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We study conductive properties of a composite material, consisting of
alternating layers with finite and infinite specific conductivity. On the basis
of assumptions that separation boundaries of layers are stochastic functions
and the layers thickness ¢ (in an oder of magnitude) is infinitely descending
we have derived the formula for effective electrical conductivity of the rele-
vant sample for the total current flowing in the direction being normal to a
layer surface.

1. Physical formulation of a problem

Over last years the significant interest is observed to the study of composite
materials properties. Effective characteristics of composites (such as electrical
and thermal conductivity, etc.), as a rule, essentially differ as compared with the
relevant characteristics of constituent components and depend on their config-
uration and properties. In superconductivity theory, for instance, the study of
composite conductive properties is of great interest when one of components is
in a superconductive state (i.e. is characterized by infinite conductivity) but all
others are in a normal state. Thus we study the composites with strictly contrast
properties of components. Some of these composites can be met in nature and
the others are prepared only artificially.

Relying on their internal structure the composite materials can be subdivided
into several different groups. Omne of such types is a layered composite. The
presented work is devoted to the study of a layer composite conductive properties
if layers are alternatingly arranged with finite and infinite conductivity and have
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random layer boundaries. The layers are supposed to be of a thickness € in an
order of magnitude. We consider the problem of finding an effective conductivity
of the material described above in the direction perpendicular to the layers under
the condition of the small ¢.

We suppose that our problem is of a plane character such that the composite
properties are not change along the axis x3. For the sample of the thickness L
and the height H, consisting of 2N, + 1 layers (the thickness is a value of an order

of magnitude € = ), we specify rectangular coordinates, as it is shown in

2N, +1
Fig. 1. The potential of an electrical field is supposed to take the value 0 and 1 at

the surfaces o = 0 and 9 = H, respectively. As a result, the effective composite
conductivity is equal to a total current that flows through the composite in the
direction of the axis zs.
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Fig. 1. 1) Layers D;. with the ideal conductivity;
2) layers G with the finite conductivity o

We counsider, as a simple example, that particular case when the layer sepa-
ration boundaries are straight lines. In an each layer with the ideal conductivity
the potential u. is constant, i.e., satisfies the following condition:

ue =¢, 1=0,...,Ng
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here c; are constants dependent on € such that ¢p = 0 and cy. = 1. If to denote as

o the specific conductivity of a material in the layers with a nonideal conductivity,
o

then the resistance of such layer in the direction of the axis x5 will be equal to — .
€

On the basis of the Ohm law for the i-th layer the equality

Ie .
Ci—ci_lzLL, ’Lzl,... ,Ng (1.1)
o

is correct, here I is the total current. Summing up (1.1) over i, we get that

N,
< IHN.
1= )= e
;(Cz CZ 1) (2N€ + l)LO'

Thus, the current I = lin(l) I. (that the same as the effective electrical conducti-
E—r

vity C) of the composite under our study in the case of the small € can be reduced

to the form of
c==2.
H
In a more general problem the separation boundaries between layers are
stochastic functions and the layer thickness as a function of the variable z; is

0

1
supposed to be determined by the formula g.(z1) = eq(e"x1,w); here 0 < § < 3

and ¢(z1) is a strictly stationary, metrically transitive stochastic process, which
will be precisely described in the Section 2. The main result of this work is to
prove that the effective electrical conductivity C. of the composite under the
condition € — 0 has a tendency to reach the nonrandom limit

2Lo

¢ =0,

with {g~1(0)) being the average meaning of the stochastic process ¢~1(0), whose
rigorous description and also the probability space rigorous description are repre-
sented in the Section 2.

2. Rigorous description of the problem and the main result

Let us consider the probability space (€2, F,P). The object under study is
the one-dimensional, stochastic process r(z1,w),(x1 € Ri,w € Q) determined
on this space. We suppose the process r(z1,w) to be strictly stationary and
metrically transitive, and, therefore, we obtain with the probability 1 there exists
the limit [2]:

T

. 1
lim / r(21,w)dz = (r(0)); (a)

T—o0
0
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here () are marks of expectation in the space (2, F, P).
It is also supposed that

and with the probability 1 the inequalities

(e, < 5 (©

OFr(zy,w)

|T1]€|<A7 k=1,2, (d)

are correct; here A is independ on w € Q and z; € Ry, and derivatives of the
stochastic process 7(z1,w) exist with the probability 1.

