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The paper deals with the class of entire generating functions of k-times
positive (by Fecete, Pélya, Schoenberg) sequences of coefficients. For all
integers k, 1 < k < o0, we give the exhaustive description of the growth and
trigonomertical around zero indicators of the above functions.

1. Introduction

The multiply positive sequences (also called Pélya frequency sequences) were
introduced by M. Fekete in 1912 (see [1]) in connection with the problem on the

exact calculation of the number of positive zeros of the real polynomial.

The class of all multiply positive sequences of order m € N U {oo} (m-times

positive) is denoted by PF,, and consists of the sequences {c;}3>, such that
minors of order < m (all minors if m = co) of the infinite matrix

g €1 C2 C3
0 Cy C1 C2
0 0 CcChy C1
0 0 0 ¢

all

(1)

are nonnegative. We will denote by SPF,, the class of all sequences from PF,,
such that all minors of order < m of matrix (1) without vanishing rows (columns)

are positive. The class of corresponding generating functions

F2) =3 et
k=0
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is also denoted by PF,,(SPFy,).
The class PF,, was completely described by M. Aissen, I.J. Schoenberg,
A. Whitney, and A. Edrei in [2] (see also [3, p. 412]).

Theorem ASWE. A function f € PFy iff

o0

flz) = C2"e [ (1 + az) /(1 — Br2),

k=1
where C > 0,n € Z,y > 0,ar > 0,8, > 0,> (g + Bx) < 00.

In 1955 I.J. Schoenberg set up the problem of characterizing the classes PFy,,
m € N. In this paper we investigate the growth of entire generating functions of
multiply positive sequences. By Theorem ASWE the growth of entire functions
from PF4 is not greater than the exponential type. The aim of this paper is to
prove the following result.

Theorem 1. Let m be any positive integer. For a given proximate order
p(r) = p,p > 0 there exists an entire function f € PF,, with prozimate order

p(r)-

For the case p < 1 this theorem can be deduced from Theorem ASWE. In-
deed, for a given proximate order p(r) — p, 0 < p < 1 there exists an entire
function f with negative zeros of proximate order p(r). We obtain Theorem 1 as
a consequence of the following result in the case p > 0.

Theorem 2. Let m be any positive integer. Let h : R — R satisfy the
following condition:
0) there exists 6y € (0, ] such that

h(6) = h(0) cos(p6), 6] < o,

then h is the indicator of an entire function f € PF,, of the proximate order
p(r) = p > 0 if and only if h satisfies the following conditions:

1) h is a 2m-periodic, p-trigonometrically convez function;

2) h is an even function;

3) max{h(f) : —m < 8 < w} = h(0).

We believe that Theorem 2 is true without restrictional condition 0). But
now we have not proved it.

The indicators corresponding to the class of entire Hermitian-positive func-
tions of finite order and to the class of entire absolutely monotonic functions of
finite order were completely characterized by A.A. Goldberg and 1.V. Ostrovskii
in |5, 6].
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Note that the necessity of conditions 1)-3) in Theorem 2 is clear. So, it suffices
to prove that for any function h, satisfying the conditions of Theorem 2, there
exists an entire function f € PFy, such that h(0, f) = h(6). The method of proof
is similar to the method used in [5, 6]. The rest of this paper is devoted to the
construction of such function f € PF,,.

2. The reduction of the problem on a trigonometrical around
zero indicator to a statement on the asymptotic behavior
of some multiple integrals

Proof of Theorem 2. It follows from the well known theorems of
entire functions theory [4] that there exists an entire function ¢; of completely
regular growth (c.r.g.) with respect to the proximate order p(r) with the indicator
h/2 and without zeros in the angle | arg z| < 6. The entire function ¢2(2) = @1(2)
has the same properties. Put g1 = @1¢9. Then ¢; is an entire function of c.r.g.
with respect to p(r) with indicator h(6,g1) = h(f) without zeros in the angle
|arg z| < 6p and g;(z) = |@1(x)|*> > 0. Since g1(x) — 00, — 0o, We can assume
gi(z) > ez >0.

We need the following fact mentioned in [5].

Lemma 1. Let p(r) — p > 0 be a prozimate order. Let §(r) be a nonnegative
function 6(r) — 0, r — oo. There exists a prorimate order pi(r) — p such that

rPt) = o(rP™),  §(r)rP") = o(rP ), 1 — co. (2)

For the reader’s convenience we present the proof of this lemma.

