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For a piecewise-continuous function f on [0,1] we denote by v(f) the
number of its sign changes. By K,[0,1] we denote the set of piecewise-
continuous functions f on [0,1] such that v(f) < n. We prove that for

1

any n > 2 there are no integral transforms K f(z) = [ K(z,y)f(y)dy with
0

a continuous kernel K (z,y) such that v(K f) = v(f), for every [ € K,[0,1].
We give an example of a continuous kernel K (z,y) such that v(K f) = v(f),
for every f € K1[0,1].

Introduction and statement of results

The variation-diminishing property was studied by G. Pélya, I.J. Schoenberg,
T.S. Motzkin, A. Whitney and many others (see [1, 2]). To formulate some of
their results let us give a few definitions.

For a vector z € R"™ we will denote by z; the j-th coordinate of z. By
(z1,2,... ,2,)" we will designate the corresponding column-vector. We will de-
note by v(z1,... ,2,) the number of sign changes of the real sequence z1, ... ,z,,
zero terms being discarded. For a column-vector z € R™ we will denote by v(z)
the number of sign changes in the sequence of its components.

Definition 1. The real m xn matriz A is said to have a variation-diminishing
property if

v(Az) <v(z), VzeR" (1)

The following theorem gives the full description of real matrixes having the
variation-diminishing property.
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Theorem A (Pélya, Schoenberg, Motzkin, see [2, Ch. 4, p. 118]).
The real m x n matriz A has a variation-diminishing property if and only if two
conditions hold (r = rankA):

(i) for any k 1 < k < r, all nonzero minors of A of order k have the same
sign (depending on k);

(ii) for arbitrary r columns of A all minors of order r formed by these columns
have the same sign (depending on the set of columns).

Denote by PW C|a,b] (piecewise-continuous on [a,b]) the set of functions f :
[a,b] — R satisfying the following conditions:

1) f(a) = fla+0), f(b) = f(b—0);

2) ImeNTa=21 <2< ...< Ty =,
Vi=1,2,... m—1: fé&C(xmit1);

3) Vi=1,2,... ,m 3If(x; —0) # oo, If(z; +0) # o
and f(zi) = f(zi +0) or f(zi) = f(z: —0).

Definition 2. For a function f € PWC|a,b] let us denote by
V(f) = Supl/(f(tl)a s af(tm))a

where the supremum is extended over all m € N and all ordered sets a < t1 <
to <...<tm <b. We will denote by Kya,b] the set {f € PWCl[a,b] : v(f) < n}.

Let K(z,y) be a real continuous function defined on [a,b] X [¢,d]. Then for

any function f € PWC|c,d] the integral [ |K(z,y)f(y)|dy is finite. Let us
[e,d]
introduce the integral transform

Kf= / K(z,9)f(y) dy. (2)

[e,d]

Definition 3. The kernel K (z,y) (the corresponding integral transform K)
is said to have a variation-diminishing property on D C PWC|c,d] if

v(Kf) <v(f), Vf € D.
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Theorem B (see [1, Ch. 1, p. 21]). The integral transform (2) has a
variation-diminishing property on Ky,[a,b] if there ezists a sequence €1,... ,€pt1,
all e; = £1, such that forany1 <p <n+1landforanya<z1 < ... < 2, < b,
c<y1 <...<y, <d

€p det(K(~Tz'ayj))€,j:1 > 0.

There are many interesting publications devoted to the class of linear operators
which diminish variation. In this paper we study a narrower class: operators,
which preserve variation.

Definition 4. We will say that a real n X n matriz A possesses a variation-
preserving property if

v(Az) =v(z), VreR".

Definition 5. We will say that the kernel K (z,y) (the corresponding integral
transform K ), defined by (2), possesses a variation-preserving property on D C
PWCle,d] if

I/(Kf) =v(f), VfeD.

Theorem 1. The real n X n matriz A preserves variation if and only if

A 0 0 ... 0 0 .. 0 0 X\
0 X O ... O 0 .. 0 X O
A= 0 0 )\3 0 or A= 0 )\3 0 0 , (3)
0 0 0 ... A\ A . 0 0 O
where \; 0, j=1,...,n, and sign(A;) = sign(Az) = ... = sign(An).

The main result of this paper is the following theorem.

Theorem 2. Letn € N |, n > 2, be a fixed number. There is no kernel K €
C([0,1)?) such that the corresponding integral transform K preserves variation
on K,[0,1] .

