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Let u be a subharmonic function in C, u, its Riesz measure. Suppose
that C1 < p({z : R < |2| < RY(R)} < C> (R > R1) for some positive
constants C1, Cz, and Ry, and a slowly growing to +oo function (r) such
that r/¢(r) / 400 (r — +00). Then there exist an entire function f,
constants K; = K;(C1,C2), Ko = K2(C2) and a set E C C such that

lu(z) —log|f(2)|| < Kilog9(|z]), z— o0,z ¢ E,

and E can be covered by the system of discs D, (pr) satisfying

Z prt(|2k]) < Ky,

Reloi<ruR) 1

as Ry — +o00. We prove also that the estimate of the exceptional set is
sharp up to a constant factor.

1. Introduction

We assume that the reader is familiar with principal notions of the theory
of subharmonic functions [1]. Introduce some notations. Let D,(¢) denote the
disc { € C:|¢ —2 <t}, z€ C, t >0. For a subharmonic function u in C
we put B(r,u) = max{u(z) : |z| = r}, r > 0, and define the order p[u] by the
equality p[u] = lim ,_, 4o log B(r,u)/logr. Let also u, denote the Riesz measure
associated with u and m denote the plane Lebesgue measure.

In 1985 R. Yulmukhametov [2] obtained the following significant result. For
any subharmonic function u of order p € (0,+00) and a > p there exist an entire
function f and a set E, C C such that

u(z) —log|f(2)|| < Caloglz|, z— 00,z ¢ Ea, (1.1)
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and E, can be covered by the family of discs D, (t;), j € N, satisfying Z|Zj|> rti
= O(RP™?), (R — +00).

Recently, Yu. Lyubarskii and Eu. Malinnikova [3] have got rid of the assump-
tion on finite order of growth and have obtained the best possible in some sense
estimate for the left-hand side of (1.1) outside an exceptional set.

Theorem A. Let u(z) be a subharmonic function in C. If for some Ry > 0
and ¢ > 1

pu({z: R<|z| <¢qR})>1, R> Ry, (1.2)

then there exists an entire function f satisfying

and for each € > 0 there exists E. C C with lim g yoom({z € E : |2| < R})R™?
< e such that u(z) —log|f(z)| = 0(1), z &€ E., z — oc.

In this paper we are going to approximate a subharmonic function v by the
logarithm of an entire function in the uniform metric in the case when (1.2) does
not hold. The methods of the works [2] and [3] are used.

Condition (1.2) implies that n(R,u) def pu(Do(R)) > Co(g)log R (R — +00).
We shall consider functions u for which n(R,u) = o(log R) as R — +o0.

First, consider the limit case n(R,u) = O(1), R — +4oo. It is known that
outside sufficiently small set the best possible estimate of left-hand side of (1.1) is
O(log |2|), in general. In fact, let ug(z) = 3 log |z|. Suppose that an entire function
f satisfies | log |f(2)| — wo(2)| < alog|z| on a sequence of circles |z| = r,, = +00
(n — +00) for some positive number a. Then B(ry,log|f|) < (a + 3)log|rs| as
Tn, — +00, consequently, f is necessarily a polynomial, i.e., log|f(z)| ~ plog|z|
as z — oo for some p € NU{0}. Therefore, |log|f(z)| —uo(z)| > (3 +0(1)) log |2|
(z = ).

Let ® be the class of all slowly growing to +oo functions #: [1,4+00) —
[2,4+00), (in particular, 1(2r) ~ %(r) as r — +o0) such that r/¢¥(r) / +oo
as r — 4o0o. Remark that functions from @ are necessary continuous. This
follows from nondecrease of 1(r) and r/1(r), ¥(r) € ®.

Theorem 1. Let u be a subharmonic function in C, u = py. If for some
1 € @ there exist positive constants Cy, Cs, and Ry satisfying

(VR>Ry): Ci <u({z:R<|z| < RY(R)} < Oy, (1.3)
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then there exist an entire function f, constants K1 = K;(C1,C5), Ko = K5(C5)
and a set E C C such that

lu(z) —log[f(2)|| < Kilogi(lz]), z— o0,z ¢E, (1.4)

and E can be covered by the system of discs D,, (py) satisfying
Pt (|2 )

< Ko, 1.5
2 (15)

(VR > Ry) : >

R<|zx|<Ry(R)

for some Ry > 0.

2. Proof of Theorem 1

Under the assumptions on 1 we have [4, Ch. 1, Th. 1.2]
R
log (R) = log $)(R) + / B(t) dlogt = M(R) /* +o0, (2.1)
1

where 1 and A3 are both continuous functions, and $(t) — 1 > 0 and B(¢t) > 0,
B(t) — 0 as t — +o0.