Proof Sete(r) = max;>.(6(t) + @)% We will denote by logy(r) the
k-th iteration of logr. We define the function

l(r)y=¢(0), 0<r<r;=¢€%;

I(r) =1(r1) +loggri —logzr, 1 <71 <y,

where u; is the smallest root of the equation
e(r) =1U(r1) +logzri —logyr
on = [ry,00). Put
Wr)=Uluy), u <r<reg=wu;+1.

We continue this process and define the function I(r) on [0,00). Obviously, the
function I(r) € C[0,00) and I(r) has a continuous derivative everywhere with the
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exception of the points r, and u,. In the points r, and u,, there are left-side and
right-side derivatives and

IR uj <1< Tj41;
U(r) = -1
(rlogrlogor)™, 1 <71 < uj.

With the help of small modifications we obtain I € C*(0, c0) and
I'(r) = O((rlogrlogyr)™1),r — oco. (3)
It is clear that

1) > e(r) > 10;

, r>ry; U(r)l0, r— oo (4)

Set
o) = P ().

With the help of (3),(4) it is not difficult to prove that
pi1(r) = p, rpi(r)logr — 0, rP1(r) = o(rp(r)), 7 — 00.
By (4) we have
§(r)re) < 5%(7")6(7")7"”(” < 5%(7‘)1(7")7"”(” = o(rP(M).

Lemma 1 is proved.

Let
i +
di(r) = max{(logf},%a) - h(ﬁ)) :0<0< 27r} ;
Ba(r) = B4 — h(0)]. (5)

Put 6(r) = max{d1(r), d2(r)}. Evidently, §(r) > 0, 6(r) — 0, r — oco. By Lemma 1
there exists a proximate order pi(r) — p such that (2) holds.

Without loss of generality we can assume that p(r) € C[0,00), pi(r) €
C[0,00). Let hy(0) satisfy conditions 0)-3) and moreover

3') hi(0) > hi(0), 6 € [—m,0)U(0,n].

Reasoning as for g1 we obtain the entire function go of c.r.g. with respect to
the proximate order p;(r), without zeros in the angle |argz| < §y and such that
h(8,g2) = h1(0), g2(z) > €, z > 0.

Let g = cos% —H’sin%,k =0,1,... ,n—1. Set

€% 4+ €17 oo | efn—17

p(z) = : (6)

n
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Lemma 2. Let 1(z) = p(z'/™). Then v satisfies the following conditions:
a) 9 is an entire function of order 1/n;

b) Y € SPFy;

¢) 1 has only negative zeros;

d) C(n)exp{z'/"} < 4(z) < exp{z!/"}.

Proof Note that

b=y =

(ng)!

7=0
Obviously a) holds. Since the matrix (1) of coefficients of 1 is the submatrix
of the matrix (1) of coefficients of e € SPFy, the function ¢ € SPFy. By
Theorem ASWE 1) has only negative zeros. The estimate d) is obvious. Lemma 2
is proved.

Let n be a positive integer such that p > % Set

9(2) = 91(2)g2(2), £ (2) = w(p="")g(2), (7)

where p is a positive integer.
Theorem 2 is a corollary of the following fact.

Proposition 1. Ym € N3pg(m) € NVp > po(m),p € N = f € PF,,.

Indeed, for any p € N the function f is an entire function of c.r.g. with
respect to p(r) and h(0, f) = h(6,91) = h(6). So to prove Theorem 2 it is enough
to prove Proposition 1.

Let

1
fe(z) = o(V/2)g(ez) = o(Vz)g1(e2)ga(e2), (e = —). (8)

b
It is clear that
Ve >0 : (f(2) € PF, < f(ez) € PF,).

Thus, we can rewrite Proposition 1 in the following equivalent form.

Proposition 1. Vm € N Jeg(m) > 0 Ve, 0 < € < g(m), %\/g eEN =
fe(2) € PFy,.
Put
fe(z) =Y ax(e)2* (9)
k=0

and consider the determinants (ag(g) = 0 for k£ < 0):

A5(e) = det oy () 4520, B =0,1,2,.... (10)
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Proposition 2. Vv €¢ N IN(v) e N Ve, 0 <e <1, Vk > N(v) =
Al (e) > 0.

To deduce Proposition 1’ from Proposition 2 we need the following lemma
from [7], which is similar to a lemma of Schoenberg [8].

