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A special problem for the standard liner differential equation of 2-nd
order on [0, 1] is investigated when one of boundary conditions must be or-
thogonal to a given measure on [0,1]. The measure and the potential are
complex-valued. The main theorem yields some conditions for the alter-
native: the codimension or the linear span of the root functions in C[0, 1]
is either 1 or oco. The transformation operators are applied to reduce the
problem to the theory of entire functions.

Dedicated to the 80-th birthday of Viadimir Alexandrovich Marchenko
We consider the spectral problem
—y" +q(z)y =Ny, 0<z <1, (0.0.1)

under the conditions
1

y'(0) — hy(0) =0, /y dw = 0, (0.0.2)
0

where w is a complex valued Borel measure on [0, 1] the support of which contains
the endpoint © = 1; h € C and ¢ : [0,1] — C is a continuous function. Even
if h and g are real, the problem is not selfadjoint as long as supp(w) consists
of at least two points. Such "distributed boundary conditions" appeared in the
classicals works of Tamarkin [6] devoted to the n-th order problems where the so-
called regular boundary conditions can be disturbed by some integral terms (see
also [1] and [2] for a further development). Tamarkin’s method is based on the
asymptotics for the finite Laplace transform of w under some natural assumptions.
In application to our problem (1)-(2) this yields the following result.
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Sturm—Liouville problem with a distributed condition

Let us say that w is of class Dy if it is absolutely continuous on [0, 1] together
with its first derivative w’ and, moreover, the second derivative w” has bounded
variation. If w is of class Dy and, in addition, w’(1) # 0 then the system of
root functions (the eigen- and adjoint functions) arising in the problem (1)—(2 )
is complete in the domain of the corresponding differential operator in the space
C[0,1]. This means that the codimension of the closed linear span of root functions
in C[0,1] is equal to 1. Indeed, the closure of the domain of the operator consists
of those continuous functions which satisfy the second of boundary conditions (2).

In the present paper we prove the following

Main Theorem. If w does not belong to the class Dy or w'(1) # 0 then the
closure in C[0,1] of the linear span of root functions has codimension 1 or co.

In other words, if w &€ Do or w'(1) # 0 then either any function f € C]0,1]
with

/f dw=0 (0.0.3)

0

is the uniform limit of linear combinations of the root functions or there is an
infinite-dimensional subspace of C|0, 1] consisting of functions which do not admit
the above mentioned approximation. Note that the condition (0.0.3) is necessary
for this approximation.

A similar result for the 1st order problem was obtained in [4] by an entire
function theory method. Now we combine this method with the transforma-
tion operator technique to investigate the problem (0.0.1)—(0.0.2). Let us stress
that the transformation operators were introduced by J. Delsart and applied by
V. Marchenko and others to a wide range of very important direct and inverse
problems of spectral theory of differential operators, see e.g. [5] and the references
there.

We include the Main Theorem into a wider context arising in some natural
applications of entire functions to the problem (0.0.1)—(0.0.2). All information
from the entire function theory we need can be found in [3, Ch. 1, 3, 5].

For any complex A\ we denote by ¢(z, A) the solution of the equation (0.0.1)
under the Cauchy conditions y'(0) = h, y(0) = 1, so that ¢(z,\) satisfies the
first boundary conditions (0.0.2). All solutions of the problem (0.0.1)—(0.0.2) are
proportional to ¢(z,A). Hence, the problem has a nontrivial solution if and only
if A is a root of the function

AQ) = / o, \) dw(z) (0.0.4)
0
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and the solution is ¢(x, A) up to proportionality.

Obviously, ¢(z, —A) = ¢(z, A) hence, p(z, \/u) is uniquely determined. This is
an entire function of y as it follows from the general theory of ordinary differential
equations. The set

S={peC:pu=x, AN =0} (0.0.5)

is the discrete spectrum (the set of eigenvalues) of the operator —y" +¢q(z)y under
the conditions (0.0.2), the eigenfunctions are o(z, /i), p € S. Now let m, be
the multiplicity of the root A = /i in (0.0.4). If m, > 2 then

AV(E) =0, 1<j <my—1 (0.0.6)

and the corresponding adjoint functions are

dJ
W, 1<j<m,—1. (0.0.7)

All of them satisfy the second condition (0.0.2).

