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A new proof of two stability theorems concerning narrow operators acting
from L; to Ly or from C(K) to an arbitrary Banach space is given. Namely
a sum of two such operators and moreover a sum of a point-wise uncondi-
tionally convergent series of such operators is a narrow operator again. The
relations between several possible definitions of narrow operators on L; are
also discussed.

1. Introduction

We use standard notation such as Bx and Sx for the unit ball and the unit
sphere of a Banach space X and L(E,X) for the space of all linear bounded
operators acting from E to X. Allover the text (2,%,u) is a fixed non-atomic
measure space, K is a fixed compact without isolated points, L1 = L1(2, %, i)
and C = C(K). By £ we denote the collection of all measurable subsets of Q
having non-zero measure. In this paper we deal with real Banach spaces.

Let X be a subspace of a Banach space Y and let J: X — Y denote the
inclusion operator. We say that the pair (X,Y’) has the Daugavet property for a
class M of operators, where M C L(X,Y), if

7 +T]| =1+ T (1)

Mathematics Subject Classification 2000: 46B20, 46B04, 47B38.

© V.M. Kadets and M.M. Popov, 2003



V.M. Kadets and M.M. Popov

forall T e M. If X =Y, we simply say that X has the Daugavet property with
respect to M, and if M is the class of rank-1 operators, we just say that X or
the pair (X,Y) has the Daugavet property.

Classical results due to I.K. Daugavet [2], G.Ya. Lozanovskii [10], and C. Foias,
I. Singer and A. Pelczynski [3] state that C(K), Li1(Q,%, ) and Ly (2, X, p)
have the Daugavet property provided that K is perfect and u is non-atomic. Re-
cently, corresponding results in the non-commutative setting were obtained by
T. Oikhberg [11]. The papers [7] and [15] study Banach spaces with the Dau-
gavet property from a structural point of view; for example, it is shown that such
a space never embeds into a space having an unconditional basis, and it contains
(many) subspaces isomorphic to £1. For a detailed survey of the recent progress
on the Daugavet propertysee [18].

In order to perform a unified approach to the study of the Daugavet property
the following concept was introduced |[8]:

Definition 1.1. An operator 7' € L(X,Y) is said to be a narrow operator if
for every two elements z,y € Sx, for every z* € X* and for every ¢ > 0 there is
an element z € Sx such that ||z +2z| > 2—c and ||T(y—2)||+|z*(y —2)| < e. We
denote the subset of £L(X,Y) consisting of all narrow operators by NAR(X,Y).

It was shown in [8] that every weakly compact operator and every operator
which does not fix a copy of £; on a Banach space with the Daugavet proper-
tyis narrow, and that every Banach space X with the Daugavet propertyhas the
Daugavet propertywith respect to NAR(X, X). Although MNAR(X,Y) has some
stability properties (for example, a sum of a narrow operator and a weakly com-
pact one is narrow), a sum of two narrow operators is not necessarily a narrow
operator again [1]. The class of narrow operators forms a left ideal in the following
sense: if T € NAR(X,Y), V € L(Y, Z) , then VT € NAR(X, Z).

In the case of X = L; Definition 1.1 can be equivalently reformulated in terms
of so-called balanced e-peaks.

Definition 1.2. A function f € L; is said to be a balanced e-peak on A € B+
if f>—1,suppf C A, fodM =0and p{t: f(t) =—-1} > p(A) —e.

According to [8], Theorem 6.1, an operator T' € L£(L1,X) is narrow if and
only if for every € > 0 and every A € X7 there exists a balanced e-peak g on A
with ||Tg|| <e.

Definition 1.3. Let A € ¥*. A function = € L is said to be a sign supported
on Aif z = x, — Xp,, where By and Bj form a partition of A into two subsets
of equal measure. An operator T' € L(L1,X) is said to be Li-narrow if for every
set A € X" and every € > 0 there is a sign z, supported on A, with ||Tz| < e.
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The concept of Lj-narrow operator was introduced in [12] under the name
"narrow operator", but we prefer to use the name "narrow operator" for Defi-
nition 1.1.

Definition 1.4. An operator T € L(L1,X) is called Li(A)-singular if for
every A € 7 the restriction of T to L;(A) is unbounded from below.