Define ¥1(R) = RY(R), ¥,(R) = ¥1(¥,_1(R)) for n € N, ¥y(R) = R,
R > 1. Without loss of generality, we may assume that Ry = sup{t > 0 :
suppp N Dy(t) = @} > 0. Now for p = [2C3] + 1 where [z] denotes the integer
part of a real number z we define the sequence (7},) by the conditions Ty = Ry,
n(T, — 0,u) < pn < n(Ty,u). Since u(C) = +o0, T), is defined for all n € N.

We need estimates for 7;,. Clearly, by the choice of p and (1.3) for some
natural number ng(R)

% > (T3, for n > ng(Ry). (2.2)

According to (1.3) for I = [p/C1] + 1, we have T}, 11 < ¥)(T,), n > ng(R1). Thus,

Tn+1 S \Ijl(Tn)
= U 1 (Tn) (Vi 1(Th)) = U12(Tn)p(V1-2(Tn)) exp{A(¥1-1(T2)) }

-1
= Uy o(Tp) exp{A(T_o(Th)) + ATy (Tp))} = -+ =T, exp{§ :A(\pj(:rn))}.
§=0

(2.3)
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Further, by (2.1) for any j € N we have

V;(R) p(¥;(R))

M R) | Juo PO dlogt 1o 56 R oy
N, 1(R) NT;1(R))
_ ., o)log (¥, (R) +o1) _, N
=1+ T, (7)) =1+0(1), R— +oc.
Thus, by (2.3) we obtain
Tt < Thexp{(l +o(1)A(Th)}, 1 — +oo. (2.4)

Denote Ay = {¢ : Tx < || < Tgy1}- Accordlng to the definition of (77,), there
exists a partition of p such that y = Zku , suppp®) C Ay, pP(4;) = p.

We put 7, = exp{% fAk log || d,u(k)(C)} and define the entire function f; by the

. P
equality f1(z) = [} (1 - i) . Let ui(2) = fICIZRo log‘l - %‘ du(¢)
Consider

+o0 +o0
ui(2) — log | fa(z Z/mﬁ——m@—ﬂww>szﬂw
k=1 k=1
Remark, that according to the definition of 7, [ a, log |%’“| du®)(¢) = 0, hence
di(z) = /(log‘l - —‘ - log‘l - —D du®) (¢). (2.5)

A

Let z € A,. An estimate of dy, depends on k. First, let & > n+2. Then, for ( € Ay
we have |C| > Ty > |2|Tk/Tn+1, Tk > |2|Tk/Tn+1. Using that T, 41/T, — 400 as
n — 400, we obtain

T,
‘log‘l——H-l—‘l ‘1——H_ (}Z: \z|><4 ;:1, n— 400,z € Ap,( € Ag.
Hence
3 Jdi(e ("—“):0(1), n — +00. (2.6)
k>n+2 Th+2

Similarly, using the representation (2.5) we deduce as n — +oo

Zukwu§j/m Y (0

k<n—2

<4p T:’;“ :0( ;‘1) = o(1). (2.7)
k<n—2 n n
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It remains to estimate d,, 1(z), dn(z) and dp4+1(2). Set p(t) = t/¥(t), t > 1.
Since ¢ € ®, we have ¢(t) 400 and ¢(t) = o(t), t — oo. Let us estimate

dn(2). Denote by N, (u) the set of (m,cp(|z|))—normal points z relatively to
W, e, pz(s) « w(D,(s)) < o0 for s € [0, ¢(]z|)]- For such z

[ amol<( [+ [ e
An

AnND2(0(2]))  An\D:(o(]2]))
=I1,(2) + Ipn(2).

And
o(|z]) o(120) . ©(lz]) o d
= | qum </ 121 < / 121 _as
Il,n(z) / ‘log |Z| ‘ dlu’z (S) — 0 log s dﬂz(s) — log S <,0(|ZD
0 0
(z)) (2]
slogm v ds
= __ 25 —— =logv(|z]) + 1. 2.8
o) | o) BV 29

Observe, that by (2.4) for z,{ € Ay, ¢ € D,(v(|2]))

1 |z = ¢ _ =]+ <] Thy I+o(1)
< < <14+ 2L < ((12]) 0, n o foo.
D EIE 7 7, = W)

Thus, Ion(2) < (pl + 0o(1)) log1(|2]) (n — 4+00). Together with (2.8) this yields