We denote by R the system of the above mentioned root functions corre-
sponding to all u € S. Consider its annihilator R+ in the dual space C[0,1]*.
(The latter is the space of complex valued Borel measures on [0,1].) The quan-
tity dim R' is called the deficiency of the system R and denoted by defR. Since
w € RY, we have

1 < defR < 0. (0.0.8)

The Main Theorem states that the only values of defR are 1 and oo if w & Dy or
W'(1) #0.

Now recall that the transformation operator is a Volterra integral operator
(T2)(5) = () + / K(z,8)2(8)dt, 0 <z <1, 0.0.9)
0
which makes ¢(z,\) from cos Az, so that
x
o(z, ) = cos Az + /K(ac, t)cos Atdt, A € C. (0.0.10)
0

This operator with a smooth kernel K (z,t) does exist, see [5]. The dual operator
is

T* : do(t) v do(t) + /K(x,t) do(z)| dt, 0<t < 1. (0.0.11)
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Obviously, T™* preserves the absolute continuity and after the derivation 7™ turns
into the operator

1

T o'(t) o o' (1) + /K(:c,t)a'(x) dz (0.0.12)
t

acting in L1(0,1). The operators T, T*,T* are invertible and their inverse have
the same Volterra form with smooth kernels. Further we set o* = T*0o.

Lemma 1. 1 € supp(w*).

P roof. Suppose the contrary. According to (0.0.11) w {1} =0 and
1
dw(t) + /K(x,t) dw(z)| dt =0, 1—c <t <1,
t

for some € > 0. We see that w is absolutely continuous on (1 — ¢,1) and

1
W'(t) + /K(:v,t)w'(:v) dr=0,1—-e<t<l1.
t

This Volterra’s integral equation has the only solution w’ = 0. Ultimately, 1 ¢
supp(w) that contradicts a preliminary assumption on w. [ |
By substitution from (0.0.10) into (0.0.4) we obtain

1
AQ) = / cos At dw* (). (0.0.13)
0

We see that A(\) is an entire even function of exponential type 7 < 1.
Lemma 2. The ezponential type T of A(X) is equal to 1.

Proof. It follows from (0.0.13) that

/ AN e~ dx = 01 i‘;“jr(t’;) (0.0.14)
0

for Re¢ > 7. This Laplace transform coincides with the Borel transform of A())
in the half-plane Re( > 7. Formula (0.0.14) shows that the singularities of the
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Borel transform lie on the segment [—%,7] C i{R. On the other hand, the minimal
segment containing the singularities is the mirror reflection in R of the indicator
diagram of A()), according to the well known Polya Theorem. By (0.0.13) the
indicator diagram of A()) is the segment [—i7,i7]. If 7 < 1 then the point { =1
is regular for the integral on the right hand side of (0.0.14). This contradicts
Lemma 1. ]

Lemma 3. The spectrum S is an infinite sequence going to infinity.

Proof. By the Hadamard Factorization Theorem

AN =X ]] <1 - i—j) , (0.0.15)

where ¢ = const # 0, m > 0 and (£),) is the sequence of nonzero roots of A())
repeated according to their multiplicities. A priori, this sequence may be finite
(even empty). This is just the possibility we have to disprove.

Suppose to the contrary. Then A(X) = P(\?) where P(u) is a polynomial. If
degP = p then (2p + 1)-th derivative of A()) is identically zero. By (0.0.13) we

obtain
1

/t2p+1 sin At dw*(t) = 0.
0

However, the system {t2p+1};i0 is complete in the space of f € C]0,1] such that
f(0) = 0. Hence, supp(w*) C {0} that contradicts Lemma 1. [ |

It is interesting to note that
1
2 e <
for any a > 0 since A(A) is an entire function of order 1. Hence,
my

1
HES |U|2+ﬁ

< o0, B>0. (0.0.16)

A more subtle information about the distribution of the spectrum in the complex
plane can be extracted from the theory of functions of completely regular growth.
The function A(A) belongs to this class because of its boundedness on the real
axis. Moreover, its indicator diagram is the segment [—i,]. According to the
above mentioned theory, the part of spectrum S lying out any angle |argu| < 7
is a set of zero density at the order 1/2, i.e.