Stochastic functions I'je = e(r(e z1,w) + 5),5 = 0,... ,2N: + L,w = w; €
1; = Q describe the layer boundaries of the considered composite. Then the j -
layer thickness is also a random value and is described as the continuous stochastic
process ¢g(z1, wjz-), determined in the probability space (22 = Q x Q, F2, P?) by
the equalities

0

QE(xlaw]z) = €Q(67 zlanQ')a

2

(2.1)
q(xl,wj) =1+r(z1,wj1) — r(z,w;));

with w? = (wj,wj+1) being the point of the event space Q2 such that its coordi-
nates are the points w; =w € Q, F 2 = F; x F;41 being the o-field of measurable
sets and the measure P2 is determined on the sets of the o-field as follows

P(F?) = P(F;)P(F;+1),
where F; € F;. Realizations r(z1,w;),j = 1,... ,2N; of the process r(z1,w) are
selected independently.

Lemma 2.1. Let the random process q.(z1,w?) be determined in the proba-
bility space (02, F2, P2?) by the equalities (2.1). If the process r(z1,w) satisfies the

conditions (a)-(c), then ——— <
(a)(c) Ge (71, w?)

in (Q2, F2, P?%).

is strictly stationary and metrically transitive

> The proof follows from definitions of the strict stationarity and the metric
transitivity [2] of a stochastic process. |

Taking into account, that the number of the layers G;. with the finite conduc-
tivity o is equal to N, and the number of the boundaries I';;, separating these
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layers from ideally conducting ones, is twice more, we involve into consideration
the event space
OV =Qx O x..xQ
N————

2N,
and the corresponding probability space
2N
(QNe, FNe, PYe) = TT(@, 7, P).
i=1

Besides, we define the probability space (2°°, F*°, P*°) using a scheme similar
to the one in the Kolmogorov theorem [3| proof. Namely, we consider the space
of events 2°° as a projective limit of a filtered set of the finite products Q7; here
{J} (e, Q® = l'gn 7) are arbitrary finite sets from N. In the every Q7 we

construct the o-field of the measurable sets 77} = H]:Z Then we introduce the
i€J
o-field of measurable sets F°° in 2°°, which contains all measurable cylinders in
Q°° namely, sets of the kind
F? x Q\
with F? € F7. The measure P} is defined on Q7 as a product of measures P; on
Q;, ie., Pt = H P;. Measures P} are supposed to be consistent with each other
1€

in the sense that for any K,J such that J C K the measure P} on the space
Q" is a projection of the measure Pj™™, determined on the space Q% ™, on the
subspace ;. Then P> is defined as follows. The projection P> on 7} coincides
with P}, that is

P}(F}) = P (F7 x Q=\),

where F'} € F}. And then we prove an existence of the projective limit
Lim (27, Fy, Py) = (2%, F, P%).
-

The layers Gy, 2 = 1,... , N, are labeled as the layers with the finite conduc-
tivity o; Dz, i =0,... , N, are the ideally conducting layers (Fig. 1), and 7,0, vji,
j =0,...,2N,, are the left and the right boundaries of the jth layer (Fig. 2).
The potential u. of an electrical field in I'y, 41, and 'y, takes the values 1 and
0 and also is the solution of the following problem:

Ne

Aug(z) =0, z=(z1,29) € G = UGZ'E, (2.2)
%

ue(z) =¢;, 1=0,...,Ng, © € D¢, (2.3)
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Ou, Ou, .
dl’ = dal', i=0,2,... ,2N, 1 24
an 8']7, bl ? <y bl £ + bl ( )
e Dit1,e
u (.’L‘) 2N, 2N,
s =0, z€%= o = (2.5)
" j=0 j=0

Here ¢; are some constant values, depending on ¢, such that ¢¢ = 0 and
¢y, = 1. The conditions (2.4) imply that the total current flowing through
the opposite boundaries of ideally conducting layers has the same value. The
condition (2.5) means that the lateral composite boundaries are isolated.