Let us note that every Li-narrow operator is narrow, and every narrow opera-
tor on L; is Li(A)-singular. For operators acting from L; to L; (or even between
two different L; spaces) the inverse inclusions are true too, which follows from
Rosenthal’s papers [13, 14]. As shows the quotient map from Talagrand’s exam-
ple [17] in general an L;(A)-singular operator is not necessarily Li-narrow. We
don’t know the answer to the following questions:

Problem 1.1. Is it true that every narrow operator acting from L1 to a Ba-
nach space X is Li-narrow? In other words, is it sufficient to consider balanced
e-peaks instead of signs in the definition of Li-narrow operator?

Problem 1.2. Is it true that a sum of two narrow operators acting from L,
to a Banach space X is narrow?

For an arbitrary open subset U C K denote by Cy(U) a subspace of C(K)
consisting of functions, vanishing on the complement of U.

Theorem 1.1. [8] For an operator T € L(C,X) the following conditions are
equivalent:

1. T e NAR(C, X),

2. for every non-empty open subset U C K the restriction of T to Co(U) is
unbounded from below,

3. for every non-empty open subset U C K the restriction of T to Co(U) is
narrow.

In the second section of this paper we give a new proof of two stability theo-
rems concerning narrow operators acting from L; to Ly or from C(K) to arbitrary
Banach space. Namely we prove that a sum of two such operators and moreover
a sum of a point-wise unconditionally convergent series of such operators is a nar-
row operator again. In L; case the original proof [12] of the first of this statements
contained a gap. The corrected proof of this statement and the proof of the sec-
ond one as well was done recently by Shvydkoy* [16] in his Thesis. The C(K)

* By the way, Roman Shvydkoy and Roman Shvidkoy in the references below is the same
person: these are just Ukrainian and Russian spellings of the same name.
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case was studied for two operators in [5] and for a series of operators in [1]. The
advantage of our approach is its applicability for L; and C(K) cases simultane-
ously.

In the last section we prove a bit technical reformulation of the notion of L;-
narrow operator, which looks as a first step toward the solution of the Problem 1.1.

2. Stability theorems

First, remind some definitions and results from the paper [6]. Let X be a Ba-
nach space. Denote by B* the closed unit ball of X* equipped with weak* topo-
logy. Recall that A C B* is said to be a first category (f.c.) set if A = U2, A;,
where A; are nowhere-dense sets.

Let us introduce the following Banach spaces:

lo(B*) ={f: B* = R, sup{|[f(s)|,s € B"} = || flloc <00},
fc(B*) = {f € l(B") : supp(f) is a f.c.set}.

fc(B*) is a closed linear subspace of I (B*), so we can consider a Banach space
mo(B*) = lo(B*)/ fc(B*) with the norm ||[f]|| = inf{sup{|f(s)|,s € B*\F},F
is a f.c.set}. Since every z € X may be considered as a continuous function
on B* and the sup-norm of this function coincides with its norm in mg(B*)
and coincides with ||z||, we will consider below the inclusions X C mg(B*) and
X C lo(B*) in the sense described. According to [15] for every space with the
Daugavet property, the pair (X, mo(B*)) has the Daugavet property, i.e., it has
the Daugavet propertyfor the classes of compact and weakly compact operators
(see [7]).

Let us introduce a new definition.

Definition 2.1. A Banach space X is said to be D-acceptable, if the pair
(X, mo(B*)) has the Daugavet propertyfor the class of narrow operators.

Due to [6] and [16] the classical spaces L1 and C are D-acceptable. We don’t
know whether every Banach space X with the Daugavet propertyis D-acceptable.

Lemma 2.1. Let E be a subspace of a Banach space F', the pair (X, mo(B*))
be as above, V. € L(E,X). Then there exists an estension of V to a bounded
operator V: F — my(B*).

Proof. By injectivity of l(B*), or, in other words, by Hahn-Banach
theorem for [, (B*)-valued operators instead of functionals (see [9, Ch. 2.f]),
V can be extended to an operator W: F — [, (B*). To obtain the needed
operator V it suffices to compose this extension with the natural quotient map g:
loo(B*) = mo(B¥). ]
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The following observation is extracted from [12].

