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It is shown that the Euler hydrodynamics for vortical flows of an ideal in-
compressible fluid coincides with the equations of motion for a charged com-
pressible fluid moving due to a self-consistent electromagnetic field. Transi-
tion to the Lagrangian description in a new hydrodynamics is equivalent for
the original Euler equations to the mixed Lagrangian—FEulerian description
— the vortex line representation. The correspondence with the charged hy-
drodynamics can be established also for the Euler equations for compressible
fluids without pressure. This allows one to construct exact solutions for the
charged three-dimensional hydrodynamics.

1. Introduction

In the paper [1] it was introduced a new description of vortical flows, the
so-called vortex line representation, for the system of hydrodynamic type,

o0 oH
il rot [rotm X Q] . (1)

Here Q is a generalized vorticity, v = rot 67{/dQ has a meaning of the fluid ve-
locity, and H is the fluid Hamiltonian. In particular, if H coincides with kinetic
energy, 1/2 [ v2dr, vorticity is expressed through velocity by the standard for-
mula: © =rot v, and, respectively, the equation (1) becomes the Euler equation
for vorticity:

o0
ot
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=rot [v x Q]. (2)
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This description deals with the vortex lines and their motion. The vortex line rep-
resentation is a transform to the curvilinear system coordinates moving together
with vortex lines. This representation is based on the property of frozenness
of vorticity into fluid according to which all fluid particles are pasted to their
own vortex line and can not leave it. Locally this change of variables can be
considered as a transformation to mixed Lagrangian—Fulerian description when
each vortex line is labeled by two-dimensional Lagrangian marker and another
coordinate defines the given vortex line.

Recently, the author of the present paper showed [2]| that this transforma-
tion follows from the equivalence of the Euler hydrodynamics for incompressible
fluids and the hydrodynamic type equations describing motion of charged com-
pressible fluid moving in self-consistent electromagnetic field. Electromagnetic
field in this case satisfies the Maxwell equations. The new hydrodynamics occurs
compressible. Due to this fact the phenomenon of breaking becomes possible that
corresponds to breaking of vortex lines for the Euler hydrodynamics. Mathemat-
ically breaking in new hydrodynamics corresponds to vanishing Jacobian of the
mapping of the transition from the Eulerian description to the Lagrangian one.
This results in infinite value of the vorticity field in one separate point. In this
paper we develop this idea for ideal compressible hydrodynamics without pressure
which can be easily integrated in terms of Lagrangian description. We show that
between compressible fluids and charged fluids also there exists a familiar con-
nection. However, this correspondence is not one-to-one. It is a homomorphism:
using velocity and vorticity fields for the original fluid it is possible to construct
electromagnetic fields and velocity field for charged fluid, but in the general case
the velocity and vorticity fields for the original fluid can not be found through
electromagnetic field and velocity of the charged fluid. In fact, by means of this
approach we have opportunity to construct the whole integrable sub-manifold of
solutions to the charged fluid hydrodynamics.

2. General remarks

As well known (see, for instance, [3, 4]) the Euler equations for an ideal in-
compressible fluid,

in both two-dimensional and three-dimensional cases possess the infinite (contin-
uous) number of integrals of motion. These are the so called Cauchy invariants.
The most simple way to derive the Cauchy invariants is one to use the Kelvin
theorem about conservation of the velocity circulation,

= ?{ (v - dl), (4)
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where the integration contour C|r(¢)] moves together with a fluid. If in this ex-
pression one makes a transform from the Eulerian coordinate r to the Lagrangian
ones a then Equation (4) can be rewritten as follows:

where a new contour CJa] is already immovable. Hence, due to arbitrariness of
the contour C[a] and using the Stokes formula one can conclude that the quantity

. O0x;
— <x£) )

conserves in time at each point a. This is just the Cauchy invariant. If the
Lagrangian coordinates a in (5) coincide with the initial positions of fluid particles
the invariant I is equal to the initial vorticity Qg(a).