X2

Fig. 2. Layers G;. with the finite conductivity o

As a potential difference of an electrical field on upper and lower boundaries
of the composite is equal 1, its electrical conductivity C. by definition is equal to
the current I, flowing through the composite in the direction of the axes o, i.e.
C: = I, and also is determined by the formula

Oug
o dr, (2.6)

C.=I. =0

Fi,s

where I'; . being an arbitrary boundary.
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One more expression for electrical conductivity is intended to be obtained
next. The potential u;. in the every layer G;. is the solution of the following
boundary value problem:

At (z) = T € Gy,

Uie(T) = CZa z €T,

Uie(r) = cip1, = €Titi, (2.7)
Ouie ()

on = Oa T € Y0, YiL-

By using Green’s formula in the region G;. and, taking into account (2.2)—(2.5),
(2.6), we write the simple sequence of equalities

O'Z / |Vuzg| dr = O'Z —¢i-1) auigdf =0 au‘EalI‘ = C,.

on on
1,€ Fi,a
Thus, we get
Ne
C. = O'Z / |V, |“dz (2.8)
z_lGis

On the other hand, the problem about minimization of the functional

Ce(ue) = 0/|Vu5|2dm (2.9)

over the class of functions H, = {w € W3 (G;.),w(z) = ¢;,i = 0..., N;,z € Dy}
corresponds to the problem (2.2)—(2.5). Indeed, let us consider the increment
ue + hé. of functions u., here d. is an arbitrary function from the class H,
substitute it in the functional (2.9)

C.(ue + hé,) = a/ |V, |?dz + 2oh/(Vu5,V65)da: + h%/ V6. [2dx
G

and equate to zero a linear part of the increment C.(u. + hd;). We obtain

O

5 =d.dT).

= /(Vus,Vés)dw = /Auzgé dz +
G - Gw aGie

From an arbitrariness of §; over the class H, follows that the function u., mini-
mizing the functional (2.9), is the solution of the problem (2.2)—(2.5).
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Hereafter we shall derive the formula for the electrical conductivity of the
composite, using the functional (2.8). We notice also that as the thickness of
layers Gy is the stochastic process, then the conductivity defined by the formula
(2.8) is a random variable in the space (2°°, F>°, P>).

The main result of the present work is following

Theorem 2.1. Let I'; . be boundaries of the layers determined by the equali-
ties

L. =e(r(e %z1,w) +14),i =0,... ,2N,;

)

here the random process r(zi,w) satisfies the conditions (a)—(d). Then
C.(w®) under the condition € — 0 converges with the probability 1 in the space
(Q%°, F°, P®) to the nonrandom limit

_ 2Lo

)

where {q~1(0)) being an average meaning of the random variable ¢ 1(0).

R em ar k. It follows from the Theorem 2.1 that the random variable
C.(w™¢) under the condition that & — 0 converges in probability in the space
(QNe, FNe PNe) to the nonrandom limit

namely, for any § > 0

lim PNe{w™e : |C.(w™e) — C| < 6} = 1. (2.10)

e—0
3. Construction of the solution in the layer

We consider the domain G in Ry, bounded by the lines v;p, vz and I';; =
67"1-(6*9:1:1)1 =e(r(e %m1,wi)+14), Tiv1e = eriz1(e0my) = e(r(e 021, wiy1) +i+1),
0<b< ok here the indices 72 + 1 and ¢ correspond to the upper and the lower

boundaries of Gj., respectively (Fig.2). We presume that r;(e %z,), 741 (e %z)
are two realizations of the stochastic process (e %z1,w). Henceforth, wherever
if it will not cause misunderstanding, we omit w in the expression r(¢ %z, w). In
accordance with (2.1)

qe(z1) = eq(s_eaxl, wf) =e(l+ Ti+1(6_0.’121) — ri(e_axl)),

and g.(z1,w?) is one of realizations of the stochastic process g (z1,w?).
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The current flows through the domain G;. in the direction of the axes xo,
therefore the electrical field potential w(r1) = wui(z1,w?) of the layer Gy is
assumed to be equal 1 and 0 on I';41 and I'; ., respectively. Then the potential
w;e (1) is the solution of the problem