Lemma 3. ([7]) Let {ay}2, be a sequence of positive numbers such that
>0 ak < 0. Consider the matriz with v rows and infinitely many columns

A, = |laj—illi=o,... y—1;j=0,1,... (ax =0, for k <0).

Suppose that for every v = 1,... ,m the matriz A, satisfies the following condi-
tion: all minors of order v, composed of consecutive columns, are positive. Then
{ak} € PF,,.

We deduce Proposition 1’ from Proposition 2. We fix a positive integer
ve{l,2,...,m} and consider the matrix
Ay(e) = ||aj—i(6)||z':0,...,u—1;j:0,1:,...,

where ag(e) are defined by (9) for £ > 0 and ay, = 0 for k < 0. Clearly its minors
of order v, composed of consecutive columns, are the determinants A}(e) > 0 for
any €, 0 <e <1, and k > N(v).

Note that f.(z) = ¢©(/2)g(0), € — 0 uniformly on any compact set of
C-plane. By Lemma 2 ¢({/z) = 9(z) € SPF4. Therefore,

Vv € Ne(v) > 0Ve,0 < e <e,Vk=0,1,... ,N(v) — 1 = Af(e) > 0.

So,
Vv € Ne(v) > 0Ve, 0 <e<e,Vk=0,1,2...00 = Aj(e) > 0.

Putting € = min{e(1),... ,e(m)}, we obtain that the sequence {ay(g)} satis-
fies the assumptions of Lemma 3 and thus {ag(e)} € PF,,. We will show that
Proposition 2 follows from Proposition 3 on asymptotic behavior of the multiple

integrals
T T v 4 WHQ
I(n,e) = / / 11 (kc%)
S Zr Jj=

x J] 4sin’® Molgl...dgy, (11)

2
1<a< Ly

where the function f; is defined by (8).
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Proposition 3. Vv € N IN(v) e N Ve,0<e <1 Vk>N(v) In=
n(k,v,e) >0 = I/(n,e) > 0.

To deduce Proposition 2 from Proposition 3 we need the following lemma
from [7].

Lemma 4. Let f(z) = to,arz" be an entire function and let

w =det |lagtj—illi=o,... v—13j=0,.. ,.—1 = (ax =0, for k <0).

Then, for any r >0

X H 4 sin? %dgl...dg. (12)

1<a<f<v

For the reader’s convenience we present the proof of Lemma, 4.
Proof. Since

ap = T2—7r / e~k f(ref)de, k€ Z,

-7

we have
—kv
AZ (’r th“/f 're z(’H‘J)C ZlC”V,]_:l

By virtue of the Pélya composition formula [9] for any 2 sets of functions
o, ... ,¥y,—1 and g, ... ,@y_1, we have

b
det | / ()05 (5)do |15
a

1
=53 [+ [ detlpatenlig det loaen) st odao....dar
a a

Applying this formula to ¥4(¢) = f(re®)e ™+ and ¢, (¢) = €< and the
formula for the Vandermonde determinant, we obtain the proof of Lemma 4.
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Now let the function f; to be given by (8), the determinant A} (e) by (9) and
(10) and the integral I} (v, ) by (11). By Lemma 4 we have

I (n,€) = R (vie™ (2m)* (f(e) ™ A5(e) ) -
Since f; = (r) > 0 for r > 0 and the determinants Aj(e) are real, it follows that
signly (n,e) = signAg(e),

and we see that Proposition 2 is a corollary of Proposition 3.
Let ¢ = (¢1,---,¢,) € RY. We will use the lo-norm. To prove Proposition 3
we write the integral (11) as

g = | [ [+ [ ] 13<,c<ffi+)c)>

lCli<e o<[i¢lI<

x [ 4sin® ——2d¢1...d¢, = Ty + I, (13)
1<a<f<v Ca - Cﬂ

where o > 0 and n > 0 will be chosen with the help of reasoning usually applied
in the saddle-point method. We will estimate J; from bellow and Jo from above.