L FAHES [ pl <7 |argp| >n} _
T—>00 \/‘F

0, (0.0.17)
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meanwhile,

lim #{peS:|ul <r|argy <n} _ 1
r—00 T T

Let us come back to the system R of root functions. A measure o belongs to
RL if and only if the entire function

(0.0.18)

/lgo(w, A)do(z)

0

vanishes at all roots of A(A) with at least the same multiplicities. This is equiv-
alent to that the quotient

/0 (e, \) do(2) /0 " cos A do (1)

=T N T A

(0.0.19)

is an entire function. The indicator diagram of ®, () is the singleton {0}. Indeed,
the indicator diagram of the numerator in (0.0.19) is contained in [—i, 4] while the
latter is the indicator diagram of A(X) by (0.0.13) and Lemma 2. It remains to
refer to the addition theorem for the indicator diagrams of functions of completely
regular growth. Thus, we have

Lemma 4. The exponential type of the entire function ®,(\), o € R*, is
equal to zero.

Formula (0.0.19) defines the linear mapping o ++ ®, from R onto a subspace
F of the space of entire even functions of zero exponential type. This mapping is
an isomorphism because of invertibility of the dual transformation operator 7.
Therefore,

dim F = dim Rt = defR. (0.0.20)

The space F contains all constants since w € RE.

If dimF > 1 then there is ¢ € R+ with ®, # const. Every such ®, has a
root by the Hadamard Factorization Theorem applying to the functions of zero
exponential type.

Lemma 5. If &, € F and ®,(a) = 0 then

Dy (N)

23 €F (0.0.21)
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Proof Wehave to show that there exists 7 € R+ such that

1 1
/(p.l‘)\dT /(px)\da
0 0

or, equivalently,

1 1

(A2 —a?) /cos Mdr*(t) = /cos Xt do™*(t). (0.0.22)

0 0
However, the latter equation can be explicitly resolved. The answer

dr*(t) = /wda*(x) dt (0.0.23)

o
t

can be directly verified by substitution into (0.0.22). (For a = 0 the kernel in
(0.0.23) must be replaced by t — z.) m

Lemma 6. If dimF =6, 1 < § < oo, then F is the space of all even polyno-
mials of degrees < 24.

Proof  Let ®, be not a polynomial. Then the set of roots of &, is
infinite. Take some pairwise distinct roots +ai,+as,... ,+as and get § + 1
linearly independent functions

P () P, () Dy (N)

X —o? (a2 —ad) (R - aD)(N —ad) ... (B~ )
(0.0.24)

P, (N),

All of them belong to F by Lemma 5. This contradicts dimF = §. Thus, all
functions from F are polynomials.

Now let &, € F be a polynomial of the maximal possible degree which we
denote by 2§’ — 2. Using the roots of ®, for the construction of type (0.0.24)
we obtain ¢’ polynomials of degrees 2§’ — 2,28’ —4,... ,0 respectively. All these
polynomials belong to F. Therefore, F contains all even polynomials of degrees
< 2¢'. As a result, F coincides with the space of such polynomials. Hence,
dim F = ¢’ and then ¢’ = 4. [ ]

Note that the Main Theorem conditions were still not used. Now we pass to
the
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Proof of the Main Theorem. Supposetothe contrary. Then
Lemma 6 is applicable. In particular, F contains the polynomial A2, i.e., there is
o € R* such that

1 1
/cos M do*(t) = A2 /cos At dw*(t).
0 0

Hence,

1
duw* (t) = /(t _)do*(@)| dt, 0<t < 1. (0.0.25)
t

Applying the inverse transformation operator we obtain

dw(t) = dw*(t) + /Q(m,t)dw*(w) dt, (0.0.26)

where Q(z,t) is a smooth kernel. By (0.0.25) and (0.0.26) w turns out to be
absolutely continuous on [0, 1] and