Auie(z) =0, =€ G,
wie(z) =0, zel,,
)

uie(z) =1, =z €Tt (3.1)
Oue (x
BZE( ) = Oa T € Y0, ViL-
1

Since, the function u;. is harmonic in the simply connected domain G, then the
potential function v;. conjugated with u;. exists and is connected with u;. by the
Cauchy-Riemann conditions

Buig 8’1),'5 a’l)ig Buis

8.’1)1 N 8.772 ’ 8.771 B 8562'

Oue  Ovge
8.’131 - 8.’1,'2
vYi0,7%iL- And as this function is determined to within an additive constant, we

Ov;e
dl =
or

Since = 0 for =z € 70,7, then v;. is a constant along the lines

assume that v;c(0,z2) = 0. Then v;.(L,z2) = A, where A, =

Titi,e
Ou;
—"2dI'. Hence everywhere by 7 and n we designate tangent and normal

on

Tit1,e

directions to a some curve. From boundary conditions for the function wu;. it is
) ou; ov; . .

obtained, that / 3 “dry = / 3 “dzo = 1. Thus, v is the solution of the

Z2 Z1
ViL ViL

problem

A’U,'g = 0, T € GiE,
Vie (0’372) = 07
’l]ig(L, .7}2) = Ag,

: 8(;”5 =0, T €Lie, Titre, .
n

8Ui€
=1
/ a.’L‘l d.’EQ

\ ViL

and there is a one-to-one relation between the problems (3.1) and (3.2). The
existence and the uniqueness of the solution of the problem (3.1) are well known,
whence it follows the existence and the uniqueness of the problem (3.2) solution.
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. . .- . €
We introduce in Gj¢ the curvilinear orthogonal coordinate system {s,? : —3 <
€
s < 2’ —e <t < L+ ¢} such that the boundaries of the layer I'; 11 and I';. have

coincided with the coordinate lines s = +—, respectively, and lines being orthog-

onal to them correspond to fixed values of the parameter ¢t. Such coordinates can
be described with the help of the equation system

{ F (21,22, 8,1) = 22 — i1 (e 0x1)(§ + 8) — ri(ePz1)(5 —5) = 0,

FQE("ElaI?asat) =1 — 509(8_1$275_0t76) =0, (33)

where g being an unknown function. We assume that 7 = e lzy, £ = ¢ %.
Next we use the condition of an orthogonality of the coordinate system {s,t},
and obtain from (3.3) the differential equation for the function g(n, &, €):

@_ 2-20( (.. ;N = Tit1(g) - , n—ri(g)
o~ © (( ) ) — g~ @) ml(g)—n(g))’ (34

and add to it the initial condition

The problem (3.4), (3.5) is uniquely solvable for every n € Ry, since, by virtue
of the function r(z1) properties (c), (d) the right part of the equation (3.4) is
bounded and satisfies the Lipschitz condition uniformly on g € R; and on 5 from
any finite interval (—N, N).

Lemma 3.1. Let N be any positive number. Then uniformly onn € (—N,N)
and & € Ry for the solution g(n,&,€) of the problem (3.4), (3.5) fore — 0 following
estimates take place

8k
6_52 =k L O ),k =0,1,
0g 0%g 0%

_ 2-26
{3_77’ 8—525 M} =0(e ).

Lemma 3.2. The system (3.3) is uniquely solvable with respect to the vari-
ables 1 and xo in Gy, i.e., there exist the functions Ry and Ro such that

w1 = Ri(s,1),
o — RQ(S,t).
Herewith for Ri(s,t), Ra(s,t) under the condition of the small ¢ the following
estimates
Ris = O(e'79),  Rys = q(e7 %) + O(£27%),

Riyy=1+ 0(52_20), Ryt = 0(51_0)’ (3 6)
9 0R g g 2-30y 9 OR, _ 5 o3 '
gt g5 € TN FOET), GG =0E)

Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 1 85



N.V. Kraynyukova

are correct. The system (8.3) is uniquely solvable also with respect to the variables
s and t, and for ¢ — 0 the evaluations

2 14 o)

ot _
5 = 0(e) (3.7)

’ 8.’E2
are valid.