Lemma 2.2. Let X be a subspace of a Banach space Y, T1,Ty € L(X,Y). If
both —T1 and —T» satisfy the Daugavet equation (1), then Ty + Ty # J.

Proof. Assume to the contrary that 773 4+ 75 = J. Then
[T =1 =Tl =14+ ||To| =1+ [|J = Ta|| = 2+ || T1]|.
A contradiction. m

Theorem 2.1. Let X, F be Banach spaces, X be D-acceptable, and T1,T) €
NAR(X,F). Then Ty + Ty is unbounded from below.

Proof. Assume to the contrary that 77 + T5 is an into isomorphism, and
denote its image by E. Applying Lemma 2.1 to V = (T} + T») ™!, we obtain an
operator V: F — mg(B*) for which V (T} + Ty) = J, where J is the canonical
embedding of X into mg(B*). But both the operators —V7T; and —VT, are
narrow, which means for a D-acceptable space that both of them satisfy the
Daugavet equation. By the previous Lemma 2.2 it is impossible. [

Corollary 2.1. Let Ty, Ty € NAR(L1,L1). Then Ty + Ty € NAR(L1, L)

Proof According to properties of narrow operators acting from L; to L
listed in the introduction, the restrictions of both operators to all the subspaces
of the form L;(A) are narrow. According to the previous theorem, the operator
Ty + Ty is L1(A)-singular, which means in turn, that it is narrow. [

Corollary 2.2. Let F be a Banach space, and T, Ty € NAR(C,F). Then
T +T5 € ./\MR,(C, F)

Proof By the same argument as before this follows from Theorem
2.1 and the characterization of narrow operators on C, given in the introduction
(Theorem 1.1). ]

We turn now to the case of point-wise unconditionally convergent series of
narrow operators. Let X be a subspace of a Banach space Y. Let us remind the
following Lemma ([7, Lemma 2.6], or [4] for the case X =Y).

Lemma 2.3. If a pair (X,Y) has the Daugavet property for a class M C
L(X,Y) of operators, and M is a linear space, then the natural embedding oper-
ator J cannot be represented as a sum of point-wise unconditionally convergent
series of operators from M.
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We say that a pair (X, F') of Banach spaces is completely acceptable, if X is
D-acceptable and AAR (X, F) is a linear space. For an operator V € L(F, my(B*))
denote by My (X, F) the set of all operators of the form VT, where T' € NAR (X, F).

Lemma 2.4. If a pair (X,F) of Banach spaces is completely acceptable,
V € L(F,my(B*)), then the canonical embedding J: X — my(B*) cannot be
represented as a sum of point-wise unconditionally convergent series of operators
from My (X, F).

Proof. Al the operators from the class My (X, F) are narrow, which
means for a D-acceptable space that all of them satisfy the Daugavet equation.
Since My (X, mo(B*)) is a linear space for a completely acceptable pair (X, F),
we may apply Lemma 2.3. |

Theorem 2.2. Let X, F be Banach spaces, the pair (X, F) be completely
acceptable, T, € NAR(X,F),n =1,2,..., and the series Y .-, Ty, be point-wise
unconditionally convergent. Then the operatory .~ Ty, is unbounded from below.

Proof. Theidea of the proof comes from Theorem 2.1. Assume contrary
that > >° | T, is an into isomorphism, and denote its image by E. Applying
Lemma 2.1 to V = (3.°°,7,)~!, we obtain an operator V: F — mg(B*) for
which ">, VT, = J, where J is the canonical embedding of X into mo(B*)
and the series converges point-wise unconditionally. By the previous Lemma 2.4
it is impossible. ]

According to Corollaries 2.1 and 2.2, the pairs of the form (Lq, Lq) or (C, F)
are completely acceptable. By the same argument as in Corollaries 2.1 and 2.2,
this implies two corollaries more:

Corollary 2.3. Let T,, € NAR(L1, L) and the series Y - | Ty, be point-wise
unconditionally convergent. Then > .2, T, € NAR(L1, L1).