Conservation of these invariants, as it was shown first by Salmon [4], is con-
sequence of the special (infinite) symmetry — the so-called relabeling symmetry.
The Cauchy invariants characterize the frozenness of the vorticity into fluid. This
is very important property according to which fluid (Lagrangian) particles can
not leave its own vortex line where they were initially. Thus, the Lagrangian
particles have one independent degree of freedom — motion along vortex line.
From another side, such a motion as it follows from the equation for the vorticity
(2) does not change its value. From this point of view a vortex line represents
the invariant object and therefore it is natural to seek for such a transformation
when this invariance is seen from the very beginning. Such type of description
— the vortex line representation — was introduced in the papers [1, 7| by Ruban
and the author of this paper.

3. Connection with charged fluids

According to the Equation (2) the tangent to the vector  velocity component
v, does not effect (directly) on the vorticity dynamics, i.e., in (2) we can put,
instead of v, its transverse component v,,.

The equation of motion for the transverse velocity v, follows directly from
the Equation (3) by means of the following formula of vector analysis,

(v-V)v =V (v?/2) — [v x rot V]
and the velocity decomposition

V=v,+V,.
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As the result, the equation for the transverse component v,, can be written in the
form of the equation of motion for a charged fluid moving in an electromagnetic
field:

ov

a—tn-l-(vn-V)vn:E-l—[vn x HJ. (6)
Here the effective electric and magnetic fields are given by the expressions:
2
v ov

E=-V P 7
(r+2)-5. )
H =rot v,. (8)

Interesting to note that the electric and magnetic fields introduced above are
expressed through the scalar ¢ and vector A potentials by the standard way:

<
N’|~no

p=p+ ) A=v,, (9)

so that two Maxwell equations
oH
div H=0, — =—-rot E
ot
satisfy automatically. In this case the vector potential A has the gauge
div A = —div v,

which is equivalent to the condition div v = 0.

Two other Maxwell equations can be written also but they can be considered
as definition of the charge density p and the current j which follow from the
relations (7) and (8):

4dmp = —div E, (10)
OE
W )
where E and H are given by Egs. (7) and (8).
New terms in the right hand side of Eq. (6) have also mechanical interpreta-
tion. Lorenz force [vy X H] is nothing more than Cariolis force. Addition in ¢ to
pressure p, equal to v, 2/2, has direct connection with the Bernoulli formula. The
term O;v, appears due to transition to movable non-inertial system of coordinates.
The basic equation in the new hydrodynamics is the equation of motion (6) for
the normal component of the velocity which represents the equation of motion

47j = rot H —
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for non-relativistic particle with a charge and a mass equal to unity, the light
velocity in these units is equal to 1.

The obtained system of equations (6)—(11) establishes correspondence with the
Euler hydrodynamics (3) of an ideal incompressible fluid. This correspondence
means that any 3D solution of the Fuler equations generates one solution of the
system (6)—(11) but not vise versa. Only special solutions of the system give a
solution to the Euler equations (3), in particular, because of the special form for
the charge density and electric current. Therefore we may say that the Euler
equations are embedded into the system (6)—(11) that open a new opportunity to
construct solutions for the charged hydrodynamics (6)—(11).

It is necessary to emphasize that the vector potential A and respectively the
magnetic field H are defined by the tangent component of the velocity. For two-
dimensional flows the tangent velocity is identically equal to zero: the vorticity in
this case is perpendicular to the velocity. As the result, we arrive at the potential
electric field: E = —V¢. In this case the charge density is defined from the well
known in fluid dynamics relation:

1 1 ..
p= _EAP = Edlv (v-V)v.
For three-dimensional vortical flows of an ideal fluid magnetic field is present
already. Notice, that for the three-dimensional Bertrami flow, rot v ~ v, the
magnetic field is also absent.

4. Vortex line representation in ideal
incompressible hydrodynamics

The equation of motion (6) is written in the Eulerian representation. To
transfer to its Lagrangian formulation one needs to consider the equations for
"trajectories" given by the velocity vy:

dR
— =v,(R,t 12
= va(R, 1) (12)
with initial conditions
R|t:0 = a.