We will also construct an example of a ke rnel K € C([0,1]*) such that the
corresponding integral transform K preserves variation on K0, 1].
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1. Proof of Theorem 1

The sufficiency in Theorem 1 is obvious. We will prove the necessity.
Let A be a real n X n matrix which preserves variation. Let us fix any j, 1 <

j < n, and consider a vector z = (0,...,0,1,0,...,0)*, z; = 1. Since v(Az) =
v(z) = 0, we obtain that v(ai;,a2,...,an;) =0, j=1,2,... ,n.
Fix any [ € {1,2,... ,n}. Since the matrix A preserves variation if and only

if the matrix —A preserves variation, without loss of generality we can assume
that ag; >0, k=1,2,... ,n.

Now we will prove that a;; xa(; 41y = 0 for any 1 <4 <n—1. Assume that i €
{1,...,n—1}: ay >0, ajy1; > 0. Let us consider z = (... ,e,—¢,1,—¢,¢,...)",
where z; =1, € >0, Vk # 1 z, = (—1)F¢, v(z) = n — 1. For sufficiently
small € we have: sign((Ax);) = sign(aj) = 1 and sign((Ax)iy1) = sign(aj111) =1,
therefore v(Az) < n — 2, and it is a contradiction.

Assume that there exist 4,5, 7 > 4 + 1, such that ay > 0, a;41; = 0 and
aj; > 0. Obviously, if the matrix A has a vanished row, then A has no preserving
sign property, therefore there exists k # [ such that a;;1x # 0.

Assume that a;41 % < 0. Let us consider a column-vector x such that z; =
1, zp=¢,e>0, z, =0, Vm¢ {l,k}, v(r)=0. We have

— t
Az = (all—i-&:alk, ey Qi TEQGR, EQ(i4 1)k A(i42)l TEQ(i+2)ks - - - 5 Ajl TEQfky - - - ) ,

and for e being sufficiently small v(Az) > 2 holds, and it is a contradiction.
Analogously assume that a(;;1)x > 0. Then let us consider a column-vector x
such that z; =1, zy = —¢€,e >0, =z, =0, Vm ¢ {l,k}, v(z)=1. We have

_ t
Az = (a1€a1k; - - - 5 Qil —EQiky —€Q(i 4 1)k Qi 2)l —EQ(i42)ks - -+ > AjL—Ejks - -+ ),

and for € being sufficiently small v(Az) > 2 holds, and it is also a contradiction.

So we have proved that there exists not more than one nonzero element in any
column of A. Since a matrix with a vanished column has no variation preserving
property, there exists one and only one nonzero element in any column of A.
Since the matrix A preserves variation, A has no vanishing row, so by the reasons
mentioned above every row of A has one and only one nonzero element. Since

v(Az) = v(z) = 0 for a vector z = (1,...,1)!, all these nonzero elements of
matrix A have the same sign.

So we have shown that there exist a set of nonzero numbers Ay,... , A, such
that sign(\1) = ... = sign(\,) and for any z = (x1,... ,Tp)"

— t
Az = (Ail.’L‘il,... ,/\,nxzn) ;

where (i1,19,... ,1,) is a perturbation of (1,2,... ,n).
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It is easy to verify that the sign preserving is possible if and only if iy, = k, k =
1,2,... ,noriy=n—k, k=1,2,... ,n, holds, and this concludes the proof. m

2. Proof of Theorem 2

Since K, C Kp+1, n € N, it is enough to prove Theorem 2 for n = 2. Assume
that there exists a kernel K(z,y) which preserves variation on Ks|0, 1].

It is obvious that K(z,y) #Z 0 on [0,1]2. Let us prove that K(z,y) > 0,
Y(z,y) € [0,1]? or K(z,y) <0, Y(z,y) € [0,1]%

Let us introduce several notations, which will be used only in this section. For
z € [0, 1] we denote

k(z,J) := /K(m,y)dy,
J

where J C [0,1] is a measurable set, and for A C [0, 1] we denote
1, ifyeA,
Ia(y) = :
0, ifyel0,1]\ A
At first, we will prove that for any yo € [0, 1]
K(z,yo) > 0,Vz € [0,1] or K(z,yo) <0,Vz € [0,1]. (4)

Let us fix any yo € [0,1]. Assume that Jz1,2z0 € [0,1], z1 # z2 such that
K(z1,y0) > 0 and K(z2,y9) < 0. Then Je > 0 such that K(z1,y) > 0 and
K(zg,y) < 0 for any y € Us(yo) = {y € [0,1] : |y — yo| < €}. Let us consider a
function

f) = Iy, (yo) (%), vy €10,1].