The proofs of Lemmas 3.1, 3.2 are similar to the ones from [1].
Let us consider the function v (t), —e < t < L + ¢, which is the solution of
the problem

d

dv;e

%(q(e‘e) ) =%
#;c(0) = 0, (3.8)
e (L) = b

dt q(e L)’

where b, being an unknown constant dependent on €, which we obtain as follows.
We define in the domain G, the function v = v;c(z1, 2) and extend the solution
;e (t) of the problem (3.8) for s so that in variables (¢, s) v;c does not depend on
s for fixed values of ¢. Then we select the constant b, so that the condition

o 1
avzg dzo = 1 is satisfied. Hence, we show that b, = — + O(¢2~%0). With the
1 €

YiL
help of the equation L = R;(s,t) we can express points ¢, lying on the boundary
v, as a function dependent on the variable s, i.e., t = ¢(s) (it can be made

since Ry = 1 4+ O(e272%) # 0). Then substituting the expression for ¢ in the

R
equation zo = Ra(s,t) and taking into account that ¢'(s) = —R—ls, we obtain
1
_ ' _ Rt Ry .
that dzg = Rasds + Ropp'(s)ds = (Ras — i )ds. From the orthogonality
1t
" . Rat Ros _
condition of the coordinate system {¢, s} follows, that 7 = — Ry, whence
1t
R 2
dzy = |R—s‘ds. Using the estimates of the lemma 3.2, we write the following
2
sequence of the equalities:
;i o O / _ _
1= a;lsdxg = B—;‘EB—deQ = /bg(l + 027 %))ds = b.(e + O(37 %)),
YiL YiL -5

1
from which we obtain the unknown constant b, = — + O(e272). Thus, the last
€
condition of the problem (3.8) can be written as
dv;e 1

dt (L) = eq(e9L) +OE).
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We represent the solution of the problem (3.2) as the following
Vie = Vie + e, (3.9)

here v, is the solution of the problem (3.8), extended on s as described above.
From ( 3.2) and (3.8) it follows, that d;. is the solution of the problem

( A(sis(.’ﬂ) = —A’f)is(.’ﬂ),.’ﬂ S Gis,

0ic (0, 29) = —0;c (0, z2),
die(L,z9) = M, — ¥4 (L, z2),

) 66185(1‘) = Oa T E F’i,Ea Pi-|—1,57 (310)
" 86, ()
i€ .
(9.’171 d.’EQ = O,
\ YiL

where M, being an arbitrary unknown constant value.
Hereafter we will need an estimate for the magnitude [ |Vd;|?dz. For this

purpose we solve the following problem about minimization of the functional

F(’Uig) = / |V’l]i€|2d$ — |
Gie

2
/vigdzz:z —inf, (3.11)
1,L|
YiL
in the class
V = {vje(z1,22) € (W3 (Gie)) : vic(0,22) = 0,3 (L, z2) = const},

here |y;z| is the length of the curve v;r.

The function, on which the minimum of the functional (3.11) in the class
V is reached, is the solution of the problem ( 3.2). Indeed, let us consider the
increment F'(v;. + hg;e) of the functional F, where ;. is an arbitrary function
from V,

F(vie + hie) = / |V |2dz + 2h / (Vvie, Vipie)da + h? / Vi |2da

/ ViedTo — / PicdTo
|’YzL| "YzL|

and equate to zero the linear part of F(v; + hyje)