Solution of the equation (12) yields the mapping
r = R(a,1), (13)

which defines transition from the Eulerian description to a new Lagrangian one.
The equations of motion in new variables are the Hamilton equations:

. oh . oh
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where dot means differentiation with respect to time for fixeda, P =v,+ A =v
is the generalized momentum, and the Hamiltonian of a particle h being a function
of momentum P and coordinate R is given by the standard expression:
1 v?
=_(P—-A)? = —
5 yre=pt o,
i.e., coincides with the Bernoulli "invariant".
The first equation of the system (14) is the equation of motion (6), written in
terms of a and ¢, and the second equation coincides with (12).
For new hydrodynamics (6) or for its Hamilton version (14) it is possible to
formulate a "new" Kelvin theorem (it is also the Liouville theorem):

r— }[(P-dR), (15)

h

where integration is taken along a loop moving together with the "fluid". Hence,
analogously as it was made before while derivation of (5) we get the expression

for a new Cauchy invariant:
a’Ei
I=rot, | P,— |. 16
0 ( ,aa) (16

Its difference from the original Cauchy invariant (5) consists in that in the equa-
tion of motion (12) instead of the velocity v stands its normal component v,.
As consequence, the "new" hydrodynamics becomes compressible: div v, # 0.
Therefore on the Jacobian J of the mapping (13) there are imposed no restrictions.
The Jacobian J can take arbitrary values.

From the formula (16) it is easily to get the expression for the vorticity € in
the given point r at the instant ¢ (compare with [1, 7]):

(2(a) - Va)R(a, )
J 7
where J is the Jacobian of the mapping (13) equal to

Q(r,t) = (17)

8(~Tla Z2, .’133)

J = .
8(@1, az, a3)

Here we took into account that the generalized momentum P coincides with the
velocity v, including ¢ = 0: Py(a) = vo(a). Qp(a) in this relation is the "new"
Cauchy invariant with zero divergence: div,Qg(a) = 0.

Thus, in the general situation the equation of motion of vortex lines has the
form (12) which is completed by the relation (17) and the equation

Q(r,t) = rot,v(r,t) (18)
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with additional constraint div,v(r,t) = 0.

The equations of motion (12), (18) together with the relation (17) can be con-
sidered as the result of partial integration of the Euler equation (3). These new
equations are resolved with respect to the Cauchy invariants — an infinite number
of integrals of motion, that is a very important issue for numerical integration (see
[8, 9]). For the partially integrated system the Cauchy invariants conserve auto-
matically that, however, for direct numerical integration of the FEuler equations
one needs to test in which extent these invariants remain constant. Probably,
this is one of the main restrictions defining accuracy of discrete algorithms for
direct integration of the Euler equations.

Another very important property of the vortex line representation is absence
of any restrictions on the value of the Jacobian J which do exist, for instance,
for transition from the Eulerian description to the Lagrangian one in the original
Euler equation (3) (when Jacobian in the simplest situation is equal to unity).
The value 1/J for the system (12), (18), (17) has a meaning of a density n of
vortex lines. This quantity as a function of r and ¢, according to (12), obeys
the continuity equation:

on + div,(nvy,) = 0. (19)
ot
In this equation div,v,, # 0 because only the total velocity has zero divergence.
The vortex line representation as a local change of variables r = r(a,t) does
not work in singular points, when the vorticity is equal to zero and respectively the
normal velocity occurs uncertain. Due to the frozenness of vorticity such points
remain in time, advected by fluid. Really, let us consider the point r = r(¢) which
defines from the equation

Q(r(t),t) = 0. (20)

Differentiate this equation with respect to time we arrive at the equation,

o0
— 4+ () - V)Q2=0
) V) =0,
coinciding with the Euler equation for vorticity in this partial case, Q(r(t),t) = 0.
Here ©(t) = v(r(t),t). This proves that these points are advected by flows and
can not dissipate or, for instance, transform into cuts.
The velocity v in these points is defined by inverting the curl operator:

v = curl Q. (21)

The normal velocity v, is not defined in these points. By this reason for the
vector field 7(r) = Q/|Q|, i.e., for the unit tangent vector to vortex lines, the
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null points represent topological singularities which can be classified by means of
topological methods. This classification is defined by the topological charge as a
degree of mapping S? — S2 given by the integral,

/eam (1-[0g7 x 0,7]) dS,, = 4mm, (22)
ov

where integration is performed over the boundary 0V of the region V' containing
the points and the topological charge m takes integer numbers.