1 Yy
= []t-v+ [e@e - | w0w) (0.0.27

In turn, the derivative w'(t) is absolutely continuous on [0,1]. Finally,

1

2 Z,
= l1t+//aQ Do —y)de -0 -y) | do*w)

t

So, w"(t) has bounded variation. As a result, w € Dy and «'(1) = 0 as (0.0.27)
shows. This situation contradicts our assumptions. [

A difficult problem is to completely distinguish between two cases in the
Main Theorem. At present do not know any example of infinite deficiency in
the frameworks of the Main Theorem. (Such an example exists in a first order
problem, cf. [4].)

Regardless of the conditions of the Main Theorem we can suggest a simple
construction which allows us to pass from any given finite deficiency § to § + v
with any v, 1 < v < oo. For simplicity we restrict ourself to the case ¢(z) = 0,
h=0.

Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 3 297



Yuri Lyubich

For a measure wy we consider its integral of order 2v

1

1 2v—1
> /(w—t) duwo(z) | dt. (0.0.28)

t

daq =

Obviously,

1

xr
/cos At dwn (¢ / dwo(z ] /(:v — )2 Lcos Atdt
V
0

0

The interior integral equals

v—1 )2k
CO)\S% - Z(_l)k/\2((k2k))!w '
k=0
Suppose that
1
/x”“ dwy(z) =0, 0<k<wv-—1L (0.0.29)

0

Then
1

cos A\t dwp(t) = A% / cos At dw (t
0

o

Hence for any measure o we have

A2V fol cos Atdo(t) fol cos A\tdo(t)
fol cos A\t dwyg (1) fol cos M dwi (£)

(0.0.30)

Denote by Fy and F; the spaces in role of F for wy and w; respectively. Let
dimFy =46, 1 < § < oco. We prove that

0 =dimF; =0+ . (0.0.31)

First of all, §; < oo, otherwise, there is a measure o which yields on the right hand
side of (0.0.29) a function ®, € F; such that &, # 0, @ 2k)( 0)=0,0<k<é+vr.
Then ¥(X) == A=%®,(\) € Fy, hence, ¥()\) is an even polynomial of degree
< 2§p. However, it must be zero having the root A = 0 with multiplicity > 26.
By Lemma 6 the space JFi consists of all even polynomials of degree < 26 .
On the other hand, F; contains A\2°+2¥=2 gince A?~2 € Fy. Hence, § + v < §;.
Finally, A201=2=2 ¢ F; which contradicts Lemma 6. Thus, we have (0.0.31).
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As a more or less concrete example we consider wy = € + p where ¢ is Dirac’s
measure concentrated at the point 1 and p is absolutely continuous, i.e. dp = pdt
where p € L;(0,1). Hence,

1 1
/cos At dw(t) = cos A + /p(t) cos At dt.
0 0

On the imaginary axis we have
/ 1
/cosz'utdw(t) = 56‘“‘ +o0(1), |p|— oo.
0

Then (0.0.19) shows that ®,(ix) is bounded on iR. With Lemma 4 we conclude
that ®,(A) is constant. Thus, dim F = 1 so, defR = 1 by (0.0.20).

The construction (0.0.28) provide us with an example of deficiency v + 1,
1 <v < o0, as soon as (0.0.29) is fulfilled for the above considered measure wy.
We have faced the power moment problem

1
/:L‘Qkp(.’l,‘)d.’E:—l, 0<k<v-1
0

for p € L1(0,1). A solution p does exist in the space of all odd polynomials of
degree < 2v.

Let us conclude a simple example of infinite deficiency. Take the measure
dw(t) = p(t)dt where p € C*[0,1] is such that p®**+1(0) = 0, p¥)(1) = 0 for all
k > 0 while p(t) is not identically zero in any neighborhood of the endpoint ¢ = 1.

Then
1 1

/cos Adw(t) = % /p(%) (t)cos Atdt (k> 0)

0 0
and we see that F contains all even polynomials.
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