Corollary 2.4. Let F be a Banach space, T,, € NAR(C, F) and > .7 | Ty, be
point-wise unconditionally convergent. Then Y > | T, € NAR(C, F).

3. Signs and balanced s-peaks

In the sequel, by a biased sign (a special kind of balanced e-peaks) we mean
any h € L of the form:

_ w4\ B)

h="—"—""2y. —x, ., where A BeX' BcCA.
u(B) Xr X
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We answer below in affirmative to the following weaker version of Problem 1.1:
may one consider biased signs in the definition of an Li-narrow operator instead
of signs?

Note that a converse in some sense statement was proved in [12, Lemma 1,
p. 55].

Theorem 3.1. Let X be a Banach space and T € L(L1,X) have the following
property: for each € >0 and A € X there exists a measurable B C A such that:

0 < 1u(B) < u(A); (@
A\ B
7l < el where h="E0 T, —x,. )

(In other words, T is unbounded from below at biased signs having the common
support A for every A € £T.) Then for each § € (0,1), each € > 0 and each
A € X7 there exists a measurable B C A such that (b) holds together with

w(B) = u(A). (')
In particular (6 = %), T is Li-narrow.

The proof contains several auxiliary statements. Note first, that A could be
written as

p1(A)
"= B X
Indeed,
1(A) p(A) p(A) — u(B)
W(B) P X = ()X X "X = gy Xe T X

Lemma 3.1. T possesses the following property: for each € > 0, €1 > 0 and
each A € &7 there exists a measurable B C A such that (b) holds together with:

0 < u(B) < e1p(A). (a")

Proof of Lemma 3.1. Pick an integer n so that 27" < ¢; and choose a
measurable B C A so that (a) holds together with

€ € p(4)
= < - =y — X
IThol < ol < Su(), - where ho = X80y, —x,
Put Ay = B if u(B) < $u(A) and A1 = A\ B if u(B) > tu(A4). Anyway,
A CA, 0<pu(Ar) < Zu(A) and

£ ICO BV
||Th1|| < ’I’LH(A)’ where hy = H(AI)XAI Xa-
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Indeed, if A; = A\ B then

_ _n4) _ _n4)
b= Ay By % = a5y ()

_ <u p(4) 1>XA - p1(A)

(4\ B) (4\B)*?
__u(B) _u(4) _ o wB) nA) ___n(B)
T uANB) T W(ANB)*? T T u(A\ B) (M(B)XB y WA\ B)
and therefore
__u(B) p(B) e _ €
|Thy || = W(A\ B) [Tho|l < WA\ B) 2n [[hol| = o [[hal]-
Then choose as above a measurable Ay C Ay with 0 < p(Ag) < 1u(Ar) < 1u(A)

such that

p(A1)
pu(4)

p(A1) o
p(dz)Xe X

IThel| <

— [lhall < (A1) S, where by =

S|o

Going like that, choose at the last step A, C Ap_1 with 0 < p(A,) < 5u(Ap—1) <
27" 1u(A) < e1u(A) such that

p(An-1) ¢ € p(An—1)

Benl = < _) = =, — .
IThall < 220 ol € ) . where B = B8y,
Put "

p(A)
h=nh +E —————hy.
P (A )
Evidently
1(A4)
h = Xa, — Xas [l > p(A).
X = X I > ()
So
€ " u(A) 1
Th|| < —u(A) + Thi|| < =eu(A) < el|h|.
I8 < Sy + 3 TSI < gentd) < el

Thus, Lemma 3.1 is proved.

Now fix § € (0,1), € >0 and A € Zt. Put e = 26eu(A). For measurable
C C BCA (u(C) > 0) denote:

6y (C) = ||T%xc Tyl

56 Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 1



Some stability theorems on narrow operators acting in L and C(K)

It is an easy exercise to show that ¢,(C) is separately continuous, i.e., for
fixed measurable sets C' C B and each &; > 0 there is a §; > 0 such that
for every C; C B (u(Ci) > 0) and every By D C if u(C; A C) < 61 then
165(C1) — 65 (C)| < €1 and if u(By A B) < by then |, (C) — b, ()] < e1.