3. The estimate from bellow of the integral J,
Put

b:(n) = log f-(e") = logp(e”™) + log g(ee")
= log(e"™) + log g1 (ee") + log ga(e"). (14)

Since g1,2(2) # 0 when |argz| < 6 and ¢({/z) has only negative zeros, we
have f-(e"%) # 0 in the circle {¢ € C : |¢| < 6y/2}. Thus, for [¢| < 6y/2 we
have the decomposition

. n+i¢ . iJcJ
log {e_mgifgf(;(en) )} = —ik( + 2_:1 bg)(n)% . (15)

Since f is of c.r.g. and f # 0, when |arg z| < 6, there exists

lim ") log f(r) = h(0) > 0,

T—00
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and hence,

1
Ly n) = L1og f(ee™) > e (een)P ) S5 00, -
n n n

(here and further we denote positive constants by C' with indexes).
Thus,
limsupb.(n) = +oo,

n—+oo

and the equation

be(n) =k (16)

has solutions for any k > kg = maxg<.<1[b.(0)] + 1.
Let n = n(e, k) be the smallest root of (16). This choice of 7 lets us write (15)
in the form

i fs(eTH'iC) _ 1 1
log {6 kgm} = —§C2bs(77) + (¢, m), (17)
where
. 3T
() = W) (18)
j=3 )

We need the following lemma.

Lemma 5. For k > ko, ko € N, and n = n(e, k) the following inequalities are
valid:

k=) < Cy (e + (een) =) (19)
3/4
k Z 04 (e% + (gen)p(&‘e’?)) / , (20)
) J 41
69 )] < > Ok (21)
0

Proof. Applying the Schwarz formula to the function log f.(e""#) in the
circle |z| < 6y/2, differentiating with respect to z, setting z = 0, taking into
account that log f:(e”) > 0,7 € R, and (8), we obtain

02 < Z 7 L log™ | f (e Per dr
e 1] o7
07
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. ™
27+141

™

00 it 00 it

<25 [rog tetet B ar + [1og" lgleer ¥ lar | (2
O7T

—T —T

Since ¢({/z) has nonnegative coefficients, using d), we have
60 ir ) 6
log™ |ip(ent2n®")| <logp(ent2a ) < entam T < Cgen.  (23)
Using properties of the proximate order [4], we obtain

90 ir 90 0700057—
log™ |g(ze2 )| < Cr(ze ©5T)Pe )< Cy(a?™ +1), z>m0.  (24)

o -
. +lgmede Y .. . : .
Since % is uniformly continuous in x with respect to 7, the analogous

inequality is true for all z > 0. Hence by (23) and (24),

. 7 41
169) ()] < %Cg (e% + (5e’7)p(5en)) , (25)
0

in particular, (19) holds.
Now we prove (20) and (21). Since n = n(e, k) is the smallest root of (16), we
have b.(n) < k for n < n(e, k). Consequently

n(e,k)
bolne.B) = [ bn)dn +b(0) < b+ max logg(e) <k + G (26)
J 22

Since lim,_,q 2890) — h(0) > 0, and logg(r) > 2, r > 0, with the help of d)
we obtain

be(n) = log p(e¥) +logg(ee”) > Oz (e + (ee)e")

But y
77 < 4’]’),6{]5 < 4n (e%-'— = (867})p(56n)) ,
thus by (26),
1/4
Cis (e% + (Ee”l)ﬂ(seﬂ)> <k (6% + (Een)p(gen)) / k> ko,

whence we obtain (20). (21) follows from (20) and (25). Lemma 5 is proved.
It follows from (21) that for { < %0 me have

< 9p|~|P
el < ok 30 2P < oy
p=3 0
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Choose
o \1/3 s
= k) = k— 2
o= o (30171/) , (27)
then for |¢| < o we have
™
< —.
frelCom)l < o (28)

Applying (17), (21), we obtain

g €)Y 1 Y 2
R {e M0} 2 Je e (oS e

So, with the help of (27) we obtain

v(v—1) v
Jy > (%) 019/.../exp —Cigk** > "¢
j=1

llCll<o

x ] (Ca—¢p)dCr...d¢,

1<a<f<v
9\ Y1)
= (;) / / exp Cngu
l[ul| <Cao kB
x ] (e —up)’dus ...du, > cgl(u)k*% (30)

1<a< <y

where Ca1 (v) > 0 depends only on v.