/ log|Z | ™) (€) < p(t + 1) log ([el), m — o0 (2.9)
Ap

for z € Ny(u) N Ay, Similarly,

/ ‘1 ‘z—rn
0
An & Z

for 2 € A \ {C : |rn — ¢] < @([¢])}, ie., for <m,¢(|z\))—n0rmal points z
relatively to piog s, |-
Estimates of d,,_1(z) is analogous. For z € Ny, (u) N A, we have I ,_1(z) <

log#p(|2]) + 1. I ¢ € A1\ Da(e(|2])) then —log ks < 1og‘%‘ < log2, 50
|I2,n—1| < plog(|z|). Hence,

da@l < [ log| 2= || () + [ el

Ap—1 An—1

<2(p+ Dlogy(lz]), n— oo, (2.11)

dp™ () < p(l +1)logw(|z]), n — +oo, (2.10)

zZ—1Tp

| " (¢)

z
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for z € Ny(p + phog 1)) N An-
Consider dp11(2). For z € Ny(u) N A, we have

/ \log\—H du™+D (¢)
An+1NDz(p(|2]))

A e

Apn4+1ND; (p(|2]))
< (1+0(1)log(J2)), n— +oc.

Denote Bri1 = {¢ € Any1 1 ¢ = 2[ > o(|2]), [¢] < 2|z]}, By = {¢ € Anya
|¢| > 2|2|}. Then (z € Ay,)

[ pfgaea= ([ o f Yl

An+1\D:2(¢(|21)) Bnt1 By

<logp(Dp+1)+2 [ 7|0 = (p+ 1+ o) og h(al), 1 +oo.

n+1

Similarly, for z € Ny (o f,1) N An

J Ios

n+1

Tn—f-l Hd n+1) < (p+1+o0(1))log(|z]).

Thus, for z € Ny(p + fiog|£,)) N An

|dnt1(2)| < (2p + 3)logep(|z]), n — +oo. (2.12)

Applying (2.6), (2.7), (2.9)—(2.12), we deduce that

[log | f1(2)| — u1(2)| < 2p(l + 4) log ¥(|z) = K1(C1, Co)log9(lz])  (2.13)

for z — 00, 2 € Ny(pu + fhiog|f))- Since u(z) — u1(z) is harmonic in C, there
exists an entire function fy such that Re fa(z) = u(z) — u1(2). Define f(z) =
f1(z) exp{f2(z)}. Then by (2.13)

[Tog | (2)| — u(2)| = [log | f1(2)| — u1(2)| < K1(Ch,C2)logp(l2]),  (2.14)

for z = 00, 2 € Ny(fiy + piog|f)- Finally, estimate the size of the set C \
Ny(py + pogg))- If 2 € Ap \ Ny(p), then there exists 7 € (0, ¢(|2[)) such that
pz(1) > 7,/p(|2]). Cover every such point by the disc D,(7,). According to the
Lemma of balls covering [5, Lemma 3.2, p. 246] there exists at most countable
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subcovering {D,, (7,,)} of finite multiplicity ¢, where g is an absolute constant.

Then
.
> ﬁ < D i (72,) < 3pg.
2L EAR ¥ k 2, EAR

This together with (2.14) yields us (1.4) and (1.5) with K;(Cy,C2) < (202 +
1)((2C2 + 1)/C1 + 6), K2(Ca) < 6(2C3 + 1)g. Theorem 1 is proved.

3. Sharpness of the estimate of an exceptional set

We are going to prove that estimate (1.5) of the exceptional set for (1.4) is
sharp up to the constant factor.
For 9 € @ define

a (3.1)

where 19 = 2, 141 = rgp(rg), k¥ € NU{0}. Thus, u, satisfies condition (1.4)
with Cl = CQ == %

Theorem 2. Let ¢ € ® be such that logr = O(3(r)) (r — +o00). For any
entire function f and any covering of the set Ef = {C : |uy(C) — log|f({)]| >
tlogy(|¢])} by the discs {Dy} = {D¢, (ok)} we have

Tim Z 0k¢(|€k|) > 1. (32)

b ary
Proof. Let f bean entire function. Without loss of generality we may
assume that f(0) # 0. We have

Jug(z) ~ log | (2)]| < glogw(l=l), = & By. (33)

Assume that there exists a covering {D¢, (ox)} of E; such that (3.2) does not
hold. Recall that o(t) = tp~1(t), and ©(t) = o(t), @(t) T +o0 as t T +oc.