We have v(f) =0 and
Kf(x) = k(iE,Us(y())), Vz € [Oa 1]5

so Kf(x) > 0, Kf(z3) < 0 and v(Kf) > 1. This contradicts our assumption
that K (x,y) preserves variation, so (4) holds.

Let us assume now that 3 z1,z9,y1,%2 € [0,1], y1 # y2 such that K(z1,y1) >
0 and K (z2,y2) < 0. Then for some ¢ > 0 U.(y1) NU:(y2) = 0 and Vy' € Uc(y1),
Vy" € U.(y2) we have K(z1,y') > 0 and K(z2,9y") < 0. Then from (4) K(z,y) >
0 for (z,y) € [0,1] x U.(y1) and K(z,y) < 0 for (z,y) € [0,1] x U.(y2). Let us
consider a function

f@) =Ty ®¥) — Tv.(y,) (), ¥ €[0,1]. (5)
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We have v(f) =1 and
Kf(w) = k(xaUE(yl)) - k(.’L’, UE(yZ)) > O,V.T € [03 1]3

ie., v(Kf) #v(f). So K(z,y) >0, Vz,y €[0,1] or K(z,y) <0, Vz,y € [0,1].
Without loss of generality we can assume that

K(z,y) >0, Vz,ye€[0,1].

Let us prove that there exist numbers 0 < u < v < 1 such that K(z,y)
vanishes outside the set, shaded at the Fig. 1.

W= W
wl= @

o
<
<
x

o

A Ay At X

Fig. 1 Fig. 2
Let us consider
o1(y) = Ijay3, 11(y) — Ijo, 2/3)(y), y € [0;1].

Since v(Kp1) = v(p1) = 1, there exists z; € (0,1) such that K¢i(z;) > 0 and,
moreover, either f{cpl () >0 for z > z7 or f((pl (z) >0 for z < z7.

Notice that for any function g(z) € PWC|0,1] we have v(g(z)) = v(g(1— z)).
Therefore the kernel K (z,y) preserves variation if and only if the kernel K (1—z,y)

preserves variation, and we can suppose that
f(gol(:v) = k(x, [%, 1]) — k(=, [0, %]) >0, Vr<ux. (6)

Denote by Ay := [0,2'], where 2! = sup{z : K¢i(z) > 0}. Since z; € Ay,
we obtain interA; # () (henceforth by interA we denote the interior of the set A)
and [0,z1] C A1. We have Vz € Ay Kpi(z) >0, i.e.

k(z,[3,1]) > k(z,[0,2]), Vz€A;. (7)
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Let us consider
w3(y) = Ijo, 1/3)(y) — Ij1y3, 11(y), y € [0,1].

Since v(Kp3) = v(ps3) = 1, there exists z3 € (0,1) such that Ks(z3) > 0
and, moreover, either Kp3(z) > 0 for z > z3 or Kp3(x) > 0 for z < z3 holds.
Now we will show that z3 ¢ Ay and Kys(z) > 0, Yz > z3. Since Vz € Ay,

k< (2,13,1]) < k(z,[3,1]),
we have Vz € Ay Kys(z) < 0and Ks(x1) < 0. Therefore, z3 ¢ A; and Vz > 3
Kps(z) = 0. 3

Denote by As := [z3,1], where 2® = inf{z : Kyps(x) > 0}. Since z3 € A, we
obtain that interAs # () and [z3,1] C As. We have Kps(z) >0 Vz € Ag, i.e.,

k(z,[0,3]) > k(z,[5,1]), V€ As.
Let us consider

wo(y) = Innys, 2/31(y) — Ijo, 130273, 11(¥), y € [0,1]. (8)

Denote by Ag := [z2, 73] an intersection of all closed intervals, which contain
the set {z : Ks(z) > 0}. Notice that interAy # 0, since v(Kws) = v(p2) = 2
and Koy € C[0, 1].

Since Vz € Aq,

we have (Vz € A;) K p2(z) < 0. Therefore interAy N A; = (). Analogously, using
(8), we can show that interAs N Az = (.

Let us prove that we can take the left end of the interval Ay as u and the
right end of Ay as v.

At first, we will prove that K(z,y) = 0 for all (z,y) € M, where M =
[0,22] x [0, 2], where z? is the left end of interval Ay (the set M is shown at the
Fig. 2).

Let us consider for every k > 4

Fe() = I3 —1sk, 2/31(Y) — Tpo, 2/3-1/k)0c2/3, 11(¥), ¥ € [0, 1].