4. The estimate from above of the integral J,

The integration domain {¢ : ¢ < [|(|| < 7} in Jy is contained in the union
of the domains

{€|C1‘ Sﬂ-a--- ’|Cj—1‘ SW’U<|Cj‘ Sﬂ'aKj-I-l'Sﬂ-a--- ’|CU|S7T}7j:17"' Uy

and the integrand has a majorant

2(1/1 ﬁ

en+ZC]

fs eTI

bl
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which is symmetric with respect to (1,...,(,. Therefore,
¢ ¢ v—1
B n+ic) f ( n+iC)
Bl < vavv / Je(@™) ‘dc / : d
I FACON BACDR
o<[¢|<m -
v—1
= el [ [ ([EED) c) ff(enﬂg)‘dc
fe(em) fe(en)
o<icl<® foci¢i<a
= CQQ(I/)(Il-l-IQ)Ig. (31)

To estimate the integrals I; and I3 we need the following lemma, which is
similar to a lemma from [5].

Lemma 6.

i 0
log g(re”)| ~logg(r) < ~Coar”0” + Coa, where [6]< 7. (32)

Proof Since g is of c.r.g. and has no zeros in the angle {6 : |0| < 6y/2},
for |6] < 6y/2 the following equation holds:

log |g(re®)| = h(0)r?™) cos(p(r)0) + o(rP™)), r — .
It is easy to prove that for r¢/2 < r < 3ry/2 the following equation is true:

rP(1) = pP(r0) (1 4 o(1)), 7o — 0.

So,
log |g(re’®)| = h(0)r0) cos(p(r9)8) + o(r?0)), 7y — .
Denote by
Ao (re?) = o(rP(r0)) rg = 00, |0] < 6y/2. (33)
Since Ay, (re?) = Ay (re™"), we have
0 ]
— A, (re?) =0,
09" 6=0
whence for || < 6y/4 it is true that
. 62 . 62 0y
Arg (re) = Mg (1) = 52y (re) T ol < - (34)
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(4 -0 .
We will assume that rge 4 /2 < r < 3rge 4 /2. The function A, (rei(m™+2)) is
harmonic in the circle |z| < 6y/4. Thus by the Poissonian formula

27

) 1 ) 00 iy Ooew + 4z
+ — To+
e ) = o o et SR L gy,
0
whence by (33), we obtain
02 i 6400ci"
g i0 = |= i(ro+ ey O™ |
‘602 )\7'0(7'6 ) oo o /Aro(""e 4 ) (ooeiw —42)3 o ’(/)

= o(rp(r)), To > Zo-
Hence, applying (33) and (34), we obtain for |0| < 6y/4

log g(re”) | ~logg(r) < —2h(0)r ™) sin? 70 4 1y ) 5, (1)

< _p(gyretro) (Pr0)0)”

D) y To > Zo,
™

and thus |
log |g(re'?)| —log g(r) < —Chsr?")6” + Coy

for any r > 0 and |6| < 6y/4. Lemma 6 is proved.
By (8)

log | f-(e")| — logf-(e") = log (™M) —log(e"™)
+ log|g(ee”+ic)|—logg(ee"). (35)

Since ¢({/z) has nonnegative coefficients, with the help of d) we obtain

log |<p(e("+ig)/”))| —log (p(e”/") < en (cos% — 1)+ Cyr

< —Cose"™? + Cyr, ¢ <7 (36)
By (32),(35) and (36)

log | (e77)| — log f.(€7) < —Cag (7 + (e ")) (24 o, [¢] < o/4.
(37)

Hence, for o < |¢| < 0y/4 by (27) and (19) we have

log |f2(e"*¢)| — log f2(¢") < —C31(v)k + Cso
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and

©|—

I < 2me%*0 exp(—Ca (v)k

)- (38)
Now we will estimate I. By (5) and (7)
log|g(re”®)| —log g(r) < (h(6) — h(0))r*") + 6(r)r*™)

+(h1(8) — hy(0))rP1 () 4 o(rPr (M),

From the property 3) of the function h we obtain that h(6) — h(0) < 0 for all
|] < 7. By property 3') of the function h; we have

Cs2 = min{(h1(0) — h1(0)), 6o/4 < 0] <7} >0,

and applying (2), we obtain

: (r)
log |g(rele)\ —logg(r) < —0327“’“(") + o(rpl(r)) < —C’327"p2 +Cs3, r>0,

whence by (35) and (36)

. 1/2
log | f=(e"*%)| — log fo(e") < —Csa (e% + (gen)ﬂ@e")) +Cs3, Op/4 <[] <.

(39)
Thus by (19),
I, < 27e%% exp(—Caak?). (40)
By (39) and (37) .
] < ememtin, (g <
So
Is < Css. (41)

From (30), (31), (38), (40) and (41) we obtain Proposition 3.
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