Let E} = {r > 0:dDo(r) N Ef # @} be the circular projection of Ey. Show
that [r, 7"4—4<,0(7")]\E3‘c # & for all sufficiently large r. In fact, suppose the converse.
Then for arbitrary Ry > 0 there exists r > Ry such that [r,r+4¢(r)] C E}. Since
(3.2) does not hold, o < ¢(|Ck|). Thus, for R = r — ¢(r)

Z ot (1Ckl) > QP(%ﬂ Z o

= 3r/2
relei<ror | 12 ) <el<an2

1 4
> 5@ mes(E} N [r,3r/2]) > 3
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a contradiction with our assumption on Ef. So, [r,r + 4¢(r)] \E;’Z # @ for
all » > Ry and some Ry > 0. In view of (3.3) this implies B(r,log|f]) =
O(B(r,uy) + logt(r)) (r — +o0), and by the Hadamard decomposition theo-
rem we obtain f(z) = c[[2(1 — 2/a,), where ¢ € C\ {0} and the product is
absolutely convergent on compacts in C.

Let N(r,uy) = [y pu(Do(®)t~ L dt, N(r, f) = [y M dt+n(0, f)logr,
where n(t, f) is the number of zeros f according to the multiplicity in Dg(t), be
Nevanlinna counting functions of u, and f.

Lemma 1. Suppose f(0) # 0. Then, under the hypotheses of Theorem 2
1
[N (ryug) = N(r, ) < & log(r) +O(1), (3.4)
In(r,uy) —n(r, f)] <1, r— +oo. (3.5)

Proof of Lemma 1 Foranyr ¢ E} we have from (3.3)
—$logtp(r) < uy(re?) —log|f(re?)| < ilogtp(r). Integrating this inequalities
with respect to 6 on [0,27] and using Jensen’s formula [1, Ch. 3.7|, we obtain

— S 10g (1) < N(r,uy) = N, f) — log|/(0)| < glogy(r), r# B} (3:6)

Let now r be an arbitrary number greater than Ry, one can find r* € [r,r +
4p(r)] \ E}. Then, by (3.6) as r — +o00

N, 1) < NG, J) S N ug) + g logah(r7) + 0(1)
< N(r,g) + n(r ug)log ™ + < logh(r) + O(1)
< N(rug) + nlr, )97 (1) + 5 Tog () +O(1)
= N{r,uy) + g log(r) + O(1), (3.7)

because n(r, uy)yp ' (r) < p~(r)logr = O(1) as r — 4o00. Further, there exists
™ & B} such that r > r™* > r — 4p(r**) =1 — (4 + o(1))p(r) (r — +00), and

N(r,uy) = N(r,f) < N(r,uy) — N(r*", f)
<N, ug) = N, f) + n(ryuy) log —
1 1
< 6 log 4 (r**) + O(log ™" (1)) + O(1) = 5 log(r) + O(1), r — +oc.
The last inequality together with (3.7) yields (3.4).
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Let us prove (3.5). Suppose the contrary, i.e. there exists a sequence (t)
such that ¢ — 400 (k — +oc) and |n(tk,uy) — n(tk, f)] > 1. Then either i)
(T, Uy) —n(7, f) > 1 or ii) n(7x, f) — n(7k, uy) > 1 hold on a subsequence (7)
of (tx), where 7, = +00 as k — +o0.

First, consider case i). In this case for any k and ¢ € [Ty, 7], where Tx)(7x) =

Tk’
n(t’ u’l/)) - n(ta f) > n(Tka u’lﬁ) - n(Tka f) + ’I’L(t, u’l/)) - n(Tk,UTP) > % .
Hence,
N () = N ) 2 [ M) gy Ny ) — N, )

1. 7 1 /1 5
> 5 log 2 — clogih(ry) +0(1) = (5 +0(1) 1og $(7r), & — +oo,

a contradiction with (3.4). Thus, case i) is impossible. In the case ii), similarly,
n(t, f) — n(t,uy) > % for t € [, Tk(7k)]. Then,

|N(Tk¢(7k)’ f) - N(Tk¢(7k),uw)|

TrP(Tk) t. f) (b 1)
n(t, f) — n(t,u
> [ ) gy N (7, f) N (7 )|
Tk
1 1 1
> 5 log (i) — ¢ log () + O(1) > (5 +0(1)) log p(mp(ri)). & = +ox,
which contradicts to (3.4). Hence, the case ii) is impossible too, so (3.5) holds. m
Let a¥, ..., afnk be zeros of f lying in {¢ : rx—1 < || < Tgyo}, then
myg < [n(rk+2,u¢) — n(rk_l,u¢)] +2=3. (3.8)

