup_{x \in \mathbf{R}^m} |F(x)| e^{h_F(y)},$$

where $h_F(y)$ is P-indicator for F(z). Further, for all $x \in \mathbf{R}^m$ we have

$$h_F(y) = \sup_{x \in \mathbf{R}^m} \overline{\lim_{r \to \infty} \frac{1}{r}} \log |F(x + iry)| \le \sup_{x \in \mathbf{R}^m} \overline{\lim_{r \to \infty} \frac{1}{r}} (\log C + b||x + iry||) \le b||y||,$$

therefore for all $z \in \mathbf{C}^m$

$$|F(z)| \le Ce^{b||y||}.$$

Take $\varepsilon > 0, \ \mu \in \mathbf{R}^m, \ \|\mu\| = 1$. Consider the function

$$F_{\mu}(z) = F(z)e^{-i\langle z,\mu\rangle(b+\varepsilon)}.$$

Since $|F_{\mu}(z)| \leq Ce^{b||y||+(b+\varepsilon)\langle y,\mu\rangle}$ uniformly w.r.t. $x \in \mathbf{R}^m$, then $F_{\mu}(z)$ is uniformly bounded for $z \in T_{\Gamma_{-\mu}}$, where $\Gamma_{-\mu}$ is the cone $\{y : \langle y, -\mu \rangle \geq (1 - \frac{\varepsilon}{b+\varepsilon})||y||\}$. Using theorem 4, we obtain that the spectrum F_{μ} is contained in $\widehat{\Gamma}_{-\mu}$ and

$$sp F = sp F_{\mu} + (b + \varepsilon)\mu \subset \widehat{\Gamma}_{-\mu} + (b + \varepsilon)\mu.$$

Finally, using the inclusion

$$\bigcap_{\mu:\,\|\mu\|=1}(\widehat{\Gamma}_{-\mu}+(b+\varepsilon)\mu)\subset\{\lambda:\|\lambda\|\leq b+\varepsilon\}$$

and the arbitrarity of choice of ε we get the assertion of the theorem in the case of bounded on \mathbf{R}^m function F(z).

Now let the function F(z) be unbounded on \mathbb{R}^m . Put for some N>0

$$g(z) = \frac{1}{N^m} \int_{[0,N]^m} F(z+t)dt.$$

The function g(z) satisfies the estimate on \mathbb{C}^m

$$|g(z)| \le Ce^{bmN}e^{b||z||}.$$

As in the case m=1 (see [4]), we can prove that g(x) is an almost periodic function by Bohr and is bounded on \mathbf{R}^m . The function g(x) has the Fourier series

$$\sum_{n=0}^{\infty} a_n \frac{e^{i\lambda_n^1 N} - 1}{N\lambda_n^1} \dots \frac{e^{i\lambda_n^m N} - 1}{N\lambda_n^m} e^{i\langle x, \lambda_n \rangle},$$

where λ_n^j are coordinates of the vector λ_n (if $\lambda_n^j = 0$, the corresponding multiplier should be replaced by 1).

Using countability of sp F, we can choose N in such a way that none of the numbers $\lambda_n^j N$ coincides with $2\pi k$, $k \in \mathbb{Z} \setminus \{0\}$. In this case sp g = sp F. Applying the proved above statement to the function g(z), we obtain the inclusion

$$sp F \subset \{\lambda : \|\lambda\| \le b\}.$$

References

- [1] *H. Bohr*, Zur Theorie der fastperiodischen Funktionen. III Teil: Dirichletentwicklung analytischer Funktionen. *Acta Math.* (1926), v. 47, p. 237-281.
- [2] S. Yu. Favorov, A. Yu. Rashkovskii, and L.I. Ronkin, Almost periodic currents and holomorphic chains. C.R. Acad. Sci. Paris. Serie I. (1998), v. 327, p. 302–307.
- [3] B.Ya. Levin, Almost periodic functions with the bounded spectrum. Sb. Actual'nyje voprosy matematicheskogo analisa. Rostov university (1978). (Russian)
- [4] B.M. Levitan, Almost periodic functions. Gostehizdat, Moscow (1953). (Russian)
- [5] L.I. Ronkin, Introduction to the theory of entire functions of several variables. Nauka, Moscow (1971). (Russian)
- [6] L.I. Ronkin, CR-functions and holomorphic almost periodic functions with an integer base. Mat. fiz., analiz, geom. (1997), v. 4, p. 472–490. (Russian)
- [7] L.I. Ronkin, On a certain class of holomorphic almost periodic functions. Sb. Mat. (1992), v. 33, p. 135–141. (Russian)
- [8] L.I. Ronkin, Almost periodic distributions in tube domains. Zap. Nauchn. Sem. POMI. (1997), v. 247, p. 210–236. (Russian)
- [9] L.I. Ronkin, Jessen theorem for holomorphic almost-periodic functions in tube domains. Sb. Mat. (1987), v. 28, p. 199–204. (Russian)