The vortex line representation, as a change of variables (17), can be used not
only to the Euler equations (2), but in the general case (1) also. In the partial case
H = [|Q|dr the system (2) becomes integrable [1, 6]: each vortex line represents
as a free, but nonlinear object and the system itself as continuous distributed
free vortices. This is just a reason of breaking of vortex lines in the integrable
three-dimensional hydrodynamics.

5. Connection of charged fluid dynamics
with the Hopf equations

Consider the Euler equations for a compressible fluid without pressure (the
hydrodynamics of dust) which are sometimes called the Hopf equations:

dp . _
5t + div pv =0, (23)
ov

with a sufficient decrease of the velocity v at infinity.

We would like to note that the model (23), (24) has a lot of astrophysical
applications. According to the pioneering idea of Ya.B. Zeldovich [10], the for-
mation of proto-galaxies due to breaking of stellar dust can be described by the
system (23), (24) (see also the review [11]).

The equations (23, 24) can be successfully solved by means of the Lagrangian
description. In terms of Lagrangian variables the Equation (24) describes the
motion of free fluid particles:

r=a+vo(a)t, v=vg(a). (25)

Here vy(a) is initial velocity and a are initial coordinates of a fluid particle.

For this reason breaking is possible in this model: it happens when trajectories
of fluid particles intersect. In terms of the mapping (25), describing the change
of variables from the Eulerian description to the Lagrangian one, the process of
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breaking corresponds to a vanishing Jacobian, J, of the mapping. This process
can be considered as a collapse in this system: the density

po(a)
(r’ t) = J
as well as the velocity gradient become infinite at a finite time in the points where
the Jacobian vanishes. The latter follows from the equation for the matrix U with
matrix elements

_ oy

Uz'j = 8:@ .

This equation can be easily got from (24):

v,

where p 5

This equation has the exact solution of the form
U = Uo(a)(1 + Uo(a)t) " (27)

Here a is the initial coordinates of a fluid particle and Up(a) is the initial value
of the matrix U.
The Jacobian J in this case is expressed as follows:

J =det(1 + Up(a)t).

Thus, at the points where the Jacobian vanishes the Jacoby matrix J = 14+ Uy(a)t
becomes degenerated.

Assume that the matrix Uy has three real eigenvalues Agx(a). This assump-
tion means that symmetric part of U, § = 1/2(U + UT), is greater than its
antisymmetric part, 2 = 1/2(U — UT) — the vorticity tensor. It takes place if
the following inequality takes place:

2(tr §)% — gtr(SQ) > 02

Then, introducing the projectors P®*) of the matrix Up(a) (P*)? = P®*) corre-
sponding to each of the eigenvalues A\gx(a)), the expression (27) can be rewritten
in the form of a spectral expansion:

D

)\Ok k
U= 2% _pk), 28
> e )
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The projector P*) being a matrix function of a, is expressed through the eigen-
vectors for the direct (Up(a)y = Ao9p) and conjugated (¢Up(a) = ¢Ag) spectral
problems for the matrix Up(a):

(k) _ (k) ;(k)
PY = yPgll,

3

where the vectors (™ and ¢(™) with different n and m are mutually orthogonal:

B = 5.

Hence, the determinant of the matrix U is defined by the product,

Do
det — __ N0k
v kl:[ll—i-)\()kt’

and, respectively, the Jacobian J of the mapping r = a + vg(a)t is given by the
expression:

D

J =T+ Moxt). (29)
k=1

From (28) it follows also that singularity in U first time appears at t = t¢, defined
from the condition [11, 13]:

to = 127151[—1/ Aok (a)]- (30)

From (28), one can see that near the singular point only one term in the sum
(28) survives,

U P 31
T YapAagAag’ (31)

where the projector P(™ is evaluated at the point a = ag and k = n, correspond-
ing to the minimum (30), 7 =ty — ¢, Aa = a — ag, and

?N;)

Mas = —
b Oanlag|,_,

is a positive definite matrix.