For a measurable B C A with u(B) > 6u(A) denote by F(B) (respectively,
F(B)) the collection of all measurable subsets C C B with u(C) < u(B) — 6u(A)

and either y(C) =0 or ¢,(C) < eg (respectively, ¢, (C) < e3) if u(C) > 0.

Lemma 3.2. Let B € F(A) and C € F(A\ B). Then B|JC € F(A).

Proof of Lemma 3.2. Since u(C) < u(A\ B) — d6u(A), we have

w(BJC) = u(B) + u(C) < u(B) + p(A\ B) — 6u(A) = u(A) — du(A).

Estimate

R P
7 P(A4)

1(A) u(C)
W(BUCY " w@A\B) WBUC)”

(%) pu(4) (1 B(C)u(4)

(1 2ave) "reuee ~ (~ mm meege) ™
W(O)u(4) u(O)u(4)

A\ BEUT ™~ i BwBUS Te!

MOWA) _ pA\B) Ot
WA\ B)u(BUC) | u(C) X w(A\B)u(BUC) X
1(C) p(B) . pu(4) p(C)p(A)
*"(1‘u(A\B))MBUC)Tu(B)XB‘(1 T\ BeEye) ol

(
PO p(Au(B) —u(BBYC)
WA\ B)u(BUC) WA\ B)u(BUC) |

Thus, Lemma 3.2 is proved.

= [T

n—1 0
Lemma 3.3. Let Cy € F(A), Cp, € F(A\ U Ck) forn>2and D = |J C,.
k=1 n=1
Then D € F(A).
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Proof of Lemma 3.3. Note that Cy € F(A\ C1); C, € F((A\
n—1 n
Ci1) — U Cg) for n > 3. Put D, = |J Cf for n > 3. Lemma 3.2 implies that
k=2 k=2
D, € F(A\ () for each n > 3. Then

u(J Cn) = limp(Dy) < p(A\ C1) = 5p(4)
n=2
and .
¢A\Cl ( U Cn) = lirrln ¢A\cl (Dn) < e2.
n=2

00 _ 0
Thus, | C, € F(A\ C1). By Lemma 3.2, D =C:J U Cpn € F(A). Lemma
n=2 n=2

3.3 is proved.
For every measurable B C A with u(B) > du(A) consider
v(B) =sup{u(C): C € F(B)}.

Lemma 3.4. 1) v(B) =0 if and only if u(B) = du(A).

I
D
Sy
g

2) v is semicontinuous in the following sense: if By D By D ...; B

then v(B) < liminf v (B,,).
n

Proof of Lemma 3.4. 1) Let »(B) = 0. It means that there is no
C € F(B) with pu(C) > 0. But if u(B) — 6u(A) > 0 then by Lemma 3.1 there
exists C € F(B) with u(C) > 0, — a contradiction. The converse is trivial.

2) Let C € F(B). It means that u(C) < u(B)—du(A) and ¢p(C) < e2. Then
for each n we have p(C) < u(B)—0u(A) < p(Bn)—0u(A). Since liminf ¢, (C) =

n

¢5(C) < g2, there is an ng such that ¢, (C) < ez for n > ng, and therefore
C € F(B,). Thus, p(C) < liminfv(By,). By arbitrariness of C', Lemma 3.4 is
proved.

Continue the proof of Theorem 3.1. Put B; = A and construct two sequences
of subsets (By) and (C,) so that:

(i) Cn € F(By),

() w(Cn) > 3v(By),
(iid) Bpi1 = By \ Cp.

o0
Then put D = |J C,. By Lemma 3.3, D € F(A). Since C, are disjoint, we have
n=1

o0
u(Cp) — 0 and by (ii), v(B,) — 0 as well. By Lemma 3.4 for B = () B,

n=1
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we have v(B) = 0 and u(B) = du(A). It is not hard to see that D = A\ B and
therefore (like in the proof of Lemma 3.1):

p(A) (D) )(Z((g))XD _ XA) _ _1%‘5(%% —xA).

u(B)F 4 p(A\D
Thus, for h = %Xs —X 4, we obtain ||h|| = 2(1—0)p(A) and, since D € F(A),

1-6 1-
ITh = =52 $,(D) < =

go < €||h]-

The theorem is proved.
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