1 0
0= /(V’UZ'E, V‘Pia)dx R / PicdTg = — / A'Uz'e(pigdx + / Vi ——piedl’
|V on

Gie YiL Gie Dit1e

O0vie 0vje 1
dr’ d
+ / a 9015 + /( 8$1 |’)’ZL| )<)0ZE "I"Q

Tie YiL

Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 1 87



N.V. Kraynyukova

From the arbitrariness of ;. we get the connection between the variational prob-
lem for the functional (3.11) and the boundary problem (3.2). With the help of
the variational formulation (3.11) in the class V' of the problem (3.2) we obtain
the variational formulation of the problem (3.10). For this purpose we substitute
in the functional (3.11) the representation ( 3.9) of the problem (3.2) solution

F(Uz’e) = / |V5¢E|2d$ + 2 /(VﬂiE,V&E)dw + / |V6i5|2dz
2 - .
_m /(U’is =+ (5i5)d:1:2 — ’L’I’Lf.
i
YiL

We minimize the functional F(v;.) on the function d;., as v is known. Moving
away items which are not containing the function §;., we obtain that d;c minimizes
the functional

~ 2
F(o;) = 2 / (Voie, Vor.)dz + / Ve e / Sindzs — inf  (3.12)
1L

Gie Gie YiL

in the class of functions
‘7 = {w(x15$2) € (W21(G’LE)) : w(Oa"E?) = _6(05552)’“)([”372) = ME —5([1,.’132)},

where M, being an arbitrary constant value. Let us consider the function w, =
Weo + Wer, where weo(z1,22) = —0(z1,%2)pe0(21), wer(w1,22) = (0(L,22) —

~ z — I
(71, %2))@er (1), Peo(T1) = (10(?1)7 wer(z1) = ¢(
ting function" defined by the formula

), and @(z1) being "cut-

l,z1 <1,
1
= e S —— 1,2
(P(.’El) emp( 1_ (551 — 1)2)7371 € [ ’ ]a
0,21 > 2.

It is easy to prove, that @, € V. We evaluate F(w,) and show, that F(@.) =
O(1).

1
Using the estimates of the Lemma 3.2 and the fact, that ¢, = O(E)’ o, =

1
O(-), we can write the following estimates
€
ow, ow, 1
8551 _O(g)a 81_2 _0(60)’
Oje e 1
—0(= —O(=
8.7;1 (6)7 ax2 (69)1
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W (L, x3) = O(37%9).

Whence it follows, that F(a,) = O(1). N N
As the function ;. minimizes the functional F' in the class V, and w, belongs
to this class, then

F(5;) < F(i,). (3.13)
Using (3.13) and (3.12), we estimate [ |Vd;|?dz. Making an integration by

Gie
parts in the first item of (3.12), we obtain the following expression with the help
of the Cauchy—-Schwarz—Bunyakovskii inequality

[ 1vsipas < o / (85.)2da / $da + / (G yedas, | [ 2oy

Gie %0 Yi0

Iy

%
‘/ Vie _ (5,5dx2‘ +1) =CLi+ b+ +1).  (3.14)
'YzL

oz |’)’zL|

o~

13

Let us evaluate the values I, I3 and I3 in the last inequality. It is easy to obtain

the following estimates for the expression the expression [ (Av;.)%dz taking into
Gie
account the problem (3.8) conditions:

dvje _ 1 220
dt  eq(e~%) +0E),

d*je q(e"1) 2-39
i Pl e 0.

(3.15)

With the help of the value Av;. representation in the coordinate system {s,t} we
write the sequence of the equalities

- 1 d |Rs‘ d@'s 1 d —0 dﬂia
AT = it — il ¢
vie |Rt||R5|dt(|Rt| i) q(e0t) dt (a"07)
dic (IRs\thtl — |Rufe| Rs| 5_aql(5_et)) d*Bie ( L 1)
dt | Ry[3| Ry | q(e~%) dt? \|Ry[?