Since v(K fi) = v(fi) = 2, there exists &, € (0,1) such that K fx(£x) > 0.
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We will show that K¢o(£) > 0. We have

k(&[5 2]) > (6, [2 — £, 2])
>k, 0,11\ [3 — £ 3) > k(& [0, 1]\ [3, 3),

and therefore £ € Ag. Then Vk > 4 we have & > z2, where z? is the left end
of AQ.
Let us consider

o) = Tiaja—1/k, 2/3) (W) — o, 2/3-1/8) (%), y € [0,1].

We will show that Kf (z) >0, Vz < :1;1 Notice that v(K f}) = v(f}) =
and K f3(z) = k(a,[2 — b 21) ~ k(@ [0.3 — 1) > K fila), for o € [0, 1]
Since

k(x?)a [% - %; %]) < k($3a [%7 1]) < k($3a[ ’ 3]) < k(w?n [% - ])7

it follows that Kf,%(:l)’y,) < 0. Moreover, R'f,i(fk) > Kfi(&) > 0 and & < z3,
since & € Ag, x3 € Az and Ay lies to the left of Ag.

As v(Kfl) =1, then Kfl(z) > 0 Vz < &. And since & > z7, we have
Kfl(z) >0 Vr <z} Sofor Vk >4 and Vz < 27 we get

— %)

As k — oo we obtain 0 > k(z, [0, 2]) provided z < z%, i.e., K(z,y) = 0 for all
(z,y) € M =[0,27] x [0, 2], where 27 is the left end of interval A,.

Repeating this reasoning for the kernel K(1 — z,1 — y), which also pre-
serves variation, and using property (6) , we obtain that K(z,y) = 0 for all
(z,y) € [23,1] x [3,1], where 23 is the right end of the interval As.

We will show that K(z,y) = 0 for all (z,y) € S, where S = Ay x [0, 3] (the
set S is shown at the Fig. 3).

&=

k(.’E, [% - %’ %]) > k(.’E, [O,

winN

<

W= W

A Ay At X

Fig. 3
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Let us consider the kernel K;(z,y) : [0,1] x [0, %] — R, which is a restriction
of the kernel K (z,y). Since for any f1(y) € PWC[0, 3]

2/3

VUﬂ=Mﬁ=MKﬁ=v'/K@wﬂw® — W&,

0

where

_ fl(y)7 lny [07 2]’
f@)‘{m ity e (2,1],

the kernel Ki(z,y) also preserves variation.

Let us take a partition 0 < # < 3 < % of the interval [0, 2]. Our further

construction will be analogous to the previous one.
Let us consider

o1(y) = Inuys, 2/3(y) — Lo, 173)(y), vy €0, 3.

Notice that for £ € Ay in view of definition Ay we have

Kl(ﬁl(x) = k(xa [%’ %]) - k(.’l), [O’ %]) > k‘(I, [%7 %D
—k(z, [0, %] U [%’ 1)) = K‘PQ(-'E) >0

and I%lgﬁl (z) > 0, for z € interAg. Moreover since Ki(z,y) = 0 on M, I%lcﬁl (z) =
0 Vz < 22, where z? is the left end of Ay. So we obtain

I%lcﬁl(:z) >0, Vo < x%,

where z3 is the right end of Ay, and on {z € Ay : Kgy(z) > 0} this inequality
is strict (analogously to the inequality (6)), therefore A; D [0,z32], where A; =
[0,7!] and ' = sup{z : K1) () > 0}.

Let us consider also

@3(y) = Ijo, 1/6)(y) — Ip1s6, 2/31(¥), v € [0, 3],
G2(y) = Inys, 1731(y) — I, 1/6)001/3, 2/31(1), v € [0, 3],

Aj := [#3,1], where &% = inf{z : K1p3(z) > 0} and A, := [#2,#2] — an intersec-
tion of all closed intervals, which contain the set {z : K;@y(z) > 0}.

By the same arguments as in the proof that K(z,y) vanishes on M,
we get Ki(z,y) = 0 on [0,7%] x [0, 3], therefore K(z,y) = Ki(z,y) = 0 on
(z,y) € S = Ay x [0, 3] (we take into account that Ay C A, C [0,77)).
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Let us take a partition 3 < 2 < 2 <1 of [£,1] and consider a restriction of the
kernel K(z,y) on [0, 1] x [%, 1]. Analogously to the proof that K(z,y) vanishes
on [z3,1] x [%,1] and our previous reasoning we obtain that K(z,y) = 0 for any
(z,y) € S1, where S; = A x [2,1] (the set S is shown at the Fig. 3).