The remarkable formula (31) demonstrates that i) the matrix U tends to the
degenerate one as t — tp and ii) both parts of the matrix U in this limit, i.e.,
the stress tensor S and the vorticity tensor €2, become simultaneously infinite
(compare with [12]). It is interesting to note that in the vicinity of the singular
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time the ratio between both parts is fixed and governs by two relations following
from the definition of the projector P:

Ps = P§ + P3, Py = PsPy+ P4Ps, (32)

where Pg and P4 are respectively symmetric ("potential") and antisymmetric
(vortical) parts of the projector P. Because the antisymmetric part of the Equa-
tion (26) coincides with the equation for vorticity, i.e., Equation (2) the second
relation of (32), in particular, provides existence of the collapsing solution for this
equation. Important, that the equation for vorticity (2) has the same form for
both compressible and incompressible cases.

The formulas (27), (25) together with (28) yield the complete (implicit) so-
lution of the equations (23),(24). The singularity formation described by (31)
should be related to the gradient catastrophe [5].

Let us now apply to the Hopf equation (24) the same procedure as to the
Euler equation (3) by introducing an effective electromagnetic field. In the given
case the formulas, analogous to (6)—(11), read as follows:

ovy,
ot

+ (vn - V)vp, = E+ [vy, x H] (33)

with the electric and magnetic fields,

v2 ov
v(%)-% (34
H =rot v,. (35)

Here, as before, v, and v, are normal and tangent (relative to the vortex lines)
components of the velocity v.

Due to (34) and (35), two Maxwell equations will be satisfied also and two
others can be considered as definition of the current and the charge density. Be-
cause of the model (24) is integrable, solutions to the charged hydrodynamics
(33) together with the Maxwell equations, corresponding to arbitrary solution of
(24), can be written. In opposite case any solution of the charged hydrodynamics
and Maxwell equations in the generally situation is not a solution of the Euler
equation (24). Thus, we can say the equation of motion (33) plus the Maxwell
equations have the whole integrable sub-manifold of solutions which can be con-
structed by means of solution given by (25) and (27). It is necessary to mention
that the corresponding solution will be represented in the implicit form also.
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6. Conclusion

Thus, we demonstrate a new possibility of constructing the whole integrable
sub-manifold of solutions to the charged hydrodynamics. If for the Euler equa-
tions for incompressible fluids (3) the transformation to the charged compressible
hydrodynamics can be considered as a technical detail to derive the vortex line
representation, for the Hopf equations this approach yields new solutions to the
charged hydrodynamics. Important also that all these solutions, written in the im-
plicit form, describe breaking. It seems that this is a typical phenomenon not only
for compressible hydrodynamics but for incompressible Euler equations also. At
least, all numerical experiments (besides [8, 9] see also [14-17] demonstrate forma-
tion of singularities with blow-up behavior for the vorticity like ~ (to —t)~!. The
papers [8, 9] based on the vortex line representation show that blow-up tendency
can be interpreted as breaking of vortex lines. For the Hopf equations appear-
ance of singularities takes place simultaneously for symmetric ("potential") and
antisymmetric (vortical) parts of the matrix U. In this case the vorticity tensor
Q) defines the tangent component of the velocity in the Hopf equations that al-
lows one to construct the effective electric and magnetic fields. This means that
any solution of the Hopf equations yields some solution to the charged hydrody-
namics, but not vise versa. The same statement is valid also for correspondence
between the Euler equations for incompressible fluids and the charged hydrody-
namics. The similar correspondence can be established also between the Euler
equations for barotropic flows and the charged hydrodynamics. The latter ques-
tion, however, lies beyond the scope of this paper and will be published in another
place.
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