Hence, using the estimates of the Lemma 3.2 and taking into account the formulae
(3.15), we get
A = 0('739),
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and, therefore,
/ (AB)2dz = O(e359), (3.16)
Gie

We represent the function ;. (¢, s) in the form

t

5ic(t, 5) = / wm'—@g(ﬂ,wz), (3.17)
©(s)

where ¢(s) = 7 being an arbitrary point on the boundary ~;o.
It is easy to confirm that

03 (0, z2) = O(e37%9). (3.18)

Hence, taking into account the Lemma 3.2, the expression (3.17), the estimate
(3.18) and the Schwarz inequality, we obtain

L
52(ts) < C / V5. [2da.
0
Using the inequality 217 < 1+ I?, we get the estimate

I = 0(1) + O(%) / V0, [2dz. (3.19)
Gie
It is easy to prove that
I, = 0(e37%) (3.20)

with the help of the Lemma 3.2, the problem (3.8) conditions and (3.18).
In order to estimate the item I3 we represent d;. on the ~y;z, as follows
51’5(La$2) = M, — 5is(L) + 5is(L) - 51'5(La$2) = 0(53_20)'
OVje 1

S — —— =0, then
Ooz1  |viLl

I3 = 0. (3.21)

Thus, from (3.14), (3.19)—(3.21) we have obtained the estimate for ¢ — 0

/ |V |2dz = O(1). (3.22)

Gie
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Evaluating the values [ (Vd, V;.)dz, [ |V;|?dz with the help of (3.12),
Gis Gz’s
(3.13), (3.22) and the Lemma 3.2, we obtain for € — 0

/ (V650 Vi )dz = O(1), (3.23)
Gie

/ Vo 2dz = / (df,,t) + O ). (3.24)

We introduce the notation T. = ¢ YL. After the substitution of the variable
7 = £79 the estimate (3.24) takes the form

L
/ Vs [2de = 22 / AT o), (3.25)
0

Because of the Cauchy—Riemann conditions for the solutions u;. and v;. of the
problems (3.1), (3.2), respectively, the equality |Vui|> = |Vv|? is valid. We
calculate the electrical conductivity of the layer G (or that the same the current
I.). For this purpose we use Green’s formula, conditions of the problem (3.1) and
the Cauchy—Riemann conditions for the functions u;. and v;.. Then we obtain

Cie=Ii.=0 auw = / | Ve |2 de = 0/ |Vvie |2d. (3.26)

F’i+1,£ Gie Gie

On the basis of (3.9), (3.22),(3.23),(3.25) and (3.26) we can formulate the following

Theorem 3.1. For the conductivity Cic of the thin layer Gic for ¢ — 0 the
asymptotic formula

Te
Lo
C = o / Vouftdz = 7 / (3.27)

Gie

1
is valid. Here T. = e 9L, 0 < 0 < 3"
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4. Conductivity of the layered structure

In the Section 2 it was shown, that the electrical conductivity C; of the sample,
consisting of alternating layers with finite and infinite conductivities, coincides
with the minimum of the functional (2.8) in the class of functions H,. We obtain
the formula for the electrical conductivity Cg, using the functional (2.8).

The solution of the problem (2.7) ;. can be represented as

Uje = (Ci - ci_l)uig +ci—1,t = 1..., Ng,

where wu;e is the solution of the problem (3.1).
The formula (2.8) can be transformed into the following problem of the min-
imum of the function with N, variables A;:

Ne
C. =) AICi, (4.1)
i=1
with the restriction
Ne
Y Ai=1, (4.2)
i=1

here A\; := ¢; —¢;_1, 4 = 1,... ,N.. The values Cj. are known from the The-
orem 3.1. Next we find the minimum of the function (4.1) with the auxiliary
condition (4.2) and using the method of factors of the Lagrange factors. We write
the Lagrange function for the problem (4.1), (4.2)

Ne Ne
LA, N =0 Al =MD Ai—1).
=1 =1

Equating zero derivatives with respect to variables A\; of the Lagrange function
and using the auxiliary condition of the problem ( 4.1), we obtain

1
Aj=—F— (4.3)
S|
Lie Z I_
j=1 "¢
Substituting the coefficients (4.3) in (4.1), we obtain
1
Ce = . (4.4)

Ne
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By using the Theorem 3.1, we pass to the limit under the condition of ¢ — 0
in the expression (4.4). Hence with the probability 1 in the probability space
(%0, F, P)

lim C, (w™)

e—0 e—0

I
B
N
Q
h‘“
™z
L
ot
3
Q.
= ™
N——
|

that proves the Theorem 2.1.
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