For |z| =r € [r/2,2rk11] we get

a z
log|/(2)| ~ 1og|C| = N(r, f) = > Tog|t = “[+ 3 logft — |
m

lam |<T |am [>T

k
a; z a T
= log‘l—;]‘—l— > log‘l——k‘—i-O( > [am] ;"|+ > Tl |).
la¥|<r la¥|>r “ am|<rg—1 lam|>rhyn

(3.9)
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Since, by (3.5) |n(r, f) — n(ri—1, f)| <2, we have

Jam| r
D S v

lam|<rg—1 \am\>7"k+2
k—1
_ |G,m‘ |a'm| T
B RS SHD VRN SR S
\am|<1“o I=1 r_1<]am|<ny I=k+27<|am|<rigr
L 2r = 2r T T
_|_Z l.|_z _O(kl-{- >+0(1):o(1), k — +o0.
=12 T r Tk+2

Substituting this estimate in (3.9), we obtain (|z| =7 € [rg/2, 2rg+1])

log|f(2)| = N(r,f) = log‘l——‘+ > log‘l——‘JrO . k= +oo.
|ak|<r |ak|>r
(3.10)
Analogously,
u(z)—N(ru)—llo ‘1—7"—16‘—1—}10 ‘1— ‘—i—O
P s Wp) = 2 g 2 2 g Tht1
k — 4o0,|z| € [re/2, 2rg41]- (3.11)

Now, consider two cases (|z| € [rk/2 2rk11]): 1) There is no aJ such that 7 or
Tk+1 lies in Dy (|a|/2) for a = a ; 1) There exists a such that ry € Dg(|a|/2) or

Tk+1 € Dy(|al/2) for a = af.

In the case i) there is no zeros of f in Dy, (r/3). Therefore, for z € D, (r)/6)
using (3.10), (3.11) and (3.4), we obtain (|z| =)

k
log|f(2)| —uy(z) = N(r, f) + Z log‘l—%‘—{— Z log‘l—%‘—N(r,u,p)
J

|k <r |ak|>r
—%log‘l - %‘ +0(1) > (—% +0(1)) log(r) — my log 7 — —log‘l i
:—(%—l—o(l)) logzp(r)—%log‘l— a‘, r — +00, (3.12)
and for z € D,, (2p(rk))
log | f(2)| — uy(z) > (% +0(1)) logy(r), r— +oo. (3.13)

Hence, D, (2¢(r;)) C Ej.
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Case ii). We may assume, that r; € Dy(|al), where a = afo, 1< 50 <my, is
a nearest to ry zero of f. If |a — rx| > 3¢(]al), then for z € Dy(2¢(|al)) we have

1
uy(2) —log |F(2)] > N(r,uy) = N(r, f) + 5 log|1 — =| ~Tog|1 — |
2 Tk ajo

- Z log‘l—aé‘— Z log‘l—a%‘—i-O(l)Z—(é—i-o(l)) log (r)

a¥|<r,j#d0 |ak|>r,j#3j0
1. |rk—2 1 2 lak| +r lak| +r
~1 — 1 ‘1 - —‘ - log —L—— — log —2
+2 ©8 |z —a| 2 ©8 a Z R Z o8 |ak
J#jo,lak|<r |ak|>7,j#3jo J
1 1 1
> (5 = 5 +o(1) log(r) + 0(1) = (5 +0(1)) logh(r), 7 — +o0. (3.14)

Finally, if |a — 7| < 3¢(|al), then consider the annulus Q; = Dy (6¢(|al)) \
Dq(4¢(lal)). For ¢ € Q4 we have ¢ —r|/|¢ —a| € [§,6] and similarly to (3.14)
we obtain

uy(z) — log | f(2)| > (% + o(1)) log®(r), z€ Dy, k — +oo. (3.15)

Suppose again that {D¢,, (0,,)} is a covering of Ey. It follows from (3.13)—(3.15)
that EyN{¢ : /2 <|{| < 3ri} contains a disc Dg, (2¢(|€x|)). If we assume that
(3.2) does not hold, then for all m > mg we have o, < p(|(|) for some my € N,
so there exists (;, with

Gty — &k| < o1, = o([€k]); Kk — +oo. (3.16)

Since D¢, (2¢(|¢k]) C Ujer, D (01), where Ly is the set of all indices Iy satisfying
(3.16), we have >, 01 > 2¢(|&|). Thus, using (3.16), we get

= 3 I ([Gml) o ¥ Tmtp(|Gm|)

+ Tk
T pmrerpry1oml T e < [l
— . P(dl)
> 1 f 2 = 2.
= ktooleLy 1< (1K)
Inequality (3.2) is proved. |
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