So we have proved that, taking left and right ends of interval A as u and v
correspondingly, K (z,y) = 0 outside the set, shown at the Fig. 1.

Since K(z,y) #Z 0 on [0,1]? and K(z,y) € C([0,1]?), K(z,y) > 0 on some
[, ] % [7,6] C [0,1]?, where o < 8, 7 < 6. We have § — < 1.

Let us consider kernels

K[O,u](x, y)a K[u,v] (.’II, y) and K['u,l] (37, y)a

which are the restriction of K (z,y) to the sets Ay x[2,1], Apx[$, 2] and Agx [0, 1]
correspondingly.

These kernels, obviously, preserve variation, therefore we can repeat our rea-
soning, hence § — vy < %.

Repeating our argument, we obtain that § — v < 3% for any n € N, which is
impossible. This contradiction concludes the proof. [

3. Example

Now we present an example of a kernel K € C([0,1]2) such that the corre-
sponding integral transform preserves variation on K1[0, 1].
Let us consider a kernel

0, if z € {0,1},y € [0,1],
K(w,y) = { (3 = 2}y, @) €0, x[0,1)
(=a)e =5 =y, it (@y) € [3,1) x [0,1].

This kernel is continuous on [0, 1]?. Moreover, v(K f) =v(f), provided v(f) =0
(since K (z,y) > 0 on [0,1]%). We will show that v(K f) = v(f), provided v(f) =
1.
Let f(y) € PWCI0,1] and v(f) = 1. Then one of the following conditions
holds:
(i) 3yo € (0,1) such that f(y) >0, if y > yo and f(y) <0, if y < yo;

(i1) Jyo € (0,1) such that f(y) <0, if y > yo and f(y) >0, if y < yo.

Without loss of generality we can assume that (i) holds. We will show that
v(Kf) > 1. Since f(y) € PWCI0,1] and v(f) = 1, we have infyeo17 f(y) < 0
and 3[y1,ya] C [0,1] such that infycpy, 4,1 f(y) > 0. Denote by

m:=— inf f(y) >0, M:= inf f(y)>0.
y€[0,1] Y€[Y1,y2]

Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 1 103



Tetyana Lobova

Since for any z € (0, %) and for any y1,v2 (yo < y1 < y2):

Y2

fK(.’II,y)dy %_1_1
T RN
[ K(z,y)dy
0

there exists z; € (0, ) such that

Y2 Y1
M / K(21,y)dy > m / K (21, y)dy, (9)
Y1 0

therefore K f(z1) > 0.
In the same way, using the fact that for any z € (%, 1) and for any y3,y4 (y3 <
ya < yo), we have

Ya
[ K(z,y)dy

1
1— T 11
y:; :(1 y3> —1—)+OO, .T—>1,
— Y4
[ K(z,y)dy
Y4

1) such that K f(z2) < 0. So v(Kf) > 1.

Let us consider a continuous on (0, 5) U

we can prove that there exists zg € (
Now we will show that v(K f) <
(3, 1) function:

1
29
1.

1
)= ——— : (0,1 u(3,1) = (0, +0).
g(z) K90 (0,3) U (5,1) = ( )
We will prove that g(z)K f(z) is monotonically nonincreasing on (0, U (3,1).

Let 0 < 2’ < 2" < % Then

1

g Rf() = /(1) 7 Fly)dy + / (i)_ F(w)dy > by ()]
0

Yo .
Y0 1 1 1
E $l’ g J:’I _ I, ~ I,
> 0/ (y0> Fly)dy + y/ (yo) Fy)dy = 9" K f(z"),

so the function g(z)K f(z) is monotonically nonincreasing on (0, 3). In the same

way we can prove that g(z) K f(z) is monotonically nonincreasing on (3,1). More-
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over, we have

‘”'Er%n‘og(m,mf(xl) f(i)zf(y)dy+j (;—0>2f(y)dy > [by (i)]
fo(y)dy+jf(y)dy_f(11;)>2 (v)dy +yZ <11__;’0>2 (y)dy

— 1' 1 }"'{ 1
o' flrglc12+og(x JKS(),

So for any z1,z2 € (0,%) U (3,1), 21 < 22, we have g(z1)K(z1) < g(z2) K (2).
Therefore v(gK f) < 1. And since g(z) > 0 on (0, 1) U (3,1), we have
v(Kf) =v(gKf) < 1.

We have proved, that v(Kf) = 1, so K really preserves variation on K1[